

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 14 (2006) 8050-8056

Synthesis and evaluation of a 3-position diastereomer of 1α ,25-dihydroxy-2 β -(3-hydroxypropoxy)vitamin D₃ (ED-71)^{\approx}

Susumi Hatakeyama,^a Satoshi Nagashima,^a Naoko Imai,^a Keisuke Takahashi,^a Jun Ishihara,^a Atsuko Sugita,^b Takeshi Nihei,^b Hitoshi Saito,^b Fumiaki Takahashi^b and Noboru Kubodera^{b,*}

^aGraduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan ^bChugai Pharmaceutical Co., Ltd., 2-1-1, Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8324, Japan

Received 27 June 2006; revised 20 July 2006; accepted 21 July 2006

Abstract—A 3-position diastereomer of 1α ,25-dihydroxy-2 β -(3-hydroxypropoxy)vitamin D₃ (ED-71, **2**), 3-*epi*-ED-71 (**4**), was synthesized by the convergent method coupling the A-ring fragment (**5**) with the C/D-ring fragment (**6**). As the results of preliminary in vitro biological evaluation of 3-*epi*-ED-71 (**4**), the inhibition of parathyroid hormone secretion in bovine parathyroid cells and binding affinity to human recombinant vitamin D receptor and to human vitamin D binding protein in comparison with ED-71 (**2**), 1α ,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃, **1**), and 3-*epi*-1,25(OH)₂D₃ (**3**) are described. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Active vitamin D_3 , 1α , 25-dihydroxyvitamin D_3 $(1,25(OH)_2D_3, 1)$, is well recognized as a potent regulator of cell proliferation and differentiation processes in addition to possessing regulatory effects on calcium and phosphorus metabolism.² Various analogs of $1.25(OH)_2D_3$ (1) have been investigated in attempts to separate differentiation-induction and antiproliferation activities from calcemic activity with the aim of obtaining useful analogs for the medical treatment of psoriasis, secondary hyperparathyroidism, cancer, etc.³ There is also intense interest in obtaining analogs more potent than $1,25(OH)_2D_3$ (1) in terms of regulatory effects on calcium and phosphorus metabolism with the objective of treating bone diseases such as osteoporosis. 1a,25-Dihydroxy- 2β -(3-hydroxypropoxy)vitamin D₃ (ED-71, 2), an analog of $1,25(OH)_2D_3$ (1) from which a hydroxypropoxy substituent at the 2β -position is appended, is such an analog that shows potent effects on bone therapy.⁴⁻⁸ ED-71 (2) is currently under phase III clinical

studies in Japan as a promising candidate for the treatment of osteoporosis and bone fracture prevention.⁹

It is well known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)₂D₃ (1).^{10,11} Interestingly during our clinical development of ED-71 (2), serum intact PTH in osteoporotic patients did not change significantly upon treatment with 2, although the reason remains unclear, however.¹² Brown et al. reported that epimerization of $1,25(OH)_2D_3$ (1) at the 3-position of the A-ring plays a major role in hormone activation and inactivation, especially in the case of parathyroid cells.¹³ It has been also reported that 3-epi-1,25(OH)₂D₃ (3), an epimer of $1.25(OH)_2D_3$ (1) at the 3-position, shows equipotent and prolonged activity compared to 1 at suppressing PTH secretion.¹⁴ Since ED-71 (2) has a bulky hydroxypropoxy substituent at the 2-position in the A-ring, epimerization of 2 at the adjacent and sterically hindered 3-position might be prevented. This could be the reason why ED-71 (2) showed weak potency in PTH suppression during clinical studies. We have significant interest in ED-71 (2) epimerization at the 3-position and the biological potency of 3-epi-ED-71 (4) in suppressing PTH production.

In this paper, therefore, we describe the synthesis of 3-epi-ED-71 (4) and its in vitro suppression of PTH

Keywords: 1α ,25-Dihydroxyvitamin D₃; 1α ,25-Dihydroxy-2 β -(3-hydroxypropoxy)vitamin D₃; ED-71; 3-*epi*-ED-71. * See Ref. 1.

^{*} Corresponding author. Tel.: +81 3 3273 8558; fax: +81 3 3281 2626; e-mail: kuboderanbr@chugai-pharm.co.jp

^{0968-0896/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2006.07.039

Figure 1. Structures of active vitamin D₃ analogs.

compared to ED-71 (2), $3-epi-1,25(OH)_2D_3$ (3), and $1,25(OH)_2D_3$ (1) (Fig. 1).

