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Abstract
Current industrial methods of biodiesel production lead to an excess of crude glycerin which requires costly purification 
before commercialization. Production of oxygenated fuel additives is a potential route for glycerin valorization. Glycerin 
acetylation was carried out over heterogeneous acid catalysts (15%, glycerol weight basis) using glacial acetic acid (molar 
ratio = 9). The catalysts, containing different amounts of phosphate species (P/Si from 10 to 20 atomic ratio), were prepared 
by wet impregnation of commercial silica with aqueous solutions of diammonium phosphate and ortho-phosphoric acid. 
X-ray diffraction patterns of calcined solids presented amorphous patterns like raw silica. The prepared catalysts presented, 
at 120 °C, glycerol conversion higher than 89.5% after 1 h of reaction, been diacetin the major product, with triacetin selec-
tivities lower than 26.1%. Diacetin selectivity was found to be almost invariant with catalyst acidity thus underlining the 
relevance of catalyst porosity due to the large acetins molecules sizes. The slow rate of triacetin diffusion in narrow pores of 
catalyst might be responsible for the relatively low yield obtained. Surface phosphate species showed a slow rate of leaching 
in the reaction medium showing high catalyst stability.
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1  Introduction

The increasing environmental awareness and the depletion 
of fossil fuel reserves have prompted the growth of the 
renewable biofuels market, with a greater impact on bio-
diesel and bioethanol, substitutes for conventional diesel 
and gasoline, respectively [1].

Biodiesel is typically produced by a homogeneous base-
catalyzed transesterification, from vegetable oil or animal 
fat [2], and bioethanol is obtained by the fermentation of 
sugar [3]. Both processes co-produce glycerin, 10 wt% [4, 
5] of the final mixture for biodiesel whereas the fermenta-
tion yields about 3 to 15 wt% (ethanol basis) [6], depend-
ing on the used feedstock.

Glycerin is mainly used in pharmaceutical, food, and 
cosmetic industries but these traditional uses cannot face 
the increasing biofuels-related production of glycerin, cre-
ating a surplus that not only affects its market value but 
also results in a potential environmental issue that must 
be addressed [4]. Simultaneously, the valorization of the 
co-produced glycerin would help to improve the sustain-
ability and economic feasibility of the biodiesel produc-
tion process [7].

One of the main applications of crude glycerin (non-
purified glycerin co-produced with biodiesel) is an alterna-
tive fuel however, its physical and chemical properties are 
limiting factors in combustion [8]. Moreover, the uncon-
trolled combustion of glycerin leads to the formation of 
acrolein, a substance highly toxic for human health and 
ecosystems [9, 10]. On the other hand, traditional indus-
trial uses require high glycerin purity, which would penal-
ize even further the biodiesel production process [11]. 
In this context, new approaches have been studied and 
glycerin acetylation, to produce mono-, di-, and triacetins 
(MAG; DAG, and TAG), have stood out as a potential 
option since the three products have a wide range of appli-
cations [12], particularly TAG that can be used as an oxy-
genated fuel bio-additive to improve fuel combustion [13]. 
Additionally, DAG can be used in biodegradable polyester 
production, helping to mitigate the problem related to the 
pollution of marine and freshwater environments [7, 14].

Glycerin acetylation (Fig. 1) can be carried out using 
either acetic anhydride or acetic acid as an acetylation 
agent [15]. However, despite the former being thermody-
namically favorable, achieving higher TAG selectivity, the 
latter is more practical since it is more stable during stor-
age periods and has a lower price [7, 13]. Additionally, the 
reaction with acetic anhydride is more violent, demanding 
more resistant, and therefore expensive, equipment [7].

The acetylation is an acid-catalyzed reaction that can be 
performed in a homogeneous or heterogeneous medium. 
Usually, mineral acids are used as homogeneous catalysts, 

which are toxic, corrosive, difficult to remove from the 
final reaction mixture, and generate wastes that may pose 
risks for human health and the environment [12]. Moreo-
ver, the main challenge regarding glycerin acetylation is 
the low selectivity towards TAG, which can be enhanced 
by increasing the catalyst acidity. However, when homo-
geneous catalysts are used, an increase in catalyst acidity 
implies higher equipment costs [11].

