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Abstract—Starting from (S)-phenylalanine, an asymmetric synthesis of (S)-homocitric acid lactone was achieved using Seebach�s
SRS methodology. An intermediate for the synthesis of the (S)-per-homocitric acid lactone has also been synthesized.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the important roles played both in the a-amino-
adipate pathway of lysine biosynthesis in yeast and some
fungi,1 and in clarifying the mechanism of biological
nitrogen fixation,2 the synthesis3–5 of (R)-homocitrate
16 has attracted attention. Due to the enantiomeric
homocitrate not being commercially available, the
importance of their asymmetric synthesis is thus impor-
tant. To date, only three asymmetric syntheses7,8 of
enantiomeric homocitric acids have been reported. Most
of the reported asymmetric syntheses use Seebach�s SRS
(self-regeneration of stereocenters) methodology9–11

with either LL-lactic acid, or LL-serine7a and DD- or LL-malic
acid7b,c as the starting material. Considering that (R)-
malic acid, the requisite starting material for the synthe-
sis of (R)-homocitrate, is four times more expensive than
(R)-phenylalanine, a chiral pool for the synthesis of anti-
diabetic agent nateglinide,12 and aminopeptidases inhib-
itors such as phebestin, probestin, and bestatin,13 we
were interested in exploring the use of the less expensive
(R)-phenylalanine as a starting material for (R)-homo-
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citrate. Herein we report an alternative approach to
(S)-homocitric acid starting from (S)-phenylalanine.
2. Results and discussion

Due to the instability of homocitric acid, all the synthe-
ses of homocitric acid 1 ended with the isolation of hom-
ocitric acid lactone 2. In our approach to (S)-homocitric
acid lactone 2 using Seebach�s SRS methodology,9 (S)-
phenylalanine was considered as a suitable starting
material, because a phenyl group can be oxidatively
cleaved to give a carboxylic group.14

Thus, as outlined in Scheme 1, the known chiral inducer
5 was prepared from (S)-phenylalanine by the known
procedures: diazotization15 and cis-diastereoselective t-
butyl-5-benzyl-1,3-dioxolanone formation.11a The key
allylation of (S)-5 with allyl bromide (LDA, THF,
�78 �C; AllBr) led exclusively to 6 in 42% yield (Scheme
1). The chemical yield of the allylation is consistent with
that reported by Seebach et al.11a When a more reactive
allyl iodide was used, the yield was improved to 71% and
6 was obtained as the only diastereomer, as judged by
1H NMR recorded at 500 MHz. Using LHMDS as a
base led to complex products. The stereochemistry of
the allylated product was ascertained by comparing
both the specific rotation and the 1H NMR data with
those reported {6: ½a�20D ¼ þ4:9 (c 1.6, CHCl3) {lit.11a
½a�20D ¼ þ5:2 (c 2.5, CHCl3)}. The stereochemical out-
come of the reaction can be understood in terms of
the bulky t-butyl group controlled trans-diastereoselec-
tive allylation on the enolate intermediate A, namely,
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the well known principle of self-regeneration of stereo-
centers (SRS).

The subsequent oxidative hydroboration was performed
at 35 �C with prolonged reaction time (BH3ÆSMe2, 35 �C,
2 days; 30% H2O2, 1 M NaOH, 35 �C, 2 days), which
gave the desired alcohol 7 as the sole isolated regio-
isomer. At room temperature, the reactions were very
slow and uncompleted. These may reflect the steric hin-
drance of the system, which slows down both the for-
mation and reaction of the dendritic trialkylborane
intermediate. The steric hindrance may also account for
the observed high regioselectivity of the hydroboration.

