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A series of C-linked antifreeze glycoprotein analogues have been prepared to evaluate antifreeze activity as a function of distance between

the carbohydrate moiety and polypeptide backbone. The building blocks for these analogues were prepared using either an olefin cross-
metathesis or catalytic asymmetric hydrogenation. Analysis of antifreeze protein-specific activity revealed that only analogue 2a ( n = 1) was
a potent recrystallization inhibitor and thus has potential medical and industrial applications.

Antifreeze glycoproteins (AFGPS) are a subclass of biological
antifreezes found primarily in the plasma of deep sea polar

fish.! These compounds have the ability to inhibit the growth HO _OH HO _OH

of ice, thus ensuring the survival of these organisms in sub- HO 2 o%

zero environments. The typical AFGP structure is comprised OH AcNH

of a repeating -threoninet-alaninet-alanine tripeptide unit © H O 1

where the secondary hydroxyl group of the threonine is TN N\_)J\Nw

glycosylated with aB-p-galactosyl-(1,3)-N-acetylp-ga- H o = H ol

lactosaminyl disaccharide (Figure ®)While this structure HO (%8 1

is remarkably well-conserved among Teleost fish, lower HO Hmimic

molecular weight AFGPs may have edarginine residue in OH X o -

n=1-3 H 7
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regarded as an absorptiemhibition proces¥ " in which
AFGPs bind tightly to the surface of an existing ice crystal.
This binding ultimately inhibits the addition of other water
molecules to the ice lattice resulting in a localized freezing

point depression. The temperature difference between the
melting and freezing point is referred to as thermal hysteresis AcO

(TH). While the proteir-ice interactions of native AFGP
have not been definitively identified, hydrogen-bonding
interactions involving hydrophilic hydroxyl groups on the
disaccharideand possible hydrophobic interactions with the
B-methyl group of the threonine residue are thought to be
essential interationsFurthermore, recent studies have identi-
fied the N-acetyl group,a-configuration of glycoside, and
p-methyl group on the threonyl residue as important for
activity 4

AFGPs are also potent recrystallization inhibitors. While
the mechanism by which this re-organization of ice crystals
is not known, this property has many potential applications
in cryomedicine and the prevention of cellular damage during
freezing and thawing cyclés.

Unfortunately, two factors have precluded the com-
mercialization of native AFGP for medical and industrial
applications. These are the limited bioavailability and the
inherent instability of the €0 glycosidic bond. Conse-
quently, rationally designed carbon-linked@iinked AFGP
analogues are very attracti?eloward this end, we have
previously reported on the preparation ©flinked AFGP

analogues bearing an amide bond in the side chain that

demonstrated antifreeze protein-specific actifityn this
paper, we report the synthesis of a series of “simplified”
C-linked AFGP analogues (general struct@jdacking the

amide bond and correlate the distance between the carbo-
hydrate moiety and peptide backbone to antifreeze protein-

specific activity. Many of the structural features in the first-
generation analogues have been incorporated into AFG
analogue®a—c. For instance, the native disaccharide has

Scheme 1. Synthesis of Building Block$, 6, 8, and 10
for OCM
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Preparation of the requisite building blocks for olefin cross-
metathesis are outlined in SchemeCtAllylated galactose
pentaacetaté was prepared via a photochemical-mediated
allylation in 90% yield? C-Glycoside8 was obtained by
reducing5 with borane followed by PCC oxidation and

Wittig olefination with methyl triphenyl phosphonium

bromide?®< C-(1-Propenyl) glycosid&, a key intermediate
in the preparation of AFGP analog@e, was generated via
a palladium-mediated isomerization Bf

Vinyl glycine derivative10 was obtained in 34% yield

I;,from the orthogonally protected glutamic acid derivatéve

by oxidative decarboxylatiotf. With the requisite building

been truncated and replaced by a single galactose re5|du«5’|00kS in hand, olefin cross-metathesislfwith 5, 6, and

and the alanine residues replaced with glycines.

