Tetrahedron Letters 61 (2020) 152385

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Atomically precise palladium nanocluster catalyzed tandem oxidation processes of alcohols and phosphorous ylides: Facile access to α , β -unsaturated esters

Taiping Gao*, Jialei Du, Wenyan Liu, Mingxia Ren

School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China

ARTICLE INFO

Article history: Received 7 July 2020 Revised 18 August 2020 Accepted 19 August 2020 Available online 29 August 2020

Keywords: Atomically precise palladium nanocluster Heterogeneous catalysis Tandem oxidation-wittig reaction Mesoporous silica nanoparticles α,β-Unsaturated esters

ABSTRACT

The mesoporous silica nanosphere supported palladium nanocluster was synthesized through a simple impregnation method and well characterized. The as prepared catalyst shows excellent catalytic performance in tandem oxidation process (TOP) of alcohol and phosphorous ylide, which provides an efficient access to α , β -unsaturated esters with high yields utilizes 1 atmosphere of molecular oxygen as sole oxidant. This work represents the first example of atomically precise palladium nanocluster catalyzed tandem oxidation process of alcohol and phosphorous ylide and is expected to open new horizons for nanoclusters in the tandem reactions.

© 2020 Elsevier Ltd. All rights reserved.

Introduction

Atomically precise nanoclusters (APNCs) [1], as a new family of nanomaterials, have emerged as one of the most important branches of nanoscience and nanotechnology during the past decade and attracted significant attentions due to its applications in catalysis [2], biology [3] and sensing [4]. Owing to its high surface-to-volume ratio and the unique geometric structure and electronic structure, nanocluster show distinct catalytic activity in selective oxidation [5], reduction [6] and carbon–carbon coupling [7] reactions. Nanocluster with determined crystal structure and compositions make it possible to reveal the relationship between catalytic performance and their atomic level structure, which enable it have huge advantages over the uncertain surface structure of traditional metal nanoparticles [8]. Therefore, the development of new chemical processes promoted by atomically precise nanoclusters is a high desirable, yet challenging task.

One-pot tandem reactions [9], in which two or more transformation processes are combined into one synthetic operation, are great importance for efficient and practical organic synthesis and for green and sustainable chemistry, which avoid the isolation and purification of the intermediate. Thus allowing a reduction in time, labor and yield losses associated with the isolation and

* Corresponding author. E-mail address: gaotp@ldu.edu.cn (T. Gao). purification of intermediates. The tandem oxidation processes initiated by alcohol oxidation to the corresponding more reactive aldehydes, which can be easily trapped *in situ* by many nucleophilic agent leading to a variety of synthetically useful compounds such as esters, imines, amides and heterocycles [10].

The tandem oxidation-Wittig reaction, when the nucleophilie is stable phosphorous ylide, is an important reaction in organic synthesis because it provides a facile method to α , β -unsaturated ester, which is a very important 1,4-addition synthon in many organic reactions. Conventionally, various oxidants such as MnO₂ [11], Dess-Martin agent [12], IBX [13], PCC [14] were studied for the one-pot tandem oxidation-Wittig reaction. However, these protocols require the use of stoichiometric or even large excess amounts of oxidant, which generated many unpredictable by-products and much effort is needed to remove the oxidant (Scheme 1(a)). Moreover, some of this oxidant themselves are highly toxic and hard to handle. To avoid the use of hazardous oxidants, a great deal of effort has been devoted to design of new catalysts with green oxidants (Scheme 1(b)). For example, Williams and co-works [15] reported the tetra-n-propylammonium perruthenate (TPAP) catalyzed tandem oxidation-process of alcohols with stable ylides to give the α , β -unsaturated esters using O₂ as oxidant and N,N,N',N'-Tetramethylethylenediamine dioxide (TMEDAO₂) as co-oxidant. Park and co-works [16] reported porous aluminum oxyhydroxide embedded ruthenium nanoparticles catalyzed alcohol oxidation-Wittig reaction in toluene with O_2 as oxygen source. However, this