Next, we attempted a one-pot hydroxyl group oxidation
and phenyl group oxidative degradation using an
RuCl3/NaIO4 system (CCl4–MeCN–H2O, rt, 4 days).
However, the products were very complex. The desired
oxidations were finally achieved in a stepwise manner:
the oxidation of the primary alcohol (RuCl3 0.04
equiv–NaIO4 3 equiv, CCl4–MeCN–H2O = 2:2:3, 0 �C–
rt, 4 h) gave the corresponding carboxylic acid 8 in
88% yield. With a prolonged reaction time, the oxidative
degradation of the more stable phenyl group was
achieved (RuCl3 0.05 equiv–NaIO4 14 equiv, CCl4–
MeCN–H2O = 2:2:3, 0 �C–rt, 3 days), which provided
9 in 76% yield. Compound 9 was then converted to
(S)-homocitric acid lactone (S)-2 by the known
procedure.7c
In view of the successful use of the phenyl group as a
latent carboxyl group, the alkylation of 5 with 3-phenyl-
propanyl iodide, easily available from 3-phenyl-
propanol (Scheme 2), was studied. The desired com-
pound 10 was obtained in 32% yield (Scheme 3), which
constitutes as an intermediate for the synthesis of (S)-
per-homocitric acid.
3. Conclusion

In conclusion, we have developed an alternative
approach to (S)-homocitric acid lactone starting from
(S)-phenylalanine. The overall yield of homocitric acid
lactone from (S)-phenylalanine was 11.8%. This method
is, a priori, applicable for the asymmetric synthesis of
(R)-homocitric acid lactone if (R)-phenylalanine is used
as the starting material, which will constitute a more
economical approach to (R)-homocitric acid lactone
and its higher homologous.
4. Experimental

4.1. General

Melting points were determined on a Yanaco MP-500
micromelting point apparatus and are uncorrected.
The freeze dryer was a LABCONCO Stoppering Tray
Dryer-Freezone 18. Infrared spectra were measured with
a Nicolet Avatar 360 FT-IR spectrometer using film
KBr pellet techniques. 1H NMR spectra were recorded
in CDCl3 on a Varian unity +500 spectrometer with tet-
ramethylsilane as an internal standard. Chemical shifts
are expressed in d (ppm) units downfield from TMS.
Mass spectra were recorded by a Bruker Dalton ESquire
3000 plus liquid chromatography–mass spectrum (direct
injection). Optical rotations were measured with a Per-
kin–Elmer 341 automatic polarimeter. Flash column
chromatography was carried out with silica gel (300–
400 mesh). THF was distilled over sodium. Dichloro-
methane was distilled over P2O5.
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4.2. (2S,5S)-5-Allyl-5-benzyl-2-(tert-butyl)-1,3-dioxolan-
4-one 6

To a cooled solution (�78 �C) of LDA (3.7 mmol) in
14.1 mL of a mixed solvent system (THF–hexane = 9:1)
was added a THF solution (7 mL) of (2S,5S)-5-benzyl-
2-(tert-butyl)-1,3-dioxolan-4-one cis-5 (823 mg, 3.5
mmol), mp 54–56 �C (EtOAC/Et2O); lit.

11a mp 56–
58 �C; ½a�20D ¼ �45:6 (c 1.2, CHCl3); lit.11a ½a�20D ¼ �45:9
(c 1.80, CHCl3)}, prepared

11a from (S)-2-hydroxy-3-
phenylpropionic acid 4.15 After 30 min, allyl iodide
(0.48 mL, 5.3 mmol) was added and stirring continued
at the same temperature for 4 h. The reaction was
quenched with 30 mL of an aqueous solution of ammo-
nium chloride (15.7% w/w) and extracted with Et2O
(3 · 10 mL). The combined organic phases were washed
with brine (10 mL), dried over anhydrous Na2SO4, fil-
tered, and concentrated under reduced pressure. The
residue was purified by flash chromatography (eluent:
diethyl ether–petroleum ether = 1:40) to give 6 (685 mg,
yield: 71%) as a colorless oil, which was diastereomeri-
cally pure as judged by 1H NMR recorded at
500 MHz. ½a�20D ¼ þ4:9 (c 1.6, CHCl3) {lit.11a

