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Design of new polyamine-based chiral phase-transfer catalysts for
the enantioselective synthesis of phenylalanine
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Abstract—Enantiomerically enriched phenylalanine was synthesized by asymmetric benzylation of a glycine Schiff base using
polyamine-based chiral phase-transfer catalysts.
� 2004 Elsevier Ltd. All rights reserved.
Catalytic asymmetric synthesis in the efficient produc-
tion of enantiomerically enriched compounds is cur-
rently of considerable interest in organic synthesis, and
as a result a number of chiral metal and nonmetal cat-
alysts have been devised for reaching a useful as well as
practical level of selectivity in recent years.1 The devel-
opment of efficient enantioselective processes utilizing
new chiral catalysts, increasingly requires the rational
design of such catalysts. Among these, the use of phase-
transfer catalysis for the preparation of chiral, non-
racemic organic compounds from prochiral substrates
using enantiomerically pure quaternary ammonium salts
has become a field of growing importance.2 Currently,
cinchona-alkaloid derived chiral phase-transfer cata-
lysts3 and C2-symmetric binaphthyl-modified chiral
spiro-type phase-transfer catalysts4 are the best known
in this area. In addition to these previous endeavors, we
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herein report the design of new chiral phase-transfer
catalysts of type 1, based on the use of commercially
available polyamine frameworks with the expectation of
the multiplier effect of chiral auxiliaries as illustrated in
Scheme 1.

A variety of new chiral phase-transfer catalysts 3–10
containing several binaphthyl groups were easily pre-
pared via treatment of the corresponding polyamines
with dibromide (S)-24j in refluxing acetonitrile in
the presence of K2CO3 (Scheme 1, Fig. 1).5 After
simple aqueous work-up (aq NaHCO3), these chiral
phase-transfer catalysts were purified by chromato-
graphy on silica gel, and identified by mass spectro-
metric analysis (ESI). They fall into three categories:
(i) mono-ammonium salts (S)-3–(S)-6 derived from
triamines, (ii) bis-ammonium salts (S)-7 and (S)-8,
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and (iii) cyclic bis- and tris-ammonium salts (S)-9 and
(S)-10.

We also prepared the simple mono-ammonium salt (S)-
11 in order to examine the effect of the polyamine
framework.

The chiral efficiency of polyamine-based phase-transfer
catalysts (S)-3–(S)-10 was examined by the asymmetric
benzylation of glycine Schiff base 13 with the results
summarized in Table 1. When 13 was treated with
benzyl bromide in the presence of 3mol% of chiral
catalysts (S)-3–(S)-10 in toluene/50% aqueous KOH (v/v
3:1) at 0 �C under an argon atmosphere, phenylalanine
derivative 14 was obtained in moderate to good yields.
As a controlled experiment, chiral quaternary ammo-
Table 1. Enantioselective benzylation of 13a

Entry Catalyst Time (h) Y

1 3 11

2 4 2

3 5 6

4 6 10

5 7 4

6 8 3

7e 8 55

8f 9 2

9 10 50

10 11 5

11e 12 36

aUnless otherwise specified, the reaction was carried out with 13 (0.3mmol

in 50% aqueous KOH/toluene (v/v 1:3) under the given reaction conditions
bYield of isolated product.
c Enantiopurity of 14 was determined by HPLC analysis using a chiral colum
dAbsolute configuration of 14 was determined by comparison of the HPLC

the reported procedure.4j
e 5 equiv of CsOHÆH2O were used as a base and the reaction was performed
f 5 equiv of KOH powder were used in the absence of H2O.
nium catalyst (S)-11 derived from dibutylamine gave 14
with an (S)-configuration in 60% yield with 20% ee
(entry 10). Among the chiral mono-ammonium salts,
(S)-5 showed moderate enantioselectivity (50% ee)
(entry 3) when compared to (S)-3, (S)-4, and (S)-6
(entries 1, 2, and 4). Chiral bis-ammonium salt (S)-8,
derived from spermine, exhibited higher enantioselec-
tivity (63% ee) (entry 6). Interestingly, in the case of (S)-
7, an opposite (R)-configuration was obtained (entry 5).
While use of cyclic bis-ammonium salt (S)-9 resulted
in formation of nearly racemic product 14 (entry 8),
the reaction with cyclic tris-ammonium salt (S)-10
predominantly gave the opposite (R)-enantiomer
(entry 9).

Based on the result that using bis-ammonium salt (S)-8
provided the best result for asymmetric benzylation of
13, we optimized the reaction conditions with (S)-8.
Lowering the reaction temperature and using
CsOHÆH2O instead of 50% aqueous KOH, the enantio-
selectivity was increased at the expense of the reaction
rate, with 14 being obtained in 78% yield with 83% ee
(entry 7).

We have previously shown that asymmetric benzylation
of glycine Schiff base 13 with C2-symmetric binaphthyl-
modified chiral spiro-type phase-transfer catalyst (S,S)-
12 under identical reaction conditions gave (R)-14 (entry
11).4j In contrast, the opposite (S)-configuration was
obtained by using most of polyammonium catalysts
with the (S)-binaphthyl moiety. Therefore, both
enantiomers of 14 can be synthesized by using a single
chiral source.
ield (%)b Ee (%)c Configurationd

51 0 ––

64 32 S

76 50 S

81 7 S

87 27 R

76 63 S

78 83 S

49 4 S

46 31 R

60 20 S

90 79 R

) and 1.2 equiv of benzyl bromide in the presence of 3mol% of 3–12

under argon atmosphere.

n (Daicel Chiralcel OD) with hexane/2-propanol as solvent.

retention time with the authentic sample independently synthesized by

at )40 �C.
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In conclusion, novel polyammonium salts6 containing
several binaphthyl groups have been found to be good
phase-transfer catalysts for the enantioselective synthe-
sis of phenylalanine. The experimental findings show
that the length of methylene chains in the catalysts has a
distinct influence not only on the enantioselectivity, but
also on the absolute configuration.
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