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1. Introduction 

Most eukaryotic cellular processes and cell signaling pathways 
are regulated by protein phosphorylation mediated by protein 

kinases and phosphatases.[1] Protein kinases are the largest 

enzyme superfamily involved in cell signal transduction.[2, 3] It 

has been established that protein kinases and protein 
phosphatases represent compelling therapeutic targets for a range 

of diseases, including leukemias, tumors, cardiovascular diseases, 
diabetes mellitus and immune/ inflammatory disorders.[4, 5] 

Kinases are divided into those that phosphorylate serine or 
threonine residues (388 kinases) and those that phosphorylate 

tyrosine residues (90 kinases). Atypical kinases are proteins 
reported to have biochemical kinase activity but lack sequence 

similarity to the conventional eukaryotic kinases.  
The three PIM kinases comprise a small family of 

serine/threonine kinases regulating several signaling pathways 
that are fundamental to cancer development and progression. Pim 

genes were originally identified as oncogenes in the early 

1980s.[6] They form an independent branch of the kinase family 

tree, and are related to the CAMK (calcium/calmodulin kinase) 
super-family. The Pim 1 gene was identified initially in 1987,[7] 

as a pro-viral insertion site for the Moloney Murine Leukemia 

Virus (MoMuLV).[8] Follow-up experiments involving Pim 1 

knock-out models in mice led to the discovery of the two other 
family members, Pim 2 and Pim 3.[9],[10]  

The three family members have six different isoforms from 
alternate translation initiating sites. All PIM kinases are 

constitutively active.[11, 12] Their expression is mediated by the 
JAK/STAT signalling pathway, which is activated by various 

cytokines and hormones.[13] PIM kinases are broadly expressed 
in many cell lineages, as well as their corresponding progenitors 

and also embryonic stem cells.[14, 15] 
The expression of Pim genes in human cancer has been studied 

extensively since their discovery as oncogenes in the 1980s;[16, 

17] they were first implicated in human acute myeloid leukemia 

(AML) cases, and have now been found to be over-expressed in 
many different types of malignancies including hematologic and 

solid tumors.[13, 18, 19] The PIM kinases have a variety of 

downstream targets that are thought to contribute to tumour 

growth and survival. In particular, PIM kinases target the pro-
apoptotic Bcl-2-associated death promoter (BAD) family 

members and inhibit apoptosis.[20] In addition, it has been 

shown in prostate tumours that PIM1 and c-MYC associate 

together, resulting in transcriptional upregulation and 
stabilization of c-MYC; such prostate tumours exhibited higher 

Gleason scores and are poorly differentiated.[21] Furthermore, 
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selective and pan-PIM inhibitors may offer other therapeutic 
opportunities. In addition to cancer, PIM1 kinase has been 

described to be over-expressed in an array of diseases;[22-25] it 

has also been reported to play a role in several autoimmune 

diseases, mainly in inducing and increasing inflammatory 
responses.[26] PIM1 kinase has also shown to exert potent 

cardioprotective effects in the myocardium downstream of AKT, 

and protect mitochondrial integrity in cardiomyocytes;[27-29] 

PIM1 could therefore be of high interest in regenerative medicine 
therapies.  

Crystal structures for both PIM1 and PIM2 have been used to 

understand their unique ATP binding pocket and for 
computational and medicinal chemistry efforts to develop 

inhibitors.[30, 31] The hinge region of PIM kinases is unusual as 

it contains a proline residue, which is a component atypically 

present in serine/threonine kinase hinges, as well as other unique 
residues in the ATP binding cleft.[32] The backbone nitrogen 

required to donate a hydrogen bond to the adenine ring of ATP is 

therefore absent and conventional ATP mimetic kinase inhibitors 

are not optimized for this site. This particular feature reduces 
affinity for ATP, and could therefore lead to the discovery and 

development of inhibitors selective to PIM against other 
kinases.[33, 34]  

PIM kinases are highly homologous at the amino acid level 
(PIM1 and PIM2 are 85% identical; PIM1 and PIM3, 93%),[35, 

36] yet differ partially in their tissue distribution.[37] Functional 
redundancy of the three PIM kinases has been shown in vitro[38, 

39] and in vivo[40]. This characteristic can be used 
advantageously in the development of pan-PIM inhibitors.[41] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several investigations have reported novel competitive PIM 
inhibitors, including SGI-1776,[42] AZD1208,[43] (AML) 