½a�20D ¼ þ5:2 (c 2.5, CHCl3)}. IR (film): 2962, 1793,
1641 cm�1; 1H NMR (500 MHz, CDCl3): d 0.76 (s,
9H, C(CH3)3), 2.47 (dd, J = 7.64, 14.15 Hz, 1H,
CH2CH@CH2), 2.54 (dd, J = 7.21, 14.15 Hz, 1H,
CH2CH@CH2), 3.02 (d, J = 14.23 Hz, 1H, CH2Ph),
3.14 (d, J = 14.23 Hz, 1H, CH2Ph), 5.18 (s, 1H,
CH(C(CH3)3)), 5.21–5.25 (m, 2H, CH2@CH), 5.82–
5.91 (m, 1H, CH@CH2), 7.22–7.30 (m, 5H, Ar);

13C
NMR (125 MHz, CDCl3): d 23.2 (9C), 34.4, 39.4,
41.6, 82.9, 108.7, 120.6, 127.0, 128.2, 130.8, 130.9,
134.9, 174.4; MS (ESI) m/z 297 ([M+Na]+, 100%), 292
(MþþNHþ

4 , 50%), 275 (M+H
+, 7%), 274 (M+, 26%).

HRMS calcd for [C17H22O3+Na]
+: 297.1467; found:

297.1461.

4.3. (2S,5S)-5-Benzyl-2-(tert-butyl)-5-(3-hydroxypropyl)-
1,3-dioxolan-4-one 7

To a solution of 6 (361 mg, 1.32 mmol) in anhydrous
CH2Cl2 (2.6 mL) was added dropwise BH3ÆMe2S
(44 lL, 18.00 mmol) under nitrogen atmosphere at
0 �C and then warmed to 35 �C and stirred for 2 days.
The resulting mixture was quenched with ethanol
(0.64 mL) at 0 �C, and then to the mixture was added
a 1 M NaOH (0.39 mL) followed by a 30% H2O2 aque-
ous solution (0.12 mL). The mixture was warmed to
35 �C and stirred for 2 days. To the resulting mixture
was added cooled water (1.5 mL), and the aqueous layer
extracted with Et2O (3 · 2 mL). The combined organic
phases were washed with brine (1 mL), dried over anhy-
drous Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified by flash chromato-
graphy (eluent: ethyl acetate–petroleum ether = 1:2)
to afford 7 (188 mg, yield: 49%) as a colorless solid.
½a�20D ¼ �7:1 (c 1.2, CHCl3). Mp 60–61 �C (EtOAc/PE);
IR (film): 3427, 2961, 1790 cm�1; 1H NMR (500 MHz,
CDCl3): d 0.70 (s, 9H, C(CH3)3), 1.43 (s, 1H, OH),
1.58–1.82 (m, 4H, (CH2)2CH2OH), 2.96 (d, J =
14.20 Hz, 1H, CH2Ph), 3.09 (d, J = 14.20 Hz, 1H,
CH2Ph), 3.58 (t, J = 6.11 Hz, 2H, CH2OH), 5.06 (s,
1H, CH(C(CH3)3)), 7.14–7.22 (m, 5H, Ar);
13C NMR

(125 MHz, CDCl3): d 23.2, 26.9, 31.0, 34.4, 41.3, 62.4,
82.7, 108.6, 127.0, 128.2, 130.7, 134.9, 174.8; MS (ESI)
m/z 315 ([M+Na]+, 100%), 310 (MþþNHþ

4 , 45%). Anal.
Calcd for C17H24O4: C, 69.84; H, 8.27. Found: C, 70.18;
H, 8.37.