2. Results and discussion

2.1. Synthesis of 3-epi-ED-71 (4)

The synthesis of 3-*epi*-ED-71 (4) was envisioned using the convergent method via palladium-catalyzed coupling of the A-ring fragment (5) prepared from the C_2 symmetrical epoxide (7) with known C/D-ring fragment (6) obtained from the Inhoffen-Lythgoe diol (8) (Fig. 2). ^{15,16}

The synthesis of the A-ring fragment (5) began with inversion of the C₃ configuration of alcohol (9) which was prepared from the C₂ symmetrical epoxide (7) according to our previously established procedure.¹⁷ Thus, reaction of 9 with *p*-nitrobenzoic acid in the presence of diethyl azodicarboxylate (DEAD) and triphenylphosphine gave the *p*-nitrobenzoate (10) in 84% yield.¹⁸ Treatment of 10 with NaHCO₃ in methanol allowed selective methanolysis of the *p*-nitrobenzoate group to give the inverted alcohol (11) in 86% yield. After hydrogenolysis of the benzyl ether functionalities in 11, the resulting diol was protected as its acetonide to afford acetonide (12) in 88% yield. Swern oxidation of 12 followed by Grignard reaction of the resulting aldehyde with vinylmagnesium bromide produced alcohol (13) as an epimeric mixture (S:R = 3:2, determined by ¹H NMR) in 66% yield.¹⁹ To separate this epimeric mixture, 13 was subjected to lipase-catalyzed acetylation using vinyl acetate and Novozyme in tert-butyl methyl ether.²⁰ As a result, the *R*-epimer preferentially underwent acetylation to give the acetate (14) and S-13 (R:S = 1:20) in 40% and 57% yields, respectively. Acidic hydrolysis of 14 gave diol (15) in 90% yield, which, upon Mitsunobu reaction using DEAD and triphenylphosphine in boiling toluene, afforded epoxide (16) in 75% yield.²¹ Reaction of **16** with lithium trimethylsilylacetylide in the presence of BF₃OEt₂ at -78 °C followed by saponification provided energy (17) in 65% yield.²² Protection of 17 as its triethylsilyl ether produced A-ring fragment (5) quantitatively.

Having secured A-ring fragment (5), we then performed its coupling with C/D-ring fragment (6) using Trost's methodology.^{15,16} Thus, the A-ring fragment (5) was allowed to react with C/D-ring fragment (6) in the presence of $(Ph_3P)_4Pd$ and triethylamine in boiling toluene to give the coupling product which was desilylated with ammonium fluoride in boiling methanol to produce 3-*epi*-ED-71 (4) in 46% yield (Scheme 1).

8051

Scheme 1. Synthesis of 3-*epi*-ED-71 (4). Reagents and conditions: (a) p-(NO₂)PhCO₂H, DEAD, Ph₃P, toluene; (b) NaHCO₃, MeOH; (c) Pd(OH)₂, H₂, MeOH; (d) 2,2-dimethoxypropane, TsOH, acetone; (e) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, then Et₃N; (f) CH₂=CHMgBr, THF, -20 °C; (g) Novozyme, CH₂=CHOAc, *t*-BuOMe; (h) 60% AcOH; (i) DEAD, Ph₃P, dioxane, reflux; (j) TMSC₂H, *n*-BuLi, BF₃:Et₂O, THF, -78 °C; (k) 10 M NaOH, MeOH; (l) TESOTf, NEt₃, CH₂Cl₂, -40 °C; (m) 6, (Ph₃P)₄Pd, Et₃N, toluene, reflux; (n) NH₄F, MeOH, reflux.

2.2. Biological evaluation of 3-epi-ED-71 (4)

The results of preliminary in vitro biological evaluation of 3-epi-ED-71 (4) in comparison with ED-71 (2), $1,25(OH)_2D_3$ (1), and $3-epi-1,25(OH)_2D_3$ (3) are summarized in Table 1, which contains affinity to human vitamin D receptors (VDR) and human vitamin D binding protein (DBP), and inhibition of PTH in cultured bovine parathyroid cells. The dose-responsive effects of analogs on PTH suppression are also shown in Figure 3. 3-Epi-ED-71 (4) showed only slight inhibition of PTH secretion in bovine parathyroid cells compared to ED-71 (2). In our assay systems, 3-epi- $1,25(OH)_2D_3$ (3) did not show greater activity than $1,25(OH)_2D_3$ (1) in suppressing PTH secretion. The inhibitory potency of vitamin D₃ analogs was $1,25(OH)_2D_3$ (1) >ED-71 (2) $\geq 3-epi-1,25(OH)_2D_3$ (3) \gg 3-epi-ED-71 (4), and they were well responsive for

Table 1. Biological evaluation of 3-epi-ED-71 (4)

	VDR	DBP	PTH
1,25(OH) ₂ D ₃ (1)	100	100	100
3-epi-1,25(OH) ₂ D ₃ (3)	9.62	8.3	1.25
ED-71 (2)	44.6	421.9	3.54
3-epi-ED-71 (4)	0.02	113.1	0.11

VDR, relative affinity normalized by the potency of $1,25(OH)_2D_3$ (=100) using human vitamin D receptors.

DBP, relative affinity normalized by the potency of $1,25(OH)_2D_3$ (=100) using human vitamin D binding protein.

PTH, relative inhibitory activity of parathyroid hormone secretion normalized by the potency of $1,25(OH)_2D_3$ (=100) in cultured bovine parathyroid cells.

affinity to human recombinant VDR as shown in Table 1. Regarding affinity to human DBP as reported previously in the rat DBP case, ED-71 (2) showed more potent affinity than $1,25(OH)_2D_3$ (1). This increase in DBP affinity is due to the existence of a hydroxypropoxy substituent at the 2β -position and was also observed in the 3-epi series: 3-epi- $1,25(OH)_2D_3$ (3): 8.3 and 3-epi-ED-71 (4): 113.1, as shown in Table 1.