BYL719,[44] CX-6258,[45] SMI-4a,[46] LGB321 (multiple 
myeloma, MM), which have advanced to clinical trials.[47-56] 

Those compounds have had various outcomes; SGI-1776 clinical 
trials were discontinued in phase 1 due to dose limiting toxicity 

of cardiac QTc prolongation; additional cardiac and 
pharmacokinetic data evaluation has failed to demonstrate a safe 

therapeutic window to prudently continue clinical development 
of this molecule. Phase 1 trials were completed for AZD1208, 

but the study was terminated whilst the drug was being tested for 
safety, tolerability, pharmacokinetics and efficacy in AML 

patients; the reason was not disclosed.[57] BYL719 and 

LGH447’s Phase 1 trials have now finished and those 

compounds are now ongoing phase 2 trials. Those examples 
show that non-selective PIM inhibitors likely represent the way 

forward toward finding the appropriate tool to treat PIM-

dependent cancers. 

This paper describes efforts towards the identification and 
preliminary optimization of pan-PIM inhibitors using in silico 

modeling.  

2. Results and Discussion 

Our in-house library of ~20000 drug-like compounds was 
screened using a high-throughput differential scanning 

fluorimetry (DSF) assay, against the recombinant PIM1 
enzyme.[58] Inhibitors were screened at 10 µM and a threshold 

thermal shift (Tm) value of >3 °C was defined as the minimum. 
Active compounds were identified and divided into eleven 

distinct structural classes. DSF assay of the most active 40 
compounds against recombinant PIM2 isoenzyme was used to 

establish their ‘pan-inhibitory’ properties (Tm value of >2 °C) 

and multiple families of small molecules were identified. A 

coupled kinetic assay was used as a secondary orthogonal assay 
to determine IC50 values of the hits compounds against PIM1 and 

rank their activity.[59] Amongst those, the 

thioxothiazolidinedione (TTZD) family indicated consistent 
activities against PIM1 and PIM2 isoenzymes.  

Structurally related rhodanine containing compounds have been 
identified as hits against a diverse range of drug discovery targets 

in multiple therapeutic areas, and despite the fact that they have 
attracted considerable attention and commentary relating to their 

viability as starting points for medicinal chemistry over recent 
years,[60-62] examples in drug discovery are well precedented 

(Figure 1 - SIM-4a, 6, AZD1208, 2).[63] It was therefore 
decided to use TTZD 7 as a lead compound in our SAR studies. 

A co-crystal structure of the PIM1 enzyme and a known 

inhibitor, containing a thioxothiazolidinedione motif (PDB code: 

3QF9),[57] was used in in silico screening to guide further design 
and synthesis of our initially identified PIM1 inhibitors. 

An additional advantage to this particular structure is the 

tractable and modular synthesis, based on a Knovenagel 

condensation[64] between rhodanine and a range of aryl and 
heteroaryl aldehydes, which allowed rapid access to a wide 

selection of analogues.  

 

Table 1. Synthetic scheme for the Knoevenagel condensation. 
Reagents and conditions: (i) rhodanine, cat. piperidine, EtOH, 70 

°C, 16 h. Physical properties of various substitution on the R 

position and biological activities against PIM1. ∆Tm n = 1; IC50 n 

= 3 unless otherwise stated. 
a
n = 1, R

2
 value > 0.90, values listed 

in SI. 

 

 

 
 

Cpd Substituent (R) 
Yield  

(%) 

PIM1  

∆Tm (°C) 

PIM1  

IC50 (nM) 

7 phenyl 64 2.6 - 

8 2-Cl phenyl 84 5.5 320±69 

9 thien-2-yl 73 4.7 458±40 

10 thiazol-2-yl 87 2.8 - 

11 thiazol-4-yl 60 - 624a 

12 thiazol-5-yl 80 3.9 974a 

13 naphth-1-yl 59 8.3 62±30 

14 naphth-2-yl 86 7.6 113
a 

15 benzothien-3-yl 90 10.6 55a 

16 benzothien-7-yl 72 10.4 68±9 

17 benzofuran-2-yl 84 6.8 67a 

18 benzofuran-3-yl 66 6.4 156±18 

19 indol-3-yl 95 10.4 184±69 

20 quinolin-2-yl 79 8.0 55a 

21 quinoxalin-2-yl 81 10.4 126±77 

22 7-azaindol-3-yl 73 6.3 175a 

23 1,8-naphthyridin-2-yl 69 4.7 775±54 

24 4-methyl-4H-thieno 
[3,2-b]pyrrol-5-yl 

71 11.0 36
a 

R

O (i) S
NH

S

O

R
Figure 1. Representative reported PIM inhibitors 



  

Thus, a range of mono and bicyclic aryl and heteroaryl 
derivatives were prepared. The (Z)-alkene geometry within the 

products were confirmed by NOE 1H-13C NMR spectroscopy 

analysis.  