The use of heterogeneous catalysts in glycerin acetylation 
not only avoids all the mentioned problems but also offers 
the possibility of reuse the catalyst several times, becoming 
an interesting option from an economic and environmental 
point of view [11]. Therefore, several solid catalysts have 
been studied, for different reaction conditions (Table 1). 
For most of the tested catalysts in Table 1, the selectivity 
towards TAG, the most valuable acetin, remains low. Data 
reported by Abida et al. [16] show that SO4

2− studded over 
silica coated Fe2O3, magnetic and nanostructured catalysts, 
permits to obtain 100% of TAG selectivity after 80 min of 
reaction. According to the depicted reaction mechanism, the 
active phase seems to be related to Si–SO4H species on the 
catalyst surface. The best catalyst lost about 50% of TAG 
selectivity after 6 consecutive reaction batches, possibly by 
leaching the –SO4H species into the reaction medium. The 
leaching active species into the reaction medium can have a 
non-negligible homogeneous catalytic contribution.

Recently data from Ramalingam et al. [17] seems to show 
a major role of the catalyst mesoporous on the triacetin for-
mation. The authors reported a selectivity 50.4% of TAG 
selectivity obtained with mesoporous silica modified with 
copper and ruthenium. Both, Lewis and Brønsted acid cata-
lysts have been used in glycerin acetylation. Brønsted acety-
lation mechanism (Fisher esterification) is believed to start 
with acetic acid protonation as schematized in Fig. 2 [18]. 
Theoretically, Lewis and Brønsted mechanisms are similar 

Fig. 1   Acetylation reaction of glycerin with acetic acid
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[18] and some researchers claim a synergy effect between 
both acid sites during glycerin acetylation over Keggin het-
eropolyacid catalysts [19].

Since silica can be obtained from natural sources and 
industrial wastes, the use of this kind of catalyst would help 
to further increase the sustainability of all biodiesel pro-
duction processes [20]. According to published data strong 
Brønsted acid, sites can be created by calcination of phos-
phoric acid impregnated silica [21]. Abida and Ali [22] stud-
ied the catalytic behavior of sulfated siliceous zirconia cata-
lysts. The authors reported strong Brønsted acidity, which 
is responsible for the exceptional TAG selectivity (Table 1). 
The catalyst was deactivated by leaching sulfate species into 
the reaction medium. Sulfate species over carbon materials 

[23] are also highly active for the glycerin acetylation show-
ing a lower leaching rate, but with lower TAG selectivity 
than that reported by Abida and Ali.

Magar et al. [24] reported the catalytic behavior of phos-
photungstic, silicotungstic, and phosphotungstic acids sup-
ported over polymeric materials during glycerin acetylation. 
The authors underlined the fact that polymeric support mate-
rial adsorbed the water formed during reaction thus shift-
ing the equilibrium towards the reaction products. The best 
catalyst allowed 34% of TAG selectivity (Table 1).

A clever synthesis route, to avoid the glycerin co-produc-
tion with biodiesel, was recently proposed by Dahwan et al.
[25] The authors did not assess whether the acetin content 
of the methyl esters produced meets the biodiesel standards.

Table 1   Triacetin (TAG) selectivity in glycerin acetylation from the literature

Catalyst Parameters (reaction time, temperature, HAc: glycerin molar 
ratio; catalyst loading)

% TAG selectivity Reference

Acid-exchange resins 4 h; 120 °C; 9:1; 4 wt% (glycerin basis)  ≤ 34 [34]
4.5 h; 110 °C; 9:1; 82.96 mmol H+/L  ≤ 44.5 [35]
8 h; 80 °C; 6:1; 5 wt% (glycerin basis) 15.1 [36]
3 h; 105 °C; 3:1; 5 wt% (glycerin basis) 12 [37]
24 h; 80 °C; 6:1; 9 wt% (glycerin basis) 26 [12]

K-10 montmorillonite 0.5 h; Reflux temp.; 3:1; 2 mmol of acid sites 5 [32]
1 h; 120 °C; 3:1; 1 g  ≤ 56 [38]