ED-71 (2) and its 3-position epimer, 3-*epi*-ED-71 (4), appear to be inherently weak agents toward PTH suppression. This should be examined further with in vivo evaluation systems using renal insufficiency animal models such as 5/6 nephrectomized rats showing high level of serum PTH.²³ Nevertheless, the less potent activity of ED-71 (2) toward native PTH suppression compared to $1,25(OH)_2D_3$ (1) might be a beneficial characteristic of 2 for treating osteoporotic patients.

In our previous modification studies of $1,25(OH)_2D_3$ (1) and ED-71 (2) at the 1-position of the A-ring, 1-*epi*- $1,25(OH)_2D_3$ and 1-*epi*-ED-71 showed enhanced affinity to rat DBP compared to parent compounds, 1 and 2.²⁴ The relative binding affinities of $1,25(OH)_2D_3$, 1-*epi*- $1,25(OH)_2D_3$, ED-71, and 1-*epi*-ED-71 to DBP were 100, 290, 410, and 670, respectively.²⁴ Interestingly, epimerization of $1,25(OH)_2D_3$ (1) and ED-71 (2) at the 3position in the present study did not result in enhanced affinity to human DBP. At the present time, however, the reasons for this remain unclear. Future studies along these lines should provide clarification and will be reported elsewhere.

Figure 3. Dose-responsive effects of active vitamin D₃ analogs on PTH secretion in bovine parathyroid cells in vitro.

3. Experimental

3.1. General methods

Where appropriate, reactions were performed in flamedried glassware under argon atmosphere. All extracts were dried over MgSO₄ and concentrated by rotary evaporation below 30 °C at 25 Toor. Anhydrous tetrahydrofuran (THF) was purchased from Kanto Chemical Co., Inc., dichloromethane (CH₂Cl₂), triethylamine, dimethylsulfoxide (DMSO), toluene, and acetonitrile (MeCN) were distilled from CaH₂. Methanol (MeOH) was distilled from sodium. Thin-layer chromatography was performed with Merck F-254 TLC plates. Column chromatography was performed using Kanto Chemical Co., Inc., silica gel 60 N (spherical, neutral). Infrared spectra were measured on a JASCO FTIR-230 spectrometer. Optical rotations were recorded on a JASCO DIP-370 polarimeter at ambient temperature. ¹H and ¹³C NMR spectra were measured on a Varian Gemini 300, JEOL JNM-AL 400, or Varian Unity plus 500 spectrometer. For ¹H NMR spectra, chemical shifts are reported as δ values in ppm downfield from tetramethylsilane. For ¹³C NMR spectra, chemical shifts are reported as δ values in ppm relative to chloroform or methanol. EI Mass spectra were measured on a JEOL JMS-700N. The melting point was measured on a YANACO Melting Point Apparatus MP-83 and are uncorrected.

3.2. (2*S*,3*R*)-3-[(4-Nitrobenzoyl)oxy-1,4-bisbenzyloxybutan-2-yloxy]propyl pivalate (10)

To a mixture of triphenylphosphine (23.6 g, 90.0 mmol), *p*-nitrobenzoic acid (15.0 g, 90.0 mmol), and **9** (20.0 g, 45.0 mmol) in toluene (600 mL) was added DEAD (2.2 M in toluene, 40.9 mL, 90.0 mmol). After stirring at room temperature for 20 h, most of the toluene was evaporated. The residue was diluted with Et₂O, washed with H₂O and brine, dried, concentrated, and chromatographed (SiO₂ 500 g, hexane/AcOEt = 6:1) to give **10** (22.4 g, 84%) as a colorless oil; $[\alpha]_D^{24}$ +5.9° (*c* 1.00, CHCl₃); IR (neat) 3808, 3739, 3455, 2863, 1718, 1465, 1282, 1159, 1091 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.26 (d, 2H, J = 8.7 Hz), 8.25 (d, 2H, J = 9.0 Hz), 7.45–7.15 (m, 10H), 5.51 (br q, J = 2.1 Hz), 4.53–4.45 (m, 4H), 4.09 (dt, 2H, J = 6.3, 1.6 Hz), 3.83 (br quint, 1H, J = 5.2 Hz), 3.78–3.45 (m, 7H), 2.64 (br d, 1H, J = 4.8 Hz), 1.88 (quint, 2H, J = 6.3 Hz), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 163.9, 150.4, 137.6, 135.4, 129.5, 128.2, 127.5, 127.4, 127.3, 123.4, 74.1, 73.5, 73.2, 68.9, 67.9, 67.7, 61.2, 38.7, 29.4, 27.2; HRMS (EI) *m*/*z* calcd for C₃₃H₃₉NO₉ (M⁺) 593.2625, found 593.2607.