(a) Stoichiometric amounts of oxidant were employed for the tandem oxidation-Wittig reaction.

$$R^{1}$$
 OH + $Ph_{3}P$ OR² OR² Dess-Martin agent R^{1} OR² R^{1} OR²

(b) Trasition metal catalyzed tandem oxidation-Wittig reaction with green oxidant.

$$R^1 \frown OH + Ph_3P \frown OR^2 \xrightarrow{Cat. = Ru, Cu, Au/Pd} R^1 \frown OR^2$$

(c) This work: APNCs catalyzed tandem oxidation-Wittig reaction with green oxidant.

$$R^{1}$$
 OH + Ph₃P OR² OR² Solvent, O₂ balloon R¹ OR²

Scheme 1. Tandem oxidation-wittig reaction of alcohol and phosphorous ylide.

system suffers from high temperature and the poor recyclability of the catalysts. The Au/Pd bimetallic nanoparticles were also explored by Kobayashi and co-works to promote the tandem process of alcohol oxidation and Horner–Wadsworth–Emmons reaction [17]. Recently, using Cul/TEMPO as co-catalyst and air as the oxidant, Yu and co-works reported an efficient method to synthesis of α , β -unsaturated esters [18]. Despite this advances, the novel catalyst with excellent catalytic activity, easy recyclability and green oxidant are still highly demanding. So we developed and herein report the first mesoporous silica nanoparticles (MSNs) supported atomically precise palladium nanocluster [Pd₃Cl(PPh₃)₃(PPh₂)₂]⁺Cl⁻ (abbreviated **Pd₃Cl**) catalyzed tandem oxidation–Wittig reaction of alcohol and phosphorous ylide with 1 atmosphere O₂ (O₂ balloon) as oxidant (Scheme 1(c)).

Results and discussions

The **Pd₃Cl** nanocluster was synthesized following the previously reported method [19]. The as-prepared Pd₃Cl nanocluster shows distinct peak at 418 nm and a weak absorption band at 485 nm in UV-vis absorption spectra (Fig. 1(A)), which is consistent with the literature. MALDI-MS analysis of the as-prepared Pd₃Cl cluster

with positive model in Fig. 1(B) shows mass peak at m/z = 1511.9(assigned to molecular ion peak of [Pd₃Cl(PPh₃)₃(PPh₂)₂]⁺, theoretical molecular weight: 1511.9). There are two fragment peaks at 1249.9 and 986.6, assigned to $[Pd_3Cl(PPh_3)_2(PPh_2)_2]$ and $[Pd_3 ClPPh_3(PPh_2)_2$ respectively, after lost one or two PPh₃ from the Pd₃Cl clusters, caused by the high energy of MALDI-MS method (The fragment is inevitable in MALDI-MS analysis because of the hard ionization method (high laser intensity)). No other peaks are found in the wide range of MALDI-MS spectrum indicating the purity of the as-obtained **Pd₃Cl** clusters. The ¹H and ³¹P NMR spectra of **Pd₃Cl** demonstrated that there is phenyl and P in the nanocluster, which is well consistent with the result of MALDI-MS analysis. The uniform spherical morphology with average particle size ~100 nm of MSNs can be easily observed from the TEM image (Fig. 2(A) and (B)). The as-prepared Pd₃Cl cluster was loaded onto MSNs by impregnation of MSNs powder in a DCM solution of cluster. As expected, the Pd₃Cl nanoclusters are absorbed into the pore of the MSNs. After the Pd₃Cl loading, the structure and morphology of MSNs are well maintained (Fig. 2(C) and (D)). To conform the Pd nanoclusters after loaded on the MSNs are well dispersed, the energy dispersive X-ray spectroscopy (EDX) mapping analysis of Si, O, and Pd was conducted and shown in Fig. 3. The results demonstrate that the Pd element is distributed

Fig. 1. (A) UV-vis spectrum and (B) positive mode MALDI mass spectrum of Pd₃Cl nanoclusters. The peak marked with an asterisk (*) in (B) is a fragment caused by the MALDI method.