Activated carbons 4 h; 105 °C; 9:1; 7 wt% (glycerin basis)  ≤ 41.0 [39]
3 h; 120 °C; 8:1; 0.8 g 34 [40]
5 h; 110 °C; 3:1; 2 wt% (glycerin basis)  ≤ 45 [41]
1.5 h; 100 °C; 8:1; 5 wt% (glycerin basis) – ultrasound-assisted 100 [11]
24 h; 80 °C; 6:1; 9 wt% (glycerin basis)  ≤ 23 [12]

Mesoporous and modified silica 6 h; 80 °C; 3:1; 75 mg  ≤ 18 [42]
8 h; 80 °C; 6:1; 5 wt% (glycerin basis)  ≤ 27.0 [36]
3 h; 105 °C; 3:1; 5 wt% (glycerin basis)  ≤ 49 [37]
2 h; 50 °C; 6:1; 0.2 g  ≤ 4.62 [43]
4.5 h; 120 °C; 6:1; 4 wt% (glycerin basis) 35 [44]
5 h; 120°;10:1;wt% undefined  ≤ 50.4 [17]

Modified zirconia 8 h; 80 °C; 6:1; 5 wt% (glycerin basis) 0.5 [36]
3 h; 105 °C; 3:1; 5 wt% (glycerin basis)  ≤ 5 [37]
3 h; 120 °C; 6:1; 5 wt% (glycerin basis)  ≤ 7.52 [45]
1 h; 120 °C; 6:1; 0.1 g  ≤ 16.5 [46]

Heteropolyacids loaded solids 8 h; 80 °C; 6:1; 5 wt% (glycerin basis)  ≤ 0.9 [36]
6 h; 80 °C; 3:1; 75 mg  ≤ 30 [42]
24 h; 105 °C; 6:1; 5 wt% (glycerin basis)  ≤ 71.4 [47]
20 h; 105 °C; 12:1; 10 wt% (glycerin basis) 30 [48]
4 h; 120 °C; 5:1; 0.2 g 20 [49]
3 h; 120 °C; 16:1; 0.2 g  ≤ 14 [50]

Magnetic nanostructured
SO4

2−/(SiO2–Fe2O3)
45 min; 80 °C; 6:1; 7%wt% (glycerin basis) 100%

50% for 6th reaction batch
[16]

Phosphotungstic, silicotungstic, 
phosphomolybdic acids/polymeric 
material

6 h; 110 °C; 1:20; 7%wt% (glycerin basis) 34% [24]

Sulphated siliceous zirconia 40 min; 80 °C; 9:1; 3%wt% (glycerin basis) 93% [22]
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Given the value of TAG as an oxygenated additive for 
diesel, the low TAG selectivity reported in the literature, for 
most of the tested catalysts, justifies further investigation in 
the heterogenous catalysts for glycerin acetylation reaction. 
The focus of this work lays in the employment of phosphate 
modified silica (commercial fumed silica), a non-expensive 
and easy to prepare catalysts while changing some reaction 
parameters to promote the esterification of glycerin using 
acetic acid.

2 � Materials and Methods

2.1 � Preparation and Characterization 
of the Catalysts

Phosphated silica catalysts were prepared by contact-
ing commercial silica powder (Sipernat 22, character-
istics in Table 2) with aqueous solutions containing the 
desired amount of the phosphate precursor. Samples with 
atomic ratios P/Si in the range 10–20 were obtained and 
are referred to using the mnemonic nXpercursor (e.g.: 
10XH3PO4), in which n is the P/Si atomic ratio and 

precursor can be either o-phosphoric acid (H3PO4, Fisher 
Chemical, reagent grade) or diammonium phosphate 
[(NH4)2HPO4, Merck, pro analysis]. Diammonium phos-
phate is expected to allow a better anchorage of P species 
on the silica surface thus contributing to better dispersion 
of the acidic species and improved catalytic behavior.

The slurries were slowly evaporated (≈ 80 °C) under 
vigorous stirring until dryness. The obtained samples were 
dried overnight at 120 °C and calcined for 5 h at 475 °C 
in a muffle.

The crystallinity of fresh catalysts was investigated by 
X-ray diffraction (XRD) using a Burke D8 Advance X-ray 
diffractometer with Cu kα radiation at 40 kV and 40 mA. 
Each diffractogram was acquired in the range of 5–70° 

Fig. 2   Brønsted acid mechanism of glycerin acetylation (adapted from [18])

Table 2   Evonik Sipernat 22 characteristics

Density (g/L) d
50

 Average par-
ticle diameter 
laser diffraction 
(μm)

Pore volume 
BJH (cm3/g)

Average pore size 
BJH (nm)

220 120.7 1.15 32.5
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at 0.02°  s−1 and then compared with standard JCPDS 
patterns.