While the larger, more demanding bicyclic-bearing TTZDs 
generally had better activities, as exemplified by the quinolinyl 

and quinoxalinyl derivatives (20, 21, Table 1), the monocyclic 

derivatives still displayed good levels of activity. It was therefore 

decided to base our selection of a starting point on a synthetically 
versatile low molecular weight exemplar from which analogues 

could be designed, prepared and developed in a straightforward 

manner. Compound 11 was selected for optimization based on 
these criteria, as it demonstrated the best activity compared to its 

regioisomeric counterparts (10 and 12).  

Next, additional groups were introduced onto the thiazole moiety 

at C2 in order to improve the activity. Palladium-catalyzed 
Suzuki-Miyaura coupling using the appropriate bromo thiazole 

with an aryl boronic acid, followed by Knoevenagel 

condensation[64] of the resulting aldehyde with rhodanine 

afforded the desired tricyclic compounds (Table 2). The 
inhibitory activity was dramatically improved by addition of a 

phenyl group; 26 showed approximately a 90-fold increase in 
activity, (IC50 = 624 nM (11) to IC50 = 6.7±3.1 nM (26)). 

Heterocyclic substituents were also introduced at C2 by the same 
synthetic method using the corresponding boronic acids. 

Although good activities against PIM1 were observed with 
derivatives such as (27) and (28), due to the relatively narrow 

chemical scope for further optimization, the synthetic effort 
focused on improving the aryl substitution pattern. 

 
Table 2. Scheme for the TTZD synthesis via a Suzuki reaction 

and a Knoevenagel condensation. Physical properties of various 

substitution on the R position and biological activities against 

PIM1. Reagents and conditions: (i) RB(OH)2, Pd(PPh3)4, 
Na2CO3, EtOH/DME (1:1), 100 °C, 24 h. (ii) cat. piperidine, 

rhodanine, EtOH, 70 °C, 16 h. ∆Tm n = 1; IC50 n = 3 unless 
otherwise stated. an = 1, R2 > 0.90, R2- values listed in SI. 

 
 

Cpd Substituent (R) 
Yield % PIM1 

∆Tm (°C) 

PIM1  

IC50 (nM) (i) (ii) 

26 
 

98 14 12.8 6.7±3.1 

27 
 

72 55 12.8 25±6 

28 
 

73 53 13.4 6.7±3.8 

29 
 

58 68 12.1 85±1 

30 
 

57 32 16.6 1.4±0.6 

 

An in silico study suggested that 26 shared a similar binding 
mode with 11 against PIM1 (Figure 2, PIM1 crystal structure: 

PDB code 2C3I),[65] with the oxygen atom on the rhodanine 

head group of 26 forming an H-bonding interaction with the 

water molecule which tightly associated with the Lys67 
residue.[65] The molecule is predicted to align well within the 

PIM binding pocket, forming a sandwich-like interaction with the 

lipophilic area of the pocket; the additional aryl ring is 

anticipated to serve as a space-filling feature. 

Molecular modeling studies were carried out to assist in the 
design and optimization of 26 analogues. The docking study 

suggested that the ortho-, meta-, and para- positions of the 
pendant aryl ring are located in a solvent exposed area of the 

PIM1 ATP-binding pocket reaching out to the solvent front; 
therefore substituents ought to be tolerated on this ring. To 

validate these predictions, a range of groups were systematically 

introduced onto the 2, 3, and 4 position of the C-ring following 

the procedure described previously (Table 3). 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

All the synthesized compounds with additional substituents on 
the phenyl ring showed that they retained similar activity to 26. 