3.3. (2*S*,3*S*)-3-(1,4-Bisbenzyloxy-3-hydroxybutan-2yloxy)propyl pivalate (11)

To a solution of 10 (22.3 g, 38.0 mmol) in MeOH (380 mL) was added NaHCO₃ (19.0 g, 22.6 mmol) at 0 °C, and the mixture was stirred at room temperature for 8 h. The reaction mixture was diluted with CH₂Cl₂, washed with H₂O and brine, dried, concentrated, and chromatographed (SiO₂ 400 g, hexane/AcOEt = 6:1) to afford **11** (14.6 g, 86%) as a colorless oil: $[\alpha]_{D}^{24}$ +8.3° (c 1.00, CHCl₃); IR (neat) 3781, 3712, 2867, 1724, 1600, 1529, 1481, 1351, 1272, 1105 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.43–7.19 (m, 10H), 4.52 (s, 4H), 4.13 (dt, 2H, J = 6.0, 1.6 Hz), 3.91 (br quint, 1H, J = 5.3 Hz), 3.80–3.46 (m, 6H), 2.62 (br d, 1H, J = 4.8 Hz), 1.87 (quint, 2H, J = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 137.9, 128.3, 127.6, 127.5, 78.4, 73.4, 70.8, 70.7, 69.9, 67.5, 61.3, 38.7, 29.4, 27.2; HRMS (EI) m/z calcd for C₂₆H₃₆O₆ (M⁺) 444.2512, found 444.2506.

3.4. [(S)-2-Hydroxy-1-((S)-2,2-dimethyl-1,3-dioxolan-4yl)ethoxy|propyl pivalate (12)

A mixture of **11** (12.3 g, 29.2 mmol) and $Pd(OH)_2$ (1.30 g, 1.76 mmol) in MeOH (210 mL) was stirred under H₂ atmosphere at room temperature for 24 h. The reaction mixture was filtered through Celite pad, and the filtrate was concentrated to give the corresponding triol (7.41 g) as a colorless oil. To a solution of the crude triol (7.41 g) in acetone (31 mL) were added 2,2-dimethoxypropane (4.37 g, 42.0 mmol) and *p*-toluenesulfonic acid monohydrate (13.3 mg, 0.07 mmol), and the mixture was stirred at room temperature for 4 h. The reaction mixture was diluted with AcOEt, washed with

saturated NaHCO₃ and brine, dried, concentrated, and chromatographed (SiO₂, 200 g, hexane/AcOEt = 4:1) to afford **12** (7.78 g, 88%) as a colorless oil; $[\alpha]_{D}^{24}$ +8.30° (*c* 1.00, CHCl₃); IR (neat) 3500, 2973, 1720, 1473, 1375, 1288, 1216, 1164, 1052 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.25 (dt, 1H, *J* = 11.2, 6.1 Hz), 4.14 (quint, 1H, *J* = 5.6 Hz), 4.01 (dd, 1H, *J* = 7.6, 6.8 Hz), 3.78– 3.62 (m, 4H), 3.56 (quint, 1H, *J* = 6.0 Hz), 3.41 (dd, 1H, *J* = 8.1, 6.0 Hz), 2.32 (br t, 1H, *J* = 6.0 Hz), 1.93 (quint, 2H, *J* = 6.3 Hz), 1.43 (s, 3H), 1.36 (s, 3H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 109.5, 80.7, 76.7, 67.5, 65.8, 61.9, 61.4, 36.0, 29.8, 27.5, 26.7, 25.6; HRMS (EI) *m*/*z* calcd for C₁₅H₂₈O₆ (M⁺) 304.1886, found 304.1885.

3.5. A 3:2 mixture of 3-[(1S,2R)-2-hydroxy-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-enyloxy]propyl pivalate and <math>3-[(1S,2S)-2-hydroxy-1-((S)-2,2-dimethyl-1,3-dioxo-lan-4-yl)but-3-enyloxy]propyl pivalate (13)

To a solution of oxalyl chloride (624 mg, 4.92 mmol) in CH₂Cl₂ (10 mL) was added DMSO (768 mg, 9.84 mmol) at -78 °C. After stirring for 15 min at -78 °C, a solution of 12 (500 mg, 1.64 mmol) in CH_2Cl_2 (7 mL) was added and stirring was continued at -78 °C for 30 min. Triethylamine (1510 mg, 14.8 mmol) was added, and the mixture was allowed to warm to 0 °C and stirred at 0 °C for 1 h. The reaction mixture was diluted with AcOEt, washed with saturated NH₄Cl (10 mL), H₂O, and brine, dried, concentrated, and chromatographed (SiO₂ 10 g, hexane/AcOEt = 1:1) affording the corresponding aldehyde (580 mg) which was used for the next reaction without purification. To a solution of the crude aldehyde (580 mg) in THF (17 mL) was added vinylmagnesium bromide (1 M in THF, 5.05 mL, 5.05 mmol) at -40 °C, and the mixture was stirred at -40 °C for 3 h. The reaction was quenched with saturated NH₄Cl and the reaction mixture was extracted with AcOEt. The extract was washed with H₂O and brine, dried, concentrated, and chromatographed (SiO₂ 20 g, hexane/ AcOEt = 6:1) to give 13 (330 mg, 66%), a colorless oil, as a diastereomer mixture (R:S = 2:3); IR (neat) 3488, 2981, 1729, 1481, 1371, 1286, 1168 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.91 (ddd, 1H, J = 16.2, 10.5, 5.7 Hz), 5.42 (dd, 1H, J = 15.6, 3.3 Hz), 5.23 (dd, 1H, J = 12.0, 3.6 Hz, 4.29–4.15 (m, 4H), 4.05 (t, 1H, J = 8.5 Hz), 3.65 (m, 2H), 3.30 (dd, 1H, J = 5.2, 4.3 Hz), 3.25 (dd, 1H, J = 6.4, 3.6 Hz), 2.83 (d, 0.6H, J = 3.6 Hz), 2.55 (d, 0.4H, J = 3.6 Hz), 1.92 (quint, 2H, J = 6.3 Hz), 1.40 (s, 3H), 1.34 (s, 3H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 178.5, 137.9, 137.1, 128.4, 116.6, 115.0, 109.4, 109.3, 82.5, 82.2, 77.6, 77.1, 76.8, 72.9, 72.9, 69.5, 68.2, 66.3, 66.1, 61.4, 61.3, 39.0, 39.0, 29.7, 29.7, 27.6, 26.8, 26.6, 25.8; HRMS (EI) m/z calcd for $C_{17}H_{30}O_6$ (M⁺) 330.2642, found 330.2036.

