

Month 2019 Organic Electrosynthesis as a New Facile and Green Method for One-pot Synthesis of Nanosized Particles of Octahydro-imidazo[1,2-*a*]quinolin-6one Derivatives *via* a Multicomponent Reaction

Rana Sayyar, Somayeh Makarem,* 🕩 and Behrooz Mirza

Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran *E-mail: s_makarem@sbu.ac.ir; s.makarem@kiau.ac.ir Received December 8, 2018 DOI 10.1002/jhet.3562

Published online 00 Month 2019 in Wiley Online Library (wileyonlinelibrary.com).

Organic electrosynthesis as a new facile and green method was applied for one-pot synthesis of octahydro-imidazo[1,2-*a*]quinolin-6-one derivatives, *via* a three component condensation of a dimedone, an aldehyde and 2-(nitromethylene)imidazolidine in propanol in an undivided cell in the presence of sodium bromide as an electrolyte at room temperature. In this study, the anion of dimedone that was produced on the cathode reacted with aromatic aldehydes through the Knoevenagel reaction and then the product condensed with 2-(nitromethylene)imidazolidine that resulted in a highly efficient formation of octahydro-imidazo[1,2-*a*]quinolin-6-one with 50–96% substance yields.

J. Heterocyclic Chem., **00**, 00 (2019).

INTRODUCTION

Imidazoquinolines are classified as diverse and interesting heterocyclic systems that showed significant biological and pharmaceutical properties depending on the position of the fusion and the nature of the substituents [1,2]. A literature survey has revealed that different imidazoquinolines have been reported to act as antimalarial [3], antimicrobial [4], antitumor, and anticancer agents [5,6]. Some imidazoquinoline imidazo[2,1-a]isoquinoline-2derivatives such as carboxylic acid hydrazide (1) as an inhibitor and imidazo[2,1-a]isoquinoline-2-carboxylic acid (2) with antiallergic activity are shown in Figure 1 [7,8].

Considering nanoscale materials, the physical, chemical, and biological properties differ in fundamental and valuable ways from the properties of individual atoms and molecules or the bulk matter. Nanotechnology R&D is directed toward understanding and creating improved materials and systems that exploit these new properties, and these unique phenomena enable novel applications. Currently, nanoparticle applications in medicine are geared toward drug discovery and drug delivery because applying nanotechnology in drug delivery enhanced drug properties such as solubility, rate of dissolution, oral bioavailability, targeting ability, enhanced dosing requirements, lower dosed administered, and a better side effect profile. The goal is to make the nanoparticles multifunctional and controllable by external signals or local environments in the future [9].

Nowadays, electrosynthesis is used as a new green methodology for the elimination of hazardous reagents, green environmental applications, the elimination of dangerous substances, treatment of pollutions, and atom economy. In this method, electrons act as catalysts, and because electrons are clean and renewable reagents, this methodology can be used to replace toxic or dangerous oxidizing or reducing reagents. Electro-organic syntheses have some advantages such as its reaction rate, the nature of the electrode that can be controlled, reaction conditions that are mild, and electrolysis that is performed at room temperature and atmospheric pressure [10]. Many reactions have been reported using organic electrosynthesis method such as the synthesis of N-

Figure 1. Examples of imidazoquinoline derivatives as biological active agents.

heterocyclic carbenes precursors [11], 1*H*-indole [12], amidation [13], imidazolium carboxylates [14], electrooxidation of alcohols [15], bromination reaction [16], cyclic carbonates [17,18], oxidative esterification [19-211. N-functionalization [22,23] and recently, synthesizing the nanoparticles of 3-hydroxy-3-(1H-indol-3-yl)indolin-2-one [24], 2-amino-pyranes, [25] and spirooxindoles [26]. Based on our strong literature survey, the synthesis of octahydro-imidazo[1,2-a]through electro-organic quinolin-6-one derivatives methods has not been reported until now. We first investigated the reaction of dimedone (1). 4nitrobenzaldehyde (2a) with 2-(nitromethylene) imidazolidine under various reaction conditions (Table 1). The ¹H and ¹³C NMR and IR spectra of product showed the formation of 8.8-dimethyl-4-nitro-5-(4-nitro-phenyl)-2,3,5,7,8,9-hexahydro-1*H*-imidazo[1,2-*a*]quinolin-6-one.

RESULT AND DISCUSSION

In this study, we tried to design and introduce a new green methodology for the synthesis of octahydroimidazo[1,2-*a*]quinolin-6-one derivatives by the reaction of dimedone, aldehydes, and 2-(nitromethylene) imidazolidine in an alcoholic solvent and an undivided cell in the presence of NaBr as the electrolyte (Scheme 1). **Scheme 1.** General schematic for the preparation of octahydroimidazo[1,2-*a*]quinolin-6-one derivatives.

In order to optimize the synthesis conditions, several parameters such as solvent, anode, temperature, and current were studied (Table 1).