Interestingly, as predicted by the docking study, the size of the 
aryl substituents seemed to play an important role in influencing 

inhibitory activity against PIM1 (Table 3). Compound 31 (IC50 = 
9.2±5.4 nM) bearing a strongly electron withdrawing CF3 group 

had similar activity to compound 34 (IC50 = 11±3 nM) bearing a 
strongly electron donating methoxy group at the same position, 

indicating that electronic properties in this region do not appear 
to play a significant role. The introduction of a hydrogen bonding 

motif did not lead to a noticeable effect on the enzymatic activity 
either, with the H-bond donor phenolic group (39, IC50 = 2.4±0.9 

nM) showing comparable activity to an H-bond acceptor SO2Me 

(40, IC50 = 3.6 nM) or halogen bonding group Cl (41, IC50 = 

36±7 nM). Furthermore, in agreement with the performed 
docking studies, the regiochemistry of substitution on the aryl 

ring is also well tolerated. It therefore provided a useful handle 

for further optimization of the physical properties of this series of 

inhibitors. 

 
Table 3. Scheme for TTZD synthesis via a Suzuki reaction and a 

Knoevenagel condensation. Physical properties of various 
substitution on the R position and biological activities against 

PIM1. Reagents and conditions: (i) Ar-B(OH)2, Pd(PPh3)4, 
Na2CO3, EtOH/DME (1:1), 100 °C, 24 h. (ii) cat. piperidine, 

rhodanine, EtOH, 70 °C, 16 h. ∆Tm n = 1; IC50 n = 3 unless 
otherwise stated. 

a
n = 1, R

2
 > 0.90, R

2-
 values listed in SI. 

 

 
 

 

Cpd Substituent (R) 
Yield % PIM1 

∆Tm (°C) 

PIM1  
IC50 (nM) (i) (ii) 

31 2-CF3 87 34 9.4 9.2±5.4 

32 3-CF3 63 51 12.3 49±21 

33 4-CF3 71 26 11.7 16±8 

34 2-OMe 74 53 9.3 11±3 

35 3-OMe 71 69 14.3 21±9 

36 4-OMe 55 36 13.2 11±6 

37 2-OH 65 31 14.8 8.0±5.7 
38 3-OH 24 34 12.7 5.0±0.6 

39 4-OH 68 32 14 2.4±0.9 

40 4-SO2Me 74 32 10.3 3.6a 

41 3-Cl 62 22 13.2 36±7 

42 3-NHSO2Me 100 70 9.6 25±4 

43 3-piperidine 93 14 13.5 7 

44 3-NHSO2NMe2 28 21 16 2.2±1.8 
45 4-OCF3 91 44 11.7 2.9±1.3 

46 4-CH2-piperidine 100 35 10.4 6.8±4.6 

 

N

S

Br

(i)

N

S
(ii)

O
OR

N

S

R
NH

S

S

O

AB
C

25

Figure 2. Representative docking picture of 26 in PIM1 active site.  



  

With good enzymatic activities obtained from the SAR studies, a 
selection of compounds was examined for their broader 

physicochemical properties and in vitro metabolic stability using 

kinetic solubility, and mouse liver microsome (MLM) stability 

assays (Table 4). 
 

Table 4. Physicochemical properties and in vitro metabolic 

stability. MLM t1/2: half-life measured in mouse liver 

microsomes, KinSol: kinetic solubility.  
 

Cpd Substituent 
MLM t1/2 

(min) 

KinSol 

(µM) 

33 4-CF3 49 <5 

41 3-Cl 5 <5 

42 3-NHSO2Me <5 34 

 

Across the series, compound solubility is in the low µM range 

and half-life in MLMs is < 1 hour. Solubility can be improved by 
exploiting the tolerance of polar substituents on the phenyl ring, 

as exemplified by 42 that bears a sulfonamide group and for 
which the PIM1 inhibitory activity remained excellent (IC50 25±4 

nM). Kinetic solubility of this compound was improved from < 5 
µM (33, 41) to 34 µM (42). Unfortunately, the half-life in MLMs 

dropped significantly from 49 min (33) to less than 5 min (42). 
The enzymatic activities were excellent throughout this series of 

inhibitors, but the physical and metabolic properties are 
suboptimal, which poses a significant challenge in order to 

progress beyond cellular, to in vivo studies. We therefore focused 
our efforts on improving the physical and metabolic properties of 

this inhibitor series. We also sought to mitigate any potential 

issues with chemical instability of this series. 