4.4. (2S,5S)-5-Benzyl-2-(tert-butyl)-5-(carboxyethyl)-
1,3-dioxolan-4-one 8

To a cooled (0 �C) solution of alcohol 7 (196 mg,
0.67 mmol) in a mixed solvent system (CCl4 1.9 mL/
CH3CN 1.9 mL/distilled H2O 2.3 mL) was added NaIO4
(414 mg, 1.88 mmol) in one portion. To the vigorously
stirred mixture was added a 0.05 M RuCl3 aqueous solu-
tion (0.58 mL, 0.029 mmol). Stirring was continued at
room temperature for 4 hours. The reaction was
quenched by diluting with brine (8 mL), filtered, and
the filtrate extracted with ethyl acetate (4 · 5 mL). The
combined organic layers were washed with 20% sodium
bisulfite solution, dried over anhydrous Na2SO4, fil-
tered, and concentrated under reduced pressure. The
residue was purified by flash chromatography (eluent:
ethyl acetate–petroleum ether = 1:2) to afford 8 (180
mg, yield: 88%) as a white solid. ½a�20D ¼ �10:7 (c 1.1,
CHCl3); Mp 101–103 �C (EtOAc/PE); IR (film): 3035,
2962, 1792, 1712, 1184 cm�1; 1H NMR (500 MHz,
CDCl3): d 0.65 (s, 9H, C(CH3)3), 2.00 (ddd, J =
14.8, 6.5, 8.2 Hz, 1H, CH2CH2COOH), 2.11
(ddd, J = 14.8, 7.2, 8.2 Hz, 1H, CH2CH2COOH), 2.42
(ddd, J = 15.4, 8.2, 7.2 Hz, 1H, CH2COOH), 2.54
(ddd, J = 15.4, 8.2, 6.5 Hz, 1H, CH2COOH), 2.95 (d,
J = 14.22 Hz, 1H, CH2Ph), 3.07 (d, J = 14.22 Hz, 1H,
CH2Ph), 5.08 (s, 1H, CH(C(CH3)3)), 7.15–7.21 (m, 5H,
Ar); 13C NMR (125 MHz, CDCl3): d 23.2, 28.3, 28.4,
34.2, 40.6, 81.8, 108.3, 127.2, 128.3, 130.7, 134.4,
174.1, 178.3; MS (ESI) m/z 329 ([M+Na]+, 100%), 324
(MþþNHþ

4 , 41%); HRMS calcd for [C17H22O5+H]
+:

307.1540; found: 307.1537.

4.5. (2S,5S)-2-tert-Butyl-5-(carboxyethyl)-5-(carboxy-
methyl)-1,3-dioxolan-4-one 9

To an ice-bath cooled solution of compound 8 (123 mg,
0.40 mmol) in a mixed solvent system (CCl4 1.6 mL/
CH3CN 1.6 mL/H2O 2.0 mL) was added NaIO4
(1.25 g, 5.83 mmol) in one portion. To the vigorously
stirred mixture was added a 0.05 M RuCl3 aqueous solu-
tion (0.40 mL, 0.020 mmol). The mixture was stirred at
room temperature for 3 days. The resulting mixture
was quenched with brine (4 mL), filtered, and the filtrate
then extracted with ethyl acetate (4 · 7 mL). The com-
bined organic layers were washed with 20% sodium
bisulfite solution and dried over anhydrous Na2SO4.
After being concentrated in vacuum, the residue was
purified by flash chromatography (eluent: ethyl acetate)
affording 9 (84 mg, yield: 76%) as a white solid.
½a�20D ¼ þ16:5 (c 0.77, CHCl3). Mp 139–142 �C
(EtOAc/PE); IR (film): 3408, 3058, 2967, 1797, 1712,
1184 cm�1; 1H NMR (500 MHz, CD3OD): d 0.98 (s,
9H, C(CH3)3), 2.04 (ddd, J = 6.7, 7.9, 14.0 Hz, 1H,
CH2CH2COOH), 2.24 (ddd, J = 7.1, 8.1, 14.0 Hz,
1H, CH2CH2COOH), 2.44 (ddd, J = 7.1, 7.9, 15.6 Hz,
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1H, CH2CH2COOH), 2.48 (ddd, J = 6.7, 8.1, 15.6 Hz,
1H, CH2CH2COOH), 2.81 (d, J = 16.0 Hz, 1H,
CH2COOH), 2.84 (d, J = 16.0 Hz, 1H, CH2COOH),
5.24 (s, 1H, CH(C(CH3)3));

13C NMR (125 MHz,
CD3OD): d 24.1, 28.9 (2C), 35.1, 39.8, 81.0, 109.1,
171.7, 175.7, 176.0; MS (ESI) m/z 273 ([M�1]�, 24%),
187 ([M�1�86]�, 100%). Anal. Calcd for C12H18O7:
C, 52.55; H, 6.62. Found: C, 52.81; H, 6.74.