Recently, several methodologies have been developed to
prepare C-glycosyl amino acids including olefin cross
metathesis (OCM) and catalytic asymmetric hydrogenation.

was conducted using the second- generation Grubbs
catalyst (Scheme 2). As anticipated, building blo&Rsand

The former approach is amenable to preparing analoguesScheme 2. Preparation ofc-Linked Building Blocks14 and 15

such as? as it requires the readily available vinyl glycine
and C-alkenyl galactose derivatives as starting mate-
rials®
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Table 1. Olefin Cross-Metathesis To Prepatelinked
Building Blocks11—-13

entry C-alkene glycoside product yield, %
1 5 12 98
2 6 11 trace
3 8 13 100

13 were obtained in quantitative yield (Table 1). Unfortu-
nately, cross-metathesis betwddrand6 produced furnished
building block11 in only trace quantities. Presumably, this
is due to the fact that the carbenarbon double bond i6

is too close to the pyranose ring resulting in significant steric
interactions during the OCM. A similar effect has been
observed by McGarvegt al® The carbor-carbon double
bonds in enamide ester$2 and 13 were reduced by
hydrogenation with palladium over carbon. Under these
conditions, the Cbz and benzyl protecting groups were
simultaneously removed necessitating reprotection of the
amino terminus as an Fmoc carbamate to afford building
blocks14 and 15 in 55% and 85% yield, respectively.

To prepare the building block for AFGP analog2ee we
adopted a catalytic asymmetric hydrogenatioCagflycosyl
enamide esters first reported by Toone and co-workérke
substrate for this hydrogenatio®5) was constructed via
Horner-Emmons olefinatiot? with phosphonate3'? and
C-linked pyranosyl aldehyd@4, as shown in Scheme 3.
Catalytic asymmetric hydrogenation of tlieglycosyl ena-
mide 25 was accomplished using cationic rhoditiDu-
PHOS catalyst under hydrogen atmosphere (100 psi). Hy-
drogenolysis of the benzyl ester followed by conversion of
the Boc carbamate to a Fmoc carbamate furnished building
block 28.

Assembly of building block44, 15, and28into C-linked
AFGP analogues was accomplished by using standard Fmoc
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Scheme 3. Preparation ofc-Linked Serine Building Block8
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based solid-phase synthesis protocols (Scheme 4). The
protected glycopeptides were cleaved from the resin using
TFA, and the acetate protecting groups on the pyranose were
removed by treatment with sodium in methanol to afford

Scheme 4. Synthesis ofC-Linked AFGP Analogue®a—c
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s RI activity suggests that an optimal distance between the

two moieties exists and plays a key role in RI activity of
our C-linked analogues. Analoguga possesses the same
B number of atoms between the carbohydrate and peptide
moieties as native AFGP. While this analogue is not as potent
as AFGPS, it appears to be a more effective recystallization-
inhibitor than type Ill AFP from the ocean poutlécrozo-
arces americanyswhich has an effective concentration for
RI activity at 7.10x 10~" M compared with 5.0« 108 M

H

o

o008

o008

=

3
mean largest grain size (mnf)
o

in 2al4
—— n . e - : ; - | In summary, we have utilized olefin cross-metathesis and
sina e ool el st ettt catalytic asymmetric hydrogenation to prepare a series of

novel C-linked AFGP analogues with different distances
Figure 2. RI activity of C-linked AFGP Analogues between the carbohydrate and peptide backbone moieties.
The analogue with the shortest distance between these
moieties is an potent recrystallization inhibitor. This result
the C-linked AFGP analogue®a—c (73% to 93% isolated  suggests that the rational design of potent recrystallization
yield) ranging in molecular weight from 1.5 to 1.6 KDa. inhibitors for medical, industrial and commercial applications

AFGP analogue8a—c were assayed for antifreeze protein- IS & feasible and worthwhile goal. The effectiveness of AFGP

specific activity using nanoliter osmometry and a recrystal- analogue2a in preventing cryo-injury in mammalian cell
lization-inhibition assa§¢ In contrast to our first-generation ~ culture is currently under investigation.
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