Whilst in our MLM stability studies we observed no degradation 
in the control experiments in the absence of co-factor, it has been 

reported in the literature that N-substituted rhodanines readily 

undergo basic hydrolysis to afford α,β-unsaturated-α-

mercaptocarboxylic acids (Scheme 1),[66] a functional group that 
could potentially cause toxicity in biological systems. 

Furthermore Schofield et al. have recently described the cleavage 

of an N-substituted rhodanine-containing compound 47 in Tris 

buffer pH 7.5 (Scheme 1).[67] 
Both set of conditions were carried out on 7, as the corresponding 

mercaptocarboxilic acid and hydrolysis are known in the 

literature. Hydrolysis of 7 with 12M aq. NaOH to afford 49 

proceeded with complete conversion in 2 h, and the data were in 
accordance with the literature.[68] It is interesting to note that the 

compound did not hydrolyze in Tris buffer. As solubility could 

be an issue, the reaction was repeated with the addition of DMSO 

(to reproduce assay conditions), but the compound was recovered 
in quantitative amount with no trace of the degradation product 

49. It was hypothesized that the presence of an N-substituent 

within rhodanine 47 could increase susceptibility towards 

hydrolysis, and thus does not present a significant stability issue 
for analogues such as 7.  

 

 

 

 

 

 

 

 

Another possible concern cited for rhodanine derivatives in the 

literature is the potential for isomerisation of the double bond. 

While the (Z)-isomer of conjugated rhodanines is usually the 
more thermodynamically stable diastereomer,[69, 70] it can be 

isomerised under certain conditions, such as photoirradiation, to 
the alternative geometric isomer. Whilst we did not observe any 

such photoisomerisation, the combination of the propensity for 
low photostability and poor solubility / metabolism properties led 

us to investigate if the introduction of structural and/or steric 
constraints would improve the overall profile of the series. In 

order to explore alternative scaffolds to compound 7 we designed 
a range of linked and ring fused scaffolds which could potential 

interact in a bioisosteric fashion (Figure 3-A). Using Forge®, a 
powerful computation suite to understand SAR and design, the 

3D electronic and shape of each input scaffold were then aligned 

with template molecule 7. The tricyclic scaffold 50 provided an 

effective consensus overlay with a similarity coefficient of 0.79 
(see Figure 3-B) A docking study of 50 against PIM1 (PDB code 

2C3I) suggested that the carbonyl group in the rhodanine head 

group has the potential to form similar interaction as 26 through a 

water molecule-mediated interaction with Lys67 (Figure 3-B-D). 
The planar conformation of the molecule, suggested to be 

important to form the lipophilic sandwich within the active site 

cleft was predicted to be maintained, with the newly formed 

carbonyl linker pointing towards the solvent exposed surface 

region of the pocket.  
 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3. Molecular modeling studies comparing TTZD series with the tricycle series. (A) Chemical structure of 50 (B) Overlay of 50 (ball) with 26 (diamond). 

Blue represents electron negative field, red represents electron positive field, and yellow represents lipophilic interactions. (C) Overlay of 50 (green) with 26 

(purple) in the PIM1 active site. (D) Representative docking picture of 26 in the PIM1 active site. (E) Representative docking picture of 50 in the PIM1 active site; 

x = H2O. 

 

Scheme 1. Reagents and conditions: (i) Tris buffer pH 7.5, 37 °C, 4 h; (ii) 

NaOH (1M aq, 5 eq), 40 °C, 2 h. 
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A synthesis was designed that allowed the rapid preparation of an 

array of representative molecules. The requisite ortho-formyl aryl 

esters, which are commercially available or readily synthetically 

accessible, were condensed with 2-thiohydantoin to afford the 
desired tricycle (Table 5).

1
 The benzo-fused derivative, 50, was 

obtained in good yield and showed moderate activity against 

PIM1 (IC50 = 1341 nM, ∆Tm 3.8 °C). This was comparable to the 

data obtained for 7 (∆Tm 2.6 °C) and was therefore a promising 
start to this series. From the molecular modeling study suggesting 

that the tricycle series shared the same binding pose with the 

TTZD series, it was also predicted that the 7- position on the C-

ring of the tricycle would be the optimal position for further 

functionalization. This hypothesis was probed by preparing three 
regioisomers of the chloro-substituted tricycle, 51, 52 and 53. 

Introducing a chlorine to the 6- and 8- positions (53 and 51 
respectively) led to complete loss of inhibitory activity whilst the 

7- position (52) showed a modest increase in inhibitory activity 

(IC50 = 784 nM, ∆Tm 4.9 °C). Substituents at this position were 

next systematically changed to assess their impact on the activity 

against PIM1. 