To identify the surface species involved in the catalytic 
process, which remain adsorbed, and thus infer about the 
stability of the catalysts, both fresh and post-reaction solid 
catalysts were characterized by HATR-FTIR with a Piker 
Elmer Spectrum Two IR spectrometer, using a 4  cm−1 
resolution. HATR-FTIR spectra were corrected using the 
Kubelka–Munk function.

The acidity of catalysts was also evaluated using the 
standard reaction of skeletal isomerization of 1-butene. The 
catalytic tests were carried out at 222 °C in a conventional 
apparatus for continuous catalytic tests. The reaction was 
carried out using 520 mg of catalyst with Y0

1 - but
= 12.8% in 

an inert atmosphere of N2 and a total flow of 4.3 L h−1. The 
reaction effluent was quantified by gas chromatography (GC) 
using an FID detector.

2.2 � Glycerin Acetylation Catalytic Tests

The glycerin (Glyc, 99% from Fluka) acetylation with acetic 
acid (HAc, glacial from Fluka) was studied in a 500 mL 
round bottom Pyrex flask equipped with a condenser and 
a magnetic stirrer. The reaction temperature was kept at 
120 °C using a nest shape electrical heating jacket with 
temperature control, whereas the temperature sensor is 
immersed in the reaction medium. The catalytic tests were 
carried out in conditions selected from the literature [42] 
using 500 mg of catalyst (15 wt%, glycerin basis), HAc/
Glyc = 9 molar ratio. After the reaction, the catalyst was 
removed by filtration and the liquid effluent was analyzed 
by GC using a Varian CP 3800 chromatograph equipped 
with a flame ionization detector. The pure MAG, DAG, 
TAG, glycerin, and acetic acid were injected separately to 
determine the retention time of each component for a fused 
silica capillary column (0.32 mm of internal diameter, 15 m 
length with a 0.1 μm of film thickness of Methyl 5% Phenyl 
Silicone). Chromatograms were acquired in the conditions 
listed in Table 3.

Samples were prepared by mixing some drops of the prod-
uct with Isopropyl Alcohol (IPA) (GC grade) as an internal 
standard. About 2 μL of the sample was then injected into 
the column. The catalyst stability was evaluated using the 
same sample for consecutive reaction batches without any 
intermediate reactivation procedure. The GC analysis was 
unable to distinguish MAG and DAG isomers, most likely 
due to their high boiling points, hence the products are sim-
ply referred to as “MAG and DAG”.

3 � Results and Discussion

The surface acidity of raw silica and prepared catalysts was 
evaluated by skeletal isomerization of 1-butene. Both the 
reaction speed (r1-but) and the trans/cis selectivity ratio of 
the skeletal isomerization of 1-butene (Table 4) are directly 
related to the surface acidity of catalysts (zeolites) [26]. 
Acidic catalysts produce larger amounts of trans-isomer [26] 
thus having trans/cis-butene-2 ratios higher than 1. For the 
tested catalysts, the trans/cis butene-2 isomers ratios were 
always higher than 1, evidencing the acidic character of the 
catalysts. Also, the 1-butene conversion was usually greater 
for the catalysts prepared with diammonium phosphate solu-
tions and tends to increase with the P/Si ratio, which indi-
cates greater surface acidity and therefore greater potential 
for glycerin acetylation performance.

It appears that the diammonium precursor allowed a bet-
ter dispersion of P species on the silica surface thus improv-
ing surface acidity. Additionally, the volatilization of ammo-
nium species during calcination can contribute to creating a 
higher porosity surface layer over silica material.

