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Abstract

Diastereoselective alkylation of ethyl (5S)-3,6-diethoxy-2,5-dihydro-5-isopropyl-2-pyrazinecarboxylate (5S)-3
with alkyl halides was investigated by using NaH andn-BuLi. These alkylated products (2R,5S)-4b–d were
converted to the correspondingα-alkylated serines (S)-6b–d. © 1998 Elsevier Science Ltd. All rights reserved.

Nonproteinogenic amino acids, such asα-substitutedα-amino acids, have attracted our attention
because of their biological activity.1 Specifically, the construction of enantiomerically pureα-substituted
serines is of considerable interest from the standpoint of synthetic and pharmaceutical chemistry.2 In
previous work, we reported the diastereoselective aldol-type reaction of a newly designed bislactim
ether, ethyl (5R)- or (5S)-3,6-diethoxy-2,5-dihydro-5-isopropyl-2-pyrazinecarboxylate3, as the chiral
α-substituted serines precursor.3

Herein we describe diastereoselective alkylation of the chiral bislactim ether3 with alkyl halides
towards the enantioselective construction ofα-alkylated serines as shown in Scheme 1. Bislactim ether
(5S)-3 was readily prepared fromσ-symmetric diethyl aminomalonate1 and L-valine (S)-2 according
to the previously reported procedure.3b Diastereoselective alkylation of the bislactim ether (5S)-3 with
alkyl halides was examined by employing NaH orn-BuLi under suitable conditions as shown in Table 1.
The reaction of the sodium enolate of (5S)-3 with 2 mol equiv. of alkyl halides gave alkylated products
(2R,5S)-4a–d as colorless oils in reasonable yields and 52–92% diastereomeric excess (de), respectively
(entries 1–4 in Table 1). Similar treatment of the lithium enolate of (5S)-3 with 2 mol equiv. of alkyl
halides afforded (2R,5S)-4a–c in 68–84% yields and 34–97% de (entries 5–7), but poor reactivity was
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observed in the reaction withn-hexyl bromide (entry 8). The absolute configuration and de of (2R,5S)-
4a–c were determined by1H–1H NOE (400 MHz, CDCl3) experiments and by comparison with the
absolute configuration of each corresponding diastereomer, (2S,5S)-4a–c. When C2–Me protons of
(2R,5S)-4a were irradiated, an NOE enhancement of C5–H was recognized (Fig. 1). On the other
hand, irradiation of C2–Me protons of (2S,5S)-4a caused no NOE enhancement of C5–H. In the case
of (2R,5S)-4b,c, a similar NOE enhancement was observed [(2R,5S)-4b: between C5–H and phenyl
protons, (2R,5S)-4c: between C5–H and an allyl proton] as shown in Fig. 1. These alkyl substituents
must be introduced in acis-relation manner to the proton at C5 due to the steric hindrance between
the alkyl halides and thei-propyl group at C5. Based on the reaction mechanism described above, the
absolute configuration of the major product obtained from the reaction of (5S)-3 with n-hexyl bromide
was speculated to be (2R,5S)-4d.

Scheme 1. (a) NaH/RX/THF/rt, (b)n-BuLi/RX/THF 0°C, (c) DIBAL/CH2Cl2/0°C or 0°C-→rt, (d) 0.2 N HCl/MeCN/rt

Reduction of each diastereomeric mixture of4a–d with 2.5 mol equiv. of DIBAL in CH2Cl2 at 0°C
to room temperature followed by chromatographic separation of the resultant two diastereoisomers on
a silica gel column gave the corresponding primary alcohols (2S,5S)-5a–d as the enantiomerically pure
compound in various yields (5a: 56%, 5b: 84%, 5c: 76%, and5d: 77%). Interestingly, a considerable
upfield shift of C5–H (δ 2.91 ppm in CDCl3, 2.92 ppm in THF-d8, 2.92 ppm in methanol-d4, and 3.13
ppm in benzene-d6) of (2S,5S)-5b was evidently recognized when compared with the chemical shift
(δ 3.72 ppm in CDCl3, 3.70 ppm in THF-d8, 3.78 ppm in methanol-d4, and 3.90 ppm in benzene-d6)
of (2R,5S)-5b in the 1H NMR (200 MHz) spectrum.4 In addition, one of the Me protons (δ −0.05
ppm in CDCl3, −0.14 ppm in THF-d8, −0.04 ppm in methanol-d4, and 0.35 ppm in benzene-d6) of

Table 1
Diastereoselective alkylation of bislactim ether (5S)-3
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Fig. 1. Selected1H–1H NOE enhancements (400 MHz1H NMR, CDCl3) for (2R,5S)-4a–c

(2R,5S)-5b exhibited a significant upfield shift in comparison with the chemical shift (δ 0.58 or 0.87
ppm in CDCl3, 0.59 or 0.89 ppm in THF-d8, 0.69 or 0.95 ppm in methanol-d4, and 0.71 or 1.01 ppm in
benzene-d6) of (2S,5S)-5b.4 Such a phenomenon seems to be rationalized in terms of the shielding effect
of the phenyl moiety, which probably adopts a folded conformation with the bislactim ether moiety.5,6

Hydrolysis of (2S,5S)-5b–d with 2 mol equiv. of 0.2 N HCl in MeCN at room temperature afforded
the correspondingα-alkylated serines (S)-6b–d as each enantiomerically pure compound (6b: 58%,6c:
16%, and6d: 31% yields).7 Unfortunately, (S)-6a was not obtained after hydrolysis of (2S,5S)-5a under
the acidic conditions.8

In conclusion, someα-alkylated serines were synthesized, each in enantiomerically pure form, by
using chiral bislactim ether (5S)-3. Thus, we demonstrated thatσ-symmetric diethyl aminomalonate1
could be utilized as the chiral serine carbanion synthon.
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