 
Table 5. Scheme for polycycle synthesis via a Knoevenagel 

condensation and subsequent ring closure. Physical properties 
and in vitro metabolic stability of various substitutions on the R 

position and biological activities against PIM1. Reagents and 

conditions: (i) NaOAc, AcOH, reflux, 4h. ∆Tm n = 1; IC50 n = 3 

unless otherwise stated. an = 1, R2 > 0.90, R2- values listed in SI. 

MLM t1/2: half-life measured in mouse liver microsomes, KinSol: 

kinetic solubility 
 

 

 

 

 

Cpd R1 X 
PIM1 

∆Tm (°C) 

PIM1 

IC50 (nM) 

KinSol 

(µM ) 

MLM 

(min) 

50 H S 3.8 1341a   

51 8-Cl S 5.1 Inact   

52 7-Cl S 4.9 784a   
53 6-Cl S 1.9 Inact   

54 7-Ph S 5.5 554±192   

55 7-(pyrid-4-yl) S 2 Inact   

56 7-(furan-2-yl) S 1.9 107±10 11.5 14 
57 7-O-Ph S 6.2 267±119 65 28 

58 7-NH-Ph S 1.9 Inact   

59 7-S-Ph S 3.6 127a   
60 7-O-(4-F Ph) S 0.3 304±9 65 36 

61 7-S-(4-tolyl) S 9.0 335±156   

62 7-O-(4-OMe Ph) S 2.3 332a   
63 4,6-diCl indole S 7.7 131±13 <5 >100 

64 4,6-indole S 5.5 273±4   

65 N-benzyl-4,6-diCl indole S ND 100±7 <1 18 

66 7-O-Ph O ND 804±37   

67 H H2 ND Inact   

 

Phenyl analogue 54 exhibited similar activity compared to the 
chloro analogue 52 (IC50 = 554 nM vs IC50 = 784 nM). 

Introduction of a pyridyl moiety (55) was not well tolerated, 

whereas a furanyl group (56) gave a significant increase in 

activity (Table 5). Unfortunately, the solubility and metabolic 
half-life of 56 (11.5 µM and 14 min respectively) were 

disappointing. Introducing additional O- and S- linkers between 

C-ring and 7- position substituents to improve the structural and 

flexibility also improved the potency (57, 59), whereas an NH- 

——— 
1 see supporting information for synthesis. 

linker led to loss of activity (58). Substitution on the pendent aryl 

ring had very little effect on the potency, as shown by the results 

obtained for the fluoro-, tolyl, and methoxyl analogues (60, 61, 

62). Interestingly, the addition of an O- linker gave an increase in 
solubility, however, the in vitro metabolic stability remained 

modest (57, 65 µM and 28 min). The level of activity was 

dramatically improved by replacing the phenyl moiety by a 4,6-

dichloroindole (63, IC50 = 131 nM). This analogue also gave a 
noticeably improved in vitro metabolic half-life (>100 min), 

however, the solubility was poor (<5 µM). The potency increase 

may be due to the possibility for alternative binding caused by 
the presence of the two vicinal chloro substituents, as has been 

reported previously in related systems.[71] With the aim of 

improving the solubility by addition of rotatable bonds, 

substituents were introduced to the N8 position of the indole but 
to no avail (65). To eliminate the potential oxidative liability of 

the C=S group of this series, the corresponding carbonyl 

derivative was prepared, unfortunately, this led to significant 

reduction of activity (66). Reduction of the thio-carbonyl group 
to a methylene using NiCl2 and NaBH4[72] resulted in complete 

loss of activity (67). Due to the increased complexity of this 
series and narrow window for the improvement of physical 

properties while maintaining the potency, it was decided not to 
pursue the fused tricyclic scaffold further. 

As an alternative strategy it was decided to also investigate 
circumventing the intrinsic metabolic instability of the rhodanine 

group; it was suspected that the C=S functionality within the 
rhodanine could be the cause of metabolic instability.[62] 

Following the same methodology described to prepare 50, 1,3- 
pseudothiohydantoin and thiazolidine-2,4-dione were used as 

rhodanine mimics to afford 69 and 70, respectively (Table 6). 70 

gave decreased activity against PIM1 (IC50
 
= 171±46 nM), and 69 

gave only a modest reduction in activity (IC50
 
= 70±1 nM) 

compared with 33 (IC50
 
= 16±8 nM). Although the solubility of 

69 remained low, the metabolic half-life was dramatically 

improved (>100 min).  