3.6. 3-[(1*S*,2*R*)-2-Acetoxy-1-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-enyloxy]propyl pivalate (14) and 3-[(1*S*,2*S*)-2-hydroxy-1-((*S*)-2,2-dimethyl-1,3-dioxolan-4yl)but-3-enyloxy]propyl pivalate (*S*-13)

A solution of vinyl acetate (2.3 g, 26.7 mmol) and **13** (4.40 g, 13.3 mmol) in *tert*-butyl methyl ether (133 mL)

was added Novozyme (2.2 g), and the mixture was stirred at 30 °C for 7 d. The reaction mixture was filtered through Celite pad, concentrated, and chromatographed $(SiO_2 \ 150 \text{ g}, \text{hexane/AcOEt} = 10:1)$ to afford 14 (2.03 g, 40%) and S-13 (R:S = 1:20, 2.50 g, 57%) each as a color-less oil. Compound 14: $[\alpha]_{D}^{26} -9.1^{\circ}$ (c 1.10, CHCl₃); IR (neat) 2985, 1752, 1644, 1481, 1378, 1251 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.90 (ddd, 1H, J = 17.2, 10.4, 5.6 Hz), 5.35 (d, 1H, J = 17.2 Hz), 5.25 (d, 1H, J = 10.8 Hz), 4.17 (quint, 3H, J = 6.0 Hz), 3.97 (t, 1H, J = 8.5 Hz), 3.81-3.65 (m, 3H), 3.35 (dd, 1H, J = 5.2, 4.3 Hz), 2.10 (s, 3H), 1.92 (quint, 2H, J = 6.0 Hz), 1.43 (s, 3H), 1.36 (s, 3H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) & 179.1, 170.4, 133.6, 109.9, 82.2, 77.0, 74.5, 69.8, 66.5, 62.0, 39.6, 30.2, 28.0, 27.4, 23.4, 21.9; HRMS (EI) m/z calcd for $C_{19}H_{33}O_7$ (M⁺) 372.2148, Compound found 372.2137. S-13: $[\alpha]_{D}^{25} - 21.7^{\circ}$ (c 0.42, CHCl₃); IR (neat) 3487, 2976, $17\overline{2}2$, 1471, 1375, 1286, 1216, 1163, 1065 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.93 (ddd, 1H, J = 17.4, 10.7, 6.2 Hz), 5.34(dt, 1H, J = 17.4, 1.5 Hz), 5.23 (dt, 1H, J = 10.2, 1.5 Hz), 4.29–4.09 (m, 4H), 4.00 (dd, 1H, J = 8.4, 6.3 Hz), 3.79-3.65 (m, 3H), 3.30 (dd, 2H, J = 6.0, 5.0 Hz), 2.89 (d, 1H, J = 6.3 Hz), 1.92 (quint, 2H, J = 6.3 Hz), 1.42 (s, 3H), 1.36 (s, 3H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 137.1, 116.4, 108.9, 82.4, 72.5, 67.9, 65.8, 61.0, 38.5, 29.2, 27.0, 26.2, 25.4, 20.8, 14.0; HRMS (EI) m/z calcd for C₁₇H₃₀O₆ (M⁺) 330.2048, found 330.2039.

3.7. 3-[(2*S*,3*S*,4*R*)-4-Acetoxy-1,2-dihydroxyhex-5-en-3-yloxy]propyl pivalate (15)