Fig. 2. (A) and (B) TEM image of MSNs. (C) and (D) TEM image of Pd₃Cl/MSNs catalyst.

Fig. 3. TEM image of Pd₃Cl/MSNs (a), EDX mapping analysis of Si (b), O (c) and Pd (d).

homogenously throughout the whole MSNs. In addition, ICP-MS analysis shows that the Pd content of the $Pd_3Cl/MSNs$ catalyst is 1.1 wt%.

The free Pd₃Cl, MSNs and Pd₃Cl/MSNs were analyzed by FT-IR and the results are shown in Fig. 4A. A strong absorption at 1439 cm⁻¹ was observed in **Pd₃Cl** owing to the stretching vibration

of Ph—P bond, which is the characteristic absorption peak of triphenylphosphine group. After loading on the MSNs, the absorption peak was still observed (Fig. 4A, red line). The peaks at 2940 cm⁻¹ and 693 cm⁻¹ assigned to stretching vibration and bending vibration of C—H bond, respectively. To gain insight into the oxidation state of palladium nanocluster, the free **Pd₃Cl** and

Fig. 4. FT-IR spectra of free Pd₃Cl, MSNs and Pd₃Cl/MSNs (A), XPS spectra in Pd 3d of free Pd₃Cl and Pd₃Cl/MSNs (B).

Table 1

Palladium nanocluster catalyzed one-pot tandem oxidation-wittig reaction of benzyl alcohol and phosphorous ylide^a.

^[a]Reaction conditions: benzyl alcohol (0.2 mmol), ylide (0.24 mmol), additive (0.24 mmol), solvent (1 ml), catalyst (20 mg) at rt. ^[b] Isolated yield. ^[c] The reaction was carried out at 50 °C. ^[d] The reaction was carried out at 30 °C. ^[e] The reaction was carried out at 30 °C. ^[e] The reaction was carried out at mosphere. ^[f] The reaction was carried out at N₂ atmosphere. ^[s] The reaction was catalyzed with bare MSNs. ^[h] The reaction was carried out without catalyst.

Table 2

Substrate scope of the tandem oxidation-Wittig reaction. $^{\mathrm{a},\mathrm{b}}$

^a Reaction conditions: alcohol (0.2 mmol), ylide (0.24 mmol), Cs₂CO₃ (0.24 mmol), toluene (1 ml), catalyst (20 mg) at 50 °C. ^b Isolated yield. Values in [] represent *E:Z* isomer ratios determined by ¹H NMR.

Pd₃Cl/MSNs were analyzed by X-ray photoelectron spectra (XPS). As shown in Fig. **4B**, there are two observable peaks centred at 336.4 and 341.7 eV, which are assigned to Pd 3d5/2 and Pd 3d3/2, respectively. In comparison of the standard binding energy of Pd(0) 3d5/2 (~335.9 eV) and Pd(II) 3d5/2 (~337.0 eV), we can conclude that the oxidation state of Pd in **Pd₃Cl** nanocluster is

Fig. 5. Recyclability of the Pd₃Cl/MSNs.

between zero and two. The distinctive oxidation state of Pd in palladium nanocluster may play an important role in the tandem reactions. After immobilized on the MSNs, the binding energy of Pd 3d has no obvious change (Fig. 4B blue line).