 
Table 6. Scheme for TTZD synthesis via a Suzuki reaction and a 

Knoevenagel condensation. Physical properties and in vitro 
metabolic stability of various substitution on the R position and 

biological activities against PIM1. Reagents and conditions: (i) p-
CF3PhB(OH)2, Pd(PPh3)4, Na2CO3, EtOH/DME (1:1), 100 °C, 24 

h. (ii) cat. piperidine, rhodanine or analogue, EtOH, 70 °C, 16 h. 

∆Tm n = 1; IC50 n = 3 unless otherwise stated. 
a
n = 1, R

2
 > 0.90, 

R
2-

 values listed in SI. MLM t1/2: half-life measured in mouse 
liver microsomes, KinSol: kinetic solubility 

 
 

 

 

Cpd X 
PIM1 ∆Tm  

(°C) 

PIM1 IC50  

(nM) 

MLM  

(min)  

KinSol  

(µM )  

33 S 11.7 16±8 49 <5 
69 NH 9.4 70±1 >100 <5 

70 O 7.5 171±46 ND ND 

 

The ability to inhibit all members of the PIM family is important 

for anticancer treatment and representative examples were 
therefore evaluated against PIM1, 2, and 3 using DSF to establish 

their PIM isoform selectivity profile (Table 7). Most of the 

examples showed comparable inhibitory potencies against all of 

the PIM kinase family members. 
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Table 7. PIM isoform selectivity. 
 

Cpd 
PIM1 ∆Tm 

(°C)  

PIM2 ∆Tm  

(°C) 

PIM3 ∆Tm 

(°C) 

26 12.8 12.0 13.0 

31 9.4 8.2 8.8 

32 12.3 11.5 9.1 

33 11.7 9.7 6.1 

35 14.3 13.3 13.4 

36 13.2 11.5 12.3 
45 11.7 9.7 12 

37 14.8 17.0 18.6 

38 12.7 12.2 14.9 

 
Representative examples from each series were also selected for 
inhibitory evaluation in a 24-kinase panel to establish their 
selectivity profiles (Table 8).[57] Those kinases were of 

particular interest to measure off target activity as they have been 

shown to bind polycyclic heteroaromatic structures, and also as 
some of the kinases play a role in the cell lines utilized (e.g. Flt3 

is over expressed in MV4-11 cells) and thus inhibition of such 
kinases could, in principle confound the cell proliferation read 

out.
2
 All classes showed a high level of selectivity towards the 

PIM kinase isoforms (both PIM1 and PIM2 were included for 

reference), the exceptions being off-target effects in 33 and 69 

(GSK3β) and in 11 (CK2 and DYRK2). The selectivity profile of 

63 was inconclusive and likely due to the poor solubility of the 
compound. These results are encouraging and suggest that 

selectivity for PIM isoforms over other kinases is achievable and 
not compromised by the commonly reported promiscuity of the 

rhodanine motif. 

 
Table 8. 24-kinase selectivity evaluation (performed using 10 

µM of compound). Data is provided as a percentage of residual 
activity compared to vehicle alone. 

 

kinase 63 11 69 33 

BTK(h) 94 48 88 90 

CHK1(h) 105 108 108 108 

CK2(h) 82 -3 117 53 

cKit(h) 100 nd 108 101 

cSRC(h) 98 74 113 106 

DAPK1(h) 90 92 103 102 

DYRK2(h) 117 15 87 95 

EGFR(h) 110 nd 114 113 

Flt3(h) 94 44 94 81 

GSK3β(h) 68 28 6 4 

IR(h) 99 143 102 101 

JAK2(h) 100 89 116 106 

JNK2α2(h) 99 95 103 105 

KDR(h) 99 114 88 110 

PIM1(h) 49 17 0 1 

PIM2(h) 43 nd 2 2 

PKBα(h) 76 106 101 63 

Plk1(h) 81 98 94 103 

SAPK2a(h) 103 109 94 102 

SIK(h) 106 82 119 103 

 
Compounds were evaluated for antiproliferative activity against 

two cancer cell lines MV4-11 (human acute monocytic leukemia 

——— 
2 See supporting information for full protocol. 