A solution of 14 (300 mg, 0.805 mmol) in 60% aqueous AcOH (2 mL) was stirred at room temperature for 22 h. The reaction mixture was carefully basified by the addition of NaHCO₃, diluted with CH₂Cl₂, washed with H₂O and brine, dried, and concentrated. Purification of the residue by chromatography (SiO₂ 20 g, hexane/ AcOEt = 2:1) gave 15 (240 mg, 90%) as a colorless oil; $[\alpha]_{D}^{26}$ +18.5° (*c* 1.00, CHCl₃); IR (neat) 3478, 2969, 1729, 1481, 1371, 1286, 1238, 1162, 1079 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.90 (ddd, 1H, J = 17.2, 10.4, 5.6 Hz), 5.39 (t, 1H, J = 6.0 Hz), 5.34 (d, 1H, J = 17.2 Hz, 5.27 (d, 1H, J = 10.4 Hz), 4.28 (dt, 1H, J = 10.8, 6.4 Hz, 4.12 (dt, 1H, J = 11.2, 6.0 Hz), 3.81 (dt, 1H, J = 8.0, 4.8 Hz), 3.80–3.55 (m, 3H), 3.42 (t, 1H, J = 5.2 Hz), 2.68 (d, 1H, J = 4.0 Hz), 2.10 (s, 4H), 1.90 (quint, 2H, J = 6.0 Hz), 1.43 (s, 3H), 1.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 169.7, 132.4, 118.4, 80.0, 73.7, 70.9, 68.8, 63.5, 60.9, 38.7, 29.5, 27.2, 21.1; HRMS (EI) m/z calcd for $C_{16}H_{29}O_7$ [(M+H)⁺] 333.1913, found 333.1910.

3.8. 3-[(1*S*,2*R*)-2-Acetoxy-1-((*S*)-oxiran-2-yl)but-3-enyl-oxy]propyl pivalate (16)

To a solution of **15** (1.80 g, 5.12 mmol) in dioxane (50 mL) were added triphenylphosphine (2.01 g, 7.57 mmol) and DEAD (2.2 M in toluene, 3.49 mL, 7.67 mmol), and the mixture was refluxed for 17 h. The reaction mixture was concentrated and chromatographed (SiO₂ 150 g, hexane/AcOEt = 10:1) to give **16**

(1.20 g, 75%) as a colorless oil; $[\alpha]_D^{24}$ +11.3° (*c* 1.00, CHCl₃); IR (neat) 2969, 1735, 1473, 1371, 1284, 1236, 1162, 1108, 1029 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.90 (ddd, 1H, J = 17.2, 10.6, 6.4 Hz), 5.39 (t, 1H, J = 6.0 Hz), 5.32 (d, 1H,, J = 17.6 Hz), 5.27 (d, 1H, J = 10.8 Hz), 4.17 (dt, 3H, J = 6.4, 1.2 Hz), 3.84 (dt, 1H, J = 9.6, 6.0 Hz), 3.60 (dt, 1H, J = 10.0, 6.0 Hz), 3.05–3.00 (m, 2H), 2.77 (t, 1H, J = 2.0 Hz), 2.55 (quant, 1H, J = 3.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 120 Hz), 120

170.3, 133.1, 119.1, 82.7, 75.0, 68.0, 61.9, 52.8, 44.3, 29.9, 28.0, 21.8; HRMS (EI) m/z calcd for $C_{14}H_{23}O_5$ [(M-Ac)⁺] 271.1546, found 271.1541.

3.9. (3*R*,4*R*,5*S*)-4-(3-Hydroxypropoxy)oct-1-en-7-yne-3,5-diol (17)

To a solution of trimethylsilylacetylene (1.72 g, 17.5 mmol) in THF (20 mL) was added n-BuLi (1.45 M in THF, 11.3 mL, 17.5 mmol) at -78 °C, and the mixture was stirred at -78 °C for 30 min. BF₃·Et₂O (2.49 g, 17.5 mmol) and a solution of 16 (1.11 g, 3.53 mmol) in THF (50 mL) were added and stirring was continued at -78 °C for 1 h. After the mixture was allowed to warm to room temperature over 1 h, the reaction was quenched with saturated NaHCO₃. The reaction mixture was extracted with CH₂Cl₂, washed with H₂O and brine, dried, and concentrated. The residue was dissolved in MeOH (8 mL) and 10 M aqueous NaOH (8 mL) was added. After being stirred at room temperature for 6 h, the reaction mixture was concentrated and extracted with AcOEt. The aqueous layer was concentrated and extracted with THF. Combined organic extracts were concentrated and chromatographed (SiO₂, 35 g, hexane/AcOEt = 1:1) to give 17 (503 mg, 65%) as a colorless oil; $[\alpha]_D^{24}$ +13.3° (*c* 0.50, CHCl₃); IR (neat) 3754, 3417, 2884, 2235, 2117, 1643, 1423, 1072 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.90 (ddd, 1H, J = 17.2, 10.6, 6.4 Hz), 5.41 (d, 1H, 1)J = 17.6 Hz), 5.25 (d, 1H, J = 10.5 Hz), 4.31 (dd, 1H, J = 9.0, 5.2 Hz, 3.93–3.80 (m, 5H), 3.42 (dd, 1H, 6.3, 3.0 Hz), 2.52 (m, 2H), 2.06 (s, 1H), 1.85 (quant, J = 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 116.9, 82.7, 80.3, 73.7, 72.0, 70.7, 70.4, 60.5, 31.9, 24.0; HRMS (EI) m/z calcd for $C_{14}H_{23}O_5$ [(M+H)⁺] 215.1283, found 215.1274.