4.6. Homocitric acid lactone 2

A solution of (2S,5S)-9 (60 mg) in 3 mL of TFA (50%
solution) was heated to reflux for 6 h. The solvents were
removed under reduced pressure. The residue was dried
in freeze dryer over 12 h to afford 40 mg of homocitric
acid lactone 2 (yield: 98%). ½a�20D ¼ þ20:2 (c 1.18,
CH3OH) {lit.

7c ½a�20D ¼ þ21:3 (c 1.12, CH3OH)}; IR
(film): 3428, 2930, 1777, 1730 cm�1; 1H NMR
(500 MHz, D2O): d 2.36–2.43 (m, 1H, Ha-4), 2.50–2.56
(m, 1H, Hb-4), 2.65–2.72 (m, 2H, H-3), 3.01 (d,
J = 17.5 Hz, 1H, CH2COOH), 3.35 (d, J = 17.5 Hz,
1H, CH2COOH);

13C NMR (125 MHz, D2O): d 27.6,
31.1, 41.4, 84.6, 173.1, 174.6, 178.0; MS (ESI) m/z 211
([M+Na]+, 100%), 189 ([M+H]+, 11%). HRMS calcd
for [C7H8O6�1]�: 187.0240, found: 187.0237.

4.7. (2S,5S)-5-Benzyl-2-tert-butyl-5-(3-phenylpropyl)-
1,3-dioxolan-4-one 10

To a solution of LHMDS (0.50 mmol) in 3.6 mL of a
mixed solvent (THF–hexane = 9:1), was added a solu-
tion of cis-5 (100 mg, 0.43 mmol) and HMPA
(0.37 mL, 2.14 mmol) in 7 mL of THF at �78 �C. After
30 min, 3-phenylpropyl iodide (437 mg, 1.71 mmol) was
added. After 4 h, the reaction mixture was quenched
with 30 mL of an aqueous solution of ammonium chlo-
ride (15.7% w/w), and the aqueous layer extracted with
Et2O (3 · 2 mL). The combined organic phases were
washed with brine (2 mL), and dried over anhydrous
Na2SO4. After being concentrated in vacuum, the resi-
due was purified by flash chromatography (eluent:
diethyl ether–petroleum ether = 1:40) to afford 10
(48 mg, yield: 32%) as a colorless oil. ½a�20D ¼ þ15:6 (c
0.59, CHCl3). IR (film): 2921, 1792, 1598 cm�1; 1H
NMR (500 MHz, CDCl3): d 0.67 (s, 9H, C(CH3)3),
1.68–1.77 (m, 4H, CH2CH2CH2Ph), 2.50–2.56 (m, 2H,
CH2CH2CH2Ph), 2.92 (d, J = 14.25 Hz, 1H, CH2Ph),
3.05 (d, J = 14.25 Hz, 1H, CH2Ph), 5.02 (s, 1H,
CH(C(CH3)3)), 7.06–7.22 (m, 10H, Ar);

13C NMR
(125 MHz, CDCl3): d 23.2 (3C), 25.5, 34.3, 34.4, 35.8,
41.4, 82.8, 108.6, 126.0, 127.0, 128.2, 128.4, 130.7,
135.0, 141.4, 174.8; MS (ESI) m/z 375 ([M+Na]+,
100%), 370 (½MþNHþ

4 �
þ, 90%). HRMS calcd for

[C23H28O3+Na]
+: 375.1924, found: 375.1931.
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