Then, the tandem oxidation-Wittig reaction of benzyl alcohol 1a and phosphorous yilde 2a was chosen as a model reaction to test the catalytic activity of Pd₃Cl/MSNs and optimize the reaction parameters (Table 1). Unfortunately, no reaction occurred in the solvent of toluene under the O2 balloon, even the reaction temperature was increased to 50 °C (Table 1, entries 1 and 2). To our delighted, when 1.2 equiv. of Na₂CO₃ was added, the desired one-pot tandem oxidation-Wittig reaction took place smoothly with moderate yield (Table 1, entry 3). Further investigation showed that, compared with Na2CO3 and NEt3, Cs2CO3 was the promising additive (Table 1, entries 4 and 5). Screening of solvents revealed that toluene was the best one among CH₃CN, DMSO, Dioxane and THF, although the yields are still unsatisfied (Table 1, entries 6-9). Gratifyingly, significant improvement of yield was obtained when the reaction was carried out at 50 °C (Table 1, entries 10 and 11). The results of control and blank experiment clearly suggest that palladium nanocluster is the true catalytic species and O₂ is the oxidant (Table 1, entries 12–15).

With the reaction conditions optimized, the generality of the tandem oxidation-Wittig reaction was then tested and the results are summarized in Table 2. Generally, the reaction proceeded smoothly to give the corresponding α,β -unsaturated esters in good to excellent E/Z selectivity and yields (68-96%). It was found that the substituents electronic effect has slightly impact in the yield of the tandem reaction. Benzyl alcohol with electron-withdraw substituents (4-NO₂, 4-Br, 4-Cl, 4-F) and electron-donating substituents (4-Me, 4-OMe, 3-OMe) all reacted efficiently and give the desired products with good yields. In addition, the more hindered ortho-substitute alcohols such as 2-bromobenzyl alcohol and 2-methyl benzyl alcohol could also be tolerated in this tandem oxidation-Wittig reaction, which generated the corresponding α_{β} unsaturated esters with 82% and 71% yield, respectively (Table 2, 3g and 3i). The semi-stabilized phosphorous ylide was also examined under the optimized reaction conditions and the desired α,β unsaturated ketone was obtained in good yield (Table 2, 3 l).

The recyclability of the as-prepared **Pd₃Cl**/MSNs was then tested. When the reaction completed, the catalyst was collected simply by centrifugation, washed with water and ethanol three times, and dried at 50 °C. A new catalytic cycle was run under the same conditions using the recycled catalyst. To our surprise, the recycled catalyst showed almost as the same activity as the

fresh catalyst after 5 cycles (Fig. 5). So we can conclude that **Pd₃Cl**/MSNs is a good recyclable catalyst.

Conclusions

In summary, we have disclosed a novel, efficient and recyclable catalyst for the one-pot tandem oxidation-Wittig reaction of alcohol and phosphorous ylide. With this protocol, a wide range of α , β -unsaturated esters were produced in good to excellent yields. This also represents the first tandem reaction catalyzed by atomically precise nanocluster. This work is expected to open up a new frontier for atomically precise nanocluster in tandem reactions.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We are grateful to the Shandong Province Natural Science Foundation (ZR2018PB003).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tetlet.2020.152385.

References

- [1] a) L. Cademartiri, V. Kitaev, Nanoscale 3 (2011) 3435–3446;
 - b) I. Chakraborty, T. Pradeep, Chem. Rev. 117 (2017) 8208-8271;
 - c) R. Jin, Nanoscale 2 (2010) 343-362;
 - d) R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 116 (2016) 10346-10413;
 - e) B.H. Kim, M.J. Hackett, J. Park, T. Hyeon, Chem. Mater. 26 (2013) 59-71;