The diffractograms of fresh catalysts (Fig. 3) showed 
patterns ascribable to amorphous materials like raw silica 
(amorphous according to the supplier). As reported in the 
literature [27], the broad feature around 2θ = 22.5° belongs 

Table 3   Gas chromatograph experimental conditions

Conditions

Carrier gas Helium
Initial temperature 110 °C
Ramp 10 °C/min to 150 °C
Injector temperature 280 °C; split ratio 10
FID temperature 300 °C
Detector gases (mL/min) H2 30

Air 300
He 30

Total pressure (psi) 6.7

Table 4   1-butene isomerization. Average rate of conversion (r1-but) 
and trans/cis selectivity ratios. Y0

1−but
= 12.8% in N2; Wcat = 0.52g ; 

total flow of 4.3 L/h and 222 °C

Catalyst 1-butene con-
version (%)

r1-but
(μmol·gcat−1·s−1)

trans/cis 
2-butene
selectivity 
ratio

Silica 3.7 0.45 1.1
10XH3PO4 12.3 1.50 1.5
10XNH4PO4 16.7 2.04 1.4
15XH3PO4 12.3 1.50 1.5
15XNH4PO4 11.7 1.43 1.4
15XNH4PO4 11.6 1.41 1.4
20XH3PO4 21.7 2.64 1.5
20XNH4PO4 29.1 3.56 1.6
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to amorphous silica. Diffraction lines of silica phosphate are 
absent which seems to confirm the good dispersion of P spe-
cies with the probable formation of small (nanostructured) 
aggregates of silica phosphates.

The fresh and post-reaction catalysts were characterized 
by HATR-FTIR spectroscopy to identify surface species 

which can be correlated with catalytic activity and deacti-
vation. The main spectral features for fresh and post-reaction 
catalysts are presented in Fig. 4.

The raw silica shows absorption bands at 1080, 963, 
and 802 cm−1 respectively attributable to antisymmetric 
Si–O–Si, in-plane Si–O, and symmetric Si–O stretching 

Fig. 3   XRD patterns of fresh 
catalysts 15XH3PO4 and 
15XNH4PO3
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Fig. 4   HATR-FTIR spectra of fresh and post-reaction catalysts
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vibrations [28]. The small bands at 947 cm−1 and 802 cm−1 
are assigned to the flexion modes of SiO–H and Si–O–, 
respectively [29]. Fresh catalysts display analogous IR 
features but the most intense band became wider due to 
the overlay of O–P–O and O=P–O vibrations at 1140 and 
1230 cm−1 [30]. For the post-reaction samples, the most 
intense band results from the overlapping of features belong-
ing to SiO2 and PO4

3− species; for samples prepared using 
diammonium phosphate this effect was more noticeable. 
Additionally, longer reaction times (2 h instead of 1 h) faded 
this effect, which possibly indicates that phosphorus surface 
species are leached during the reaction.

Kinetics data, obtained using raw silica catalyst (Fig. 5), 
confirmed the sequential mechanism of the acetylation reac-
tion [31]. The total conversion of glycerin was achieved in a 
short time, first by MAG formation, whose maximum selec-
tivity was reached at the beginning of the acetylation. For 
longer reaction times MAG concentration decreased, being 
replaced by DAG. On the other hand, DAG was slowly con-
verted in TAG, at a reaction rate constant and independent 
of DAG concentration. A decrease in DAG concentration is 
only observable for low concentrations of MAG. The low 
rate of triacetin formation can be explained by the porosity 
of the catalyst since the TAG molecule is larger than the 
glycerin one and, therefore, more susceptible to diffusional 
limitations. The kinetics test was replicated 3 times, allow-
ing to compute relative errors for conversion and selectivi-
ties (3% for conversion and 7% for selectivities).

The tests performed (Table 5) allowed us to analyze the 
effect of the catalyst acidity and the reaction time on the 
total conversion and, especially, on the selectivity towards 
triacetin production.

The effect of higher catalyst acidity is readily notice-
able as the selectivity of TAG reaction increases steadily, 
especially when compared to the unmodified silica (Fig. 6). 
The effect of the reaction temperature is observable in the 
10XNH4PO4 tests and seems to impact the overall glycerin 
conversion more than the products’ selectivity.