cell line)[73] and K562 (human immortalised myelogenous 
leukemia cell line), both previously reported to be PIM 

sensitive;[74] modest activities were observed in most cases 

(Table 9). In the TTZD series, antiproliferative activities were 

observed with representative exemplars across the series, with the 
most active analogue 44 giving an IC50 of 3.4 µM against MV4-

11 cells and 0.75 µM against K562 cells. In all cases a significant 

reduction in potency was observed between the enzymatic 

inhibitory activities and whole cell activities. This observation 
may be attributed to a lower free concentration of compound due 

to binding to serum proteins present in the cell growth media, a 
phenomenon previously reported for similar molecules. Effective 

cell permeability may also be a contributory factor. In the tricycle 
series, the indole motif containing analogues showed the best 

cellular activities across the series, which is in an agreement with 
the enzymatic activities discussed previously, with 64 giving an 

IC50 of 3.9 µM. The substitution on the N8 position did not 

produce a notable increase in cellular activities despite the 

noticeable improvement in the enzymatic activities. The lack of 

improvement in cellular activities could be due to cleavage of the 
weak C-N bond formed between the substituent and indole 

nitrogen in situ.  
 

Table 9. Cellular antiproliferative activity of selected PIM 
inhibitors determined by an MTT assay. ND= not determined. 

Inact. = inactive. 
 

Cpd 
PIM1 IC50 

(nM) 

Cellular activity IC50 (µM) 

MV4-11 K562 

11 624a inact ND 

31 9.2±5.4 ND 16.8 
32 49±21 8.1 11.9 

33 16±8 3.8 7.1 

35 21±9 ND 2.0 

36 11±6 5.7 6.1 

37 8.0±5.7 2.4 2.4 

38 5.0±0.6 ND 4.3 

40 3.6a 3.2 14.9 

42 25±4 9.9 10.9 

43 7 8.9 4.3 

44 2.2±1.8 3.4 0.75 

45 2.9±1.3 8.7 6.9 

46 6.8±4.6 8.5 5.1 

63 131±13 3.9 ND 

65 100±7 ND 2.8 

69 70±1 inact ND 

70 171±46 11.4 11.1 

 

Although changing the C=S (33) to C=O (70) resulted in the 

notable reduction in the enzymatic activity, it seems to have little 
impact on the respective cellular activities (70 against MV4-11 = 

11.4 µM, K562 = 11.1 µM).  

3. Conclusion 

In this paper, a high throughput screen and in silico study were 
described to identify series of PIM kinase inhibitors. SAR studies 

were carried out on the initial hit molecule and the thiazole core 

was identified to be a suitable B-ring group with the optimal 

balance of properties. Extending the pharmacophore of the initial 
hit to a fused 3-ring system significantly improved the activity of 

this family. Functionalization of the C-ring not only improved the 
potency but also provided an additional option for optimization 

of physical properties. Metabolic stability was highlighted as an 
issue to address, and two strategies were proposed for 

improvement. Additional constraints were introduced into the 
system to minimise the potential reactivity for hydrolysis and 
conjugate addition, and resulted in the identification of a fused 

tricycle series. This series of inhibitors had good activity and led 



  

to improvement in both metabolic stability and solubility. The 
second strategy involved replacement of the rhodanine head 

group with a pseudothiohydantoin, which resulted in a significant 

increase in metabolic stability. Additionally, the 

pseudothiohydantoin head group provided further opportunity for 
future optimisation. Selected inhibitors were evaluated to 

establish the selectivity profile against the three PIM isoforms. 

An excellent PIM pan-inhibition profile was observed across the 

series. A kinase selectivity profile was established, and few off-
target activities were also observed, supporting our initial 

hypothesis that the activity of this family of compounds was not 
obtained through the suggested promiscuous nature of the 

rhodanine, but instead from its specific affinity towards the PIM 
family. Two leukaemia cancer cell lines, MV4-11 and K562, 

were employed to evaluate the antiproliferative activities of 
selected inhibitors. Moderate activities were observed for a 

number of examples, with the best example showing IC50 value 
of 0.75 µM against K562 cells. Together this data represents a 

very promising starting point for the development of in vitro and 

in vivo pharmacological probes and drug candidates. Future 
efforts will focus on the optimisation of physical properties and 

cellular activity of this series of compounds for potential in vivo 
evaluation.  
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