- f) Y. Lu, W. Chen, Chem. Soc. Rev. 41 (2012) 3594-3623;
- g) Y. Negishi, W. Kurashige, Y. Niihori, K. Nobusada, Phys. Chem. Chem. Phys. 15 (2013) 18736-18751.
- [2] a) Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. (2019);
- b) G. Li, R. Jin, Acc. Chem. Res. 46 (2013) 1749-1758;
 - c) H. Qian, M. Zhu, Z. Wu, R. Jin, Acc. Chem. Res. 45 (2012) 1470-1479;
 - d) S. Yamazoe, K. Koyasu, T. Tsukuda, Acc. Chem. Res. 47 (2014) 816–824; e) Y. Zhu, R. Jin, Y. Sun, Catalysts 1 (2011) 3–17;
- f) Y. Zhu, H. Qian, R. Jin, J. Mater. Chem. 21 (2011) 6793.
- [3] X.-D. Zhang, J. Chen, Z. Luo, D. Wu, X. Shen, S.-S. Song, Y.-M. Sun, P.-X. Liu, J. Zhao, S. Huo, S. Fan, F. Fan, X.-J. Liang, J. Xie, Adv. Healthcare Mater. 3 (2014) 133–141.
- [4] A. Mathew, P.R. Sajanlal, T. Pradeep, Angew. Chem. Int. Ed. 51 (2012) 9596– 9600.
- [5] a) W. Li, C. Liu, H. Abroshan, Q. Ge, X. Yang, H. Xu, G. Li, J. Phys. Chem. C 120 (2016) 10261–10267;
- b) S. Xie, H. Tsunoyama, W. Kurashige, Y. Negishi, T. Tsukuda, ACS Catal. 2 (2012) 1519–1523.
- [6] a) Y. Zhu, Z. Wu, C. Gayathri, H. Qian, R.R. Gil, R. Jin, J. Catal. 271 (2010) 155– 160;
- b) H. Chen, C. Liu, M. Wang, C. Zhang, G. Li, F. Wang, Chin. J. Catal. 37 (2016) 1787-1793.
- [7] a) H. Abroshan, G. Li, J. Lin, H.J. Kim, R. Jin, J. Catal. 337 (2016) 72–79;
 b) G. Li, H. Abroshan, C. Liu, S. Zhuo, Z. Li, Y. Xie, H.J. Kim, N.L. Rosi, R. Jin, ACS Nano 10 (2016) 7998–8005.
- [8] G. Li, R. Jin, J. Am. Chem. Soc. 136 (2014) 11347-11354.
- [9] a) X. Luo, Y. Xu, G. Xiao, W. Liu, C. Qian, G. Deng, J. Song, Y. Liang, C. Yang, Org. Lett. 20 (2018) 2997–3000;
 b) L.F. Tietze, Chem. Rev. 96 (1996) 115–136.
- [10] a) A.M. Faisca Phillips, A.J.L. Pombeiro, M.N. Kopylovich, ChemCatChem 9 (2017) 217–246;
 - b) V. Jeena, R.S. Robinson, RSC Adv. 4 (2014) 40720-40739;
 - c) H. Miyamura, S. Kobayashi, Acc. Chem. Res. 47 (2014) 1054-1066.
- [11] R.J.K. Taylor, M. Reid, J. Foot, S.A. Raw, Acc. Chem. Res. 38 (2005) 851-869.
- [12] D.H. Anthony, G.M. Barrett, M. Ohkubo, J. Org. Chem. 62 (1997) 9376–9378.
- [13] A. Maiti, J.S. Yadav, Synth. Commun. 31 (2001) 1499-1506.
- [14] A.R. Bressette, L.C. Glover Iv, Synlett (2004) 738–740.
- [15] C.D.G. Read, P.W. Moore, C.M. Williams, Green Chem. 17 (2015) 4537-4540.
- [16] E.Y. Lee, Y. Kim, J.S. Lee, J. Park, Eur. J. Org. Chem. 2009 (2009) 2943–2946.
- [17] H. Miyamura, A. Suzuki, T. Yasukawa, S. Kobayashi, Adv. Synth. Catal. 357 (2015) 3815–3819.
- [18] C. Ren, Z. Shi, W. Ding, Z. Liu, H. Jin, X. Yu, S. Wang, Tetrahedron Lett. 59 (2018) 14–17.
- [19] F. Fu, J. Xiang, H. Cheng, L. Cheng, H. Chong, S. Wang, P. Li, S. Wei, M. Zhu, Y. Li, ACS Catal. 7 (2017) 1860–1867.