The effect of test duration is noticeable through higher 
selectivity towards heavier products (TAG) but lower over-
all conversion. This trend should lead to greater consump-
tion of MAG and DAG over higher reaction times, and an 
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Fig. 5   Glycerin conversion and acetins (MAG, DAG and TAG) selec-
tivities versus reaction time (120  °C; HAC/Glyc  =  9 molar ratio; 
15 wt.% glycerin basis; raw silica catalyst)

Table 5   Catalytic performances of the prepared catalysts during the acetylation of glycerin with acetic acid

HAc/Glyc
Molar ratio

Catalyst load-
ing
(wt%, glyc-
erin basis)

T (°C) Reaction 
time (h)

Conversion, selectivities (%)

Conv Acetol MAG DAG TAG​

Sipernat 9.0 15.0 120 1 89.5 – 41.7 50.3 8.0
(NH4)2HPO4 10X 8.6 15.1 120 2 92.6 8.7 18.6 60.2 12.5

10X 9.0 15.9 130 2 91.1 – 17.5 67.0 15.5
10X 8.8 15.6 120 1 91.3 – 21.1 65.5 13.5
10X 8.7 15.4 112 2 94.0 5.7 19.7 61.2 13.4
15X 8.8 15.5 120 1 92.9 – 21.4 65.2 13.4
15X 8.6 15.3 120 2 95.1 – 19.5 64.8 15.7
15X, Batch#2 8.3 15.6 120 2 94.4 – 19.1 64.8 16.2
20X 8.8 15.6 120 1 93.0 – 20.8 65.4 13.8
20X 8.7 15.3 120 2 94.8 – 20.6 64.3 15.1

H3PO4 10X 9.0 16.2 120 2 93.3 – 16.4 66.0 17.6
10X 9.0 14.9 120 1 91.3 – 18.7 66.4 14.9
15X 8.7 15.4 120 1 90.3 – 19.1 66.4 14.5
20X 8.6 15.2 120 2 92.7 – 17.2 65.5 17.3
20X 8.9 15.7 120 1 91.0 – 14.2 59.7 26.1
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increasingly higher concentration of TAG in the medium, 
thus longer reaction times seem to favor TAG production.

Production of acetol (α-hydroxyacetone) was only 
observed for experiments using the 10XNH4PO4 and 
15XNH4PO4 catalysts and might be a product of dehydra-
tion of glycerin. Dehydration tends to be an endothermic 
reaction, which explains the low selectivity due to the low 
temperature used. However, Gonçalves et al. [32] reported 
better yields of acetol for lower acidity catalysts, such as 
the case, which might relate to the formation of this prod-
uct with the acidity of the catalyst. Acetol could be an 
interesting intermediate in a new technological route for 
the production of propylene glycol from glycerin [33].

The comparison of data in Table 5 (current work) and 
Table 1 (from literature) is hard since there is a wide dis-
persion of reaction variables (catalyst loading, tempera-
ture, reaction time, and HAc/ Glyc ratio) values. Still, 
from data in Table 5 and Table 1, it stands out the lower 
TAG selectivities obtained in this study when compared 
with data reported for mesoporous silica catalysts. The 
catalyst morphology seems to have a chief role in TAG 
formation because the highest selectivities were reported 
for mesoporous silica catalysts. Despite the low porosity of 
the used silica data in Table 5 showed a catalytic behavior 
for P/Silica catalysts superior to most catalysts displayed 
in Table 1. P/SiO2 catalysts allowed similar TAG selectiv-
ity for shorter reaction times.

The stability of the prepared catalysts was evaluated by 
reusing the same catalyst sample in a second consecutive 
reaction batch without intermediate reactivation. Data in 
Table 5 for the 15X sample, prepared using ammonium 
phosphate, show similar catalytic behavior for both reac-
tion batches, thus indicating catalyst stability.

The results in Table 5 showed a catalytic behavior for 
P/Silica catalysts superior to most catalysts displayed in 
Table 4. P/SiO2 catalysts allowed similar TAG selectivity 
for shorter reaction times.

4 � Conclusions

Acetylation of glycerin with acetic acid was carried out 
over solid acid catalysts. Phosphate modified silica was 
prepared using ortho-phosphoric acid or diammonium 
phosphate. TAG selectivity remains almost invariant with 
catalyst surface acidity, while emphasizing the importance 
of pore size due to the large kinetic diameter of the heavi-
est product. It appears that slow diffusion in narrow pores 
might be responsible for the low selectivity of the reac-
tion to triacetin. Diammonium phosphate precursor led to 
higher acidity solids. Surface phosphate species showed 
a slow rate of leaching in the reaction medium showing 
high catalyst stability.
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