3.10. (3*R*,4*R*,5*S*)-4-(3-(Triethylsilyloxy)propoxy)-3,5di(triethylsilyloxy)oct-1-en-7-yne (5)

To a solution of triethylamine (1.52 g, 14.9 mmol) and 17 (400 mg, 1.87 mmol) in CH₂Cl₂ (20 mL) was added triethylsilyl triflate (2.47 g, 9.33 mmol) at -40 °C, and stirring was continued at -40 °C for 2 h. The reaction mixture was diluted with CH₂Cl₂, washed with H₂O and brine, dried, concentrated, and chromatographed (SiO₂ 40 g, hexane) to afford **5** (1.10 g, 100%) as a colorless oil; $[\alpha]_D^{27}$ +16.8° (*c* 0.98, CHCl₃); IR (neat) 3313, 2954, 2877, 1459, 1415, 1240, 1095, 1006 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.94 (ddd, 1H, *J* = 17.0, 10.8, 6.4 Hz), 5.24 (d, 1H, *J* = 17.2 Hz), 5.10 (d, 1H, *J* = 10.4 Hz), 4.34 (dd, 1H, *J* = 12.0, 6.8 Hz), 3.85 (dd, 1H, *J* = 10.8 8.0 Hz), 3.74–3.64 (m, 4H), 3.20 (dd, 1H, J = 6.0, 5.2 Hz), 2.60 (ddd, 1H, J = 15.6, 6.0, 2.4 Hz), 2.32 (ddd, 1H, J = 15.6, 6.0, 2.4 Hz), 2.16 (s, 1H), 1.92 (quint, 2H, 8.0 Hz), 0.94–0.91 (m, 30H), 0.62–0.55 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 115.6, 84.6, 82.6, 74.0, 71.7, 70.1, 70.1, 34.0, 24.3, 6.7, 6.6, 5.7, 5.4, 4.8; HRMS (EI) *m*/*z* calcd for C₂₉H₆₀O₄Si₃

3.11. (5*Z*,7*E*)-(1*R*,2*R*,3*S*)-2-(3-Hydroxypropoxy)-9,10secocholesta-5,7,10(19)-triene-1,3,25-triol (4)

(M⁺) 556.3799, found 556.3798.

To a solution of 5 (144.3 mg, 0.26 mmol) and 6 (134.6 mg, 0.38 mmol) in degassed toluene (6.2 mL) were added triethylamine (3.7 mL, 26.5 mmol) and (Ph₃P)₄Pd (87.9 mg, 0.076 mmol). After being refluxed for 2 h, the reaction mixture was diluted with Et₂O, filtered through Celite pad, concentrated, and chromatographed (SiO_2) 18 g, hexane/AcOEt = 10:1) to give a mixture of the coupling product and 6 (183.2 mg) as an vellow oil. The mixture (183.2 mg) thus obtained was dissolved in MeOH (16 ml) and NH_4F (55.9 mg, 1.51 mmol) was added. After being refluxed for 4 h, the reaction mixture was concentrated, extracted with AcOEt, washed with H₂O and saturated NaHCO₃, dried, and concentrated. The residue was purified by preparative TLC (AcOEt) followed by HPLC (ODS-M80) (MeCN/H₂O = 1:1) to afford 4 (58.4 mg, 46%) as a colorless oil. This material was crystallized from a small amount of MeCN to form colorless crystals; mp 126–128°; $[\alpha]_{D}^{26}$ –61.6° (c 0.39, MeOH); IR (KBr) 3332, 2939, 1641, 1442, 1375, 1082 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 6.32 (d, 1H, J = 9.8 Hz), 5.99 (d, 1H, J = 11.2 Hz), 5.13 (dt, 2H, J = 24.3, 2.4 Hz), 3.96–3.87 (m, 2H), 3.79 (dt, 1H, J = 8.9, 2.2 Hz), 3.71 (t, 2H, J = 6.1 Hz), 3.51–3.46 (m, 1H), 2.97 (t, 1H, J = 8.9 Hz), 2.84 (dd, 1H, J = 5.0, 11.2 Hz), 2.50 (dd, 1H, J = 12.8, 5.2 Hz), 2.17 (t, 1H, J = 11.1), 2.04–1.99 (m, 2H), 1.99–1.87 (m, 1H), 1.82 (quint, 2H, J = 6.1 Hz), 1.70–1.66 (m, 2H), 1.58–1.40 (m, 7H), 1.37–1.28 (m, 4H), 1.26–1.22 (m, 1H), 1.16 (s, 6H), 1.10-1.03 (m, 1H), 0.96 (d, 3H, J = 6.4 Hz), 0.58(s, 3H); ¹³C NMR (100 MHz, CD₃OH) δ 147.3, 143.6, 134.0, 124.5, 118.7, 111.8, 90.2, 75.3, 73.0, 71.5, 71.4, 60.5, 58.0, 57.6, 47.1, 45.3, 43.6, 41.8, 37.7, 33.7, 30.0, 29.3, 29.1, 28.7, 24.8, 23.4, 21.9, 19.4, 12.3; HRMS (EI) m/z calcd for $C_{30}H_{50}O_5$ (M⁺) 490.3659, found 490.3658.

3.12. Inhibition of PTH secretion in cultured bovine parathyroid cells

The inhibitory activity of analogs (1-4) in cultured bovine parathyroid cells was analyzed according to Brown et al.²⁵

3.13. VDR binding assay

The binding affinity of analogs (1–4) with human recombinant VDR was analyzed according to Wecksler et al.²⁶

3.14. DBP binding assay

The binding affinity of analogs (1-4) with human DBP was analyzed according to Preece et al.²⁷

Acknowledgment

We are grateful to Professor David Horne of Oregon State University for helpful comments and English editing.

References and notes

- A part of this work has been reported in proceedings of the13th Workshop on Vitamin D (Victoria, Canada, 8–12 April, 2006). Hatakeyama, S.; Nagashima, S.; Imai, N.; Takahashi, K.; Ishihara, J.; Sugita, A.; Nihei, T.; Saito, H.; Takahashi, F.; Kubodera, N. J. Steroids Biochem. Molecular Biol., in press.
- Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocr. Rev. 1995, 16, 200.
- Posner, G. H.; Kahraman, M. In *Vitamin D*; Feldman, D., Pike, J. W., Glorieux, F. H., Eds., 2nd ed.; Elsevier Academic Press: Burlington, 2005; pp 1405–1422.
- Miyamoto, K.; Murayama, E.; Ochi, K.; Watanabe, H.; Kubodera, N. Chem. Pharm. Bull. 1993, 41, 1111.
- Ono, Y.; Watanabe, H.; Shiraishi, A.; Takeda, S.; Higuchi, Y.; Sato, K.; Tsugawa, N.; Okano, T.; Kobayashi, T.; Kubodera, N. *Chem. Pharm. Bull.* **1997**, *45*, 1626.
- Ono, Y.; Kawase, A.; Watanabe, H.; Shiraishi, A.; Takeda, S.; Higuchi, Y.; Sato, K.; Yamauchi, T.; Mikami, T.; Kato, M.; Tsugawa, N.; Okano, T.; Kubodera, N. *Bioorg. Med. Chem.* 1998, 6, 2517.
- Okano, T.; Tsugawa, N.; Masuda, S.; Takeuchi, A.; Kobayashi, T.; Takita, Y.; Nishii, Y. *Biochem. Biophys. Res. Commun.* 1989, 163, 1444.
- Kobayashi, T.; Okano, T.; Tsugawa, N.; Murano, M.; Masuda, S.; Takeuchi, A.; Sato, K.; Nishii, Y. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 1815.
- Kubodera, N.; Tsuji, N.; Uchiyama, Y.; Endo, K. J. Cell. Biochem. 2003, 88, 286.
- Silver, J.; Naveh-Many, T. In *Vitamin D*; Feldman, D., Pike, J. W., Glorieux, F. H., Eds., 2nd ed.; Elsevier Academic Press: Burlington, 2005; pp 537–549.

- Horst, R. L.; Reinhardt, T. A.; Reddy, G. S. In *Vitamin* D; Feldman, D., Pike, J. W., Glorieux, F. H., Eds., 2nd ed.; Elsevier Academic Press: Burlington, 2005; pp 24–25.
- Matsumoto, T.; Miki, T.; Hagino, H.; Sugimoto, T.; Okamoto, S.; Hirota, T.; Tanigawara, Y.; Hayashi, Y.; Fukunaga, M.; Shiraki, M.; Nakamura, T. J. Clin. Endocrinol. Metab. 2005, 90, 5031.
- Brown, A. J.; Ritter, C.; Weiskopf, A. S.; Vouros, P.; Sasso, G. J.; Uskokovic, M. R.; Wang, G.; Reddy, G. S. *J. Cell. Biochem.* 2005, *96*, 569.
- Brown, A. J.; Ritter, C. J.; Slatopolsky, E.; Muralidharan, K. R.; Okamura, W. H.; Reddy, G. S. J. Cell. Biochem. 1999, 73, 106.
- 15. Trost, B. M.; Dumas, J. J. Am. Chem. Soc. 1992, 114, 1924.
- Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc. 1992, 114, 9836.
- 17. Hatakeyama, S.; Kawase, A.; Uchiyama, Y.; Maeyama, J.; Iwabuchi, Y.; Kubodera, N. Steroids 2001, 66, 267.
- Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017.
- 19. Although a ratio of *R* and *S* was reported as R/S = 3/2 in a previous report (Ref. 1), a correct ratio should be R/S = 2/3.
- 20. Nakamura, K.; Hirose, Y. J. Synth. Org. Chem. Jpn. 1995, 53, 668.
- 21. Mitsunobu, O. Synthesis 1981, 1.
- 22. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
- Hirata, M.; Endo, K.; Katsumata, K.; Ichikawa, F.; Kubodera, N.; Fukagawa, M. Nephrol. Dial. Transplant. 2002, 17, 41.
- 24. Ono, Y.; Watanabe, H.; Kawase, A.; Kubodera, N. Bioorg. Med. Chem. Lett. **1994**, *4*, 1523.
- Brown, E.; Hurwitz, S.; Aurbach, G. *Endocrinology* 1976, 99, 1582.
- 26. Wecksler, W. R.; Norman, A. W. Anal. Biochem. 1979, 92, 314.
- Preece, M. A.; O'Riordan, J. L.; Lawson, D. E.; Kodicek, E. Clin. Chim. Acta 1974, 54, 2352.