It can be seen from Table 1 that increasing the current to amounts more than 400 mA decreased the yield of the reaction (entry 1–6). We also investigated the effect of temperature on the reaction and found that increasing the temperature also decreased the reaction yields (entry 7). Subsequently, several solvents such as propanol, ethanol, and propanol/dimethylsolfoxide were used to find the best solvent for the reaction (entry 9). Effect of anode on time and yield of the reaction was also checked (entry 10). It was found that the best condition for minimizing the synthesis time and higher production yield is dry propanol/dimethylsolfoxide (95:5, PrOH/DMSO) at a current density of 80 mA cm⁻² (I = 400 mA, electrode surface = 5 cm²) on magnesium anode and at room temperature (entry 9).

The scope and generality of this protocol was next examined by employing dimedone, various aromatic aldehydes, and 2-(nitromethylene)imidazolidine. Conscionably, under the optimized condition, a variety of octahydro-imidazo[1,2-a]quinolin-6-ones (7a–7f) were obtained in a good to excellent yield (Table 2).

Entry	Current (mA)	Temperature °C	Solvent	Passed current (F/mol)	Time (min)	Yield ^c
1 ^a	100	r.t	n-PrOH	15.2	240	30
2^{a}	200	r.t	<i>n</i> -PrOH	30.3	240	34
3 ^a	300	r.t	<i>n</i> -PrOH	45.4	240	38
4^{a}	400	r.t	<i>n</i> -PrOH	26.2	105	86
5 ^a	500	r.t	<i>n</i> -PrOH	33.4	105	83
6 ^a	600	r.t	<i>n</i> -PrOH	50.1	135	40
7^{a}	400	50	<i>n</i> -PrOH	26.2	105	65
8	400	r.t	EtOH	37.6	150	33
$9^{\rm a}$	400	r.t	n-PrOH/DMSO 95/5	26.2	105	96
10 ^b	400	r.t	n-PrOH/DMSO 95/5	26.2	105	87

 Table 1

 Optimization of reaction conditions and effect of solvents, anode, temperature, and current in this procedure.

Reaction conditions: dimedone (1, 1.0 mmol), 4-nitro benzaldehyde (2a, 1.0 mmol), 2-(nitromethylene)imidazolidine (3, 1.0 mmol), 0.5-mmol NaBr, and iron cathode (5 cm²).

^aMagnesium (5 cm^2) was used as anode.

^bGraphite (5 cm²) was used as anode.

^cIsolated yield.

Products ^a R_1 Time (min) Yield (%) ^a Lit. m.p (°C) m.p (°C)							
7a	4-Nitro	105	96	265 dec. ²⁷	258–260 dec.		
7b	4-Hydroxy	120	95		274-276		
7c	2,4-Dimethoxy	150	63	_	260-262		
7d	4-Chloro	135	70	254 dec. ²⁷	248-250 dec.		
7e	3,4,5-Trimethoxy	120	50	_	240-242		
7f	4-Methoxy	135	94	_	200-202		

 Table 2

 Electro-organic synthesis of octahydro-imidazo[1,2-a]quinolin-6-ones derivatives.

^aReaction conditions: an iron cathode (5 cm²), a magnesium anode (5 cm²), current (0.4 A), electrolyte (NaBr), and *n*-PrOH/DMSO 95/5 (25 mL), an undivided cell, and room temperature.

For investigating the effect of anode material on the size of product, under the optimized condition, we synthesized 7a with both a magnesium and a graphite anode. SEM images of the template-synthesized nanoparticles, obtained from powder, are shown in Figure 2.

It is obvious that using magnesium as the anode decreases the size of product in nanometer. The average particle size using a magnesium anode (d_{SEM}) is <100 nm. Based on our previous report [23], we believed that the existence of Mg²⁺ ions in the solution might prevent the coagulation of the product molecules in the medium.

A proposed mechanism for the synthesis is depicted in Scheme 2. Deprotonation of an alcohol on the surface of

(a)

Figure 2. SEM images of 7a compound used (a) magnesium (b) graphite as anode. [Color figure can be viewed at wileyonlinelibrary.com]

the cathode leads to the formation of an alkoxide anion. The subsequent reaction between the alkoxide anion and dimedine (1) gives rise to the dimedone anion (1), and then, the reaction of aldhyde (2) and dimedone anion (1) obtains product (5) *via* Knoevenagel reaction. This product would undergo the condensation with ketene diaminal (3) giving intermediate (6). Intermediate (6) would dehydrate spontaneously to achieve products (7) [26–28].

The spectral data of products confirmed structure 7. The IR spectrum of compound (7) exhibited peaks at 3363-3700 (NH) and 1655-1725 (C=O) for the carbonyl functional group. The ¹H NMR spectrum showed one singlet at 4.57-5.07 ppm for the hydrogen of CH and one hydrogen of NH at 9.19-9.32.

EXPERIMENTAL

General electro-organic synthesis procedure for the preparation of octahydro-imidazo[1,2-a]quinolin-6-ones derivatives. A mixture of dimedone (1 mmol), aldehyde (1 mmol), 2-(nitromethylene)imidazolidine (1 mmol), and NaBr (0.05 g, 0.5 mmol) in propanol (25 mL) was magnetically stirred and electrolyzed in a cell equipped with an iron cathode (5 cm²) and a magnesium anode (5 cm²) at room temperature under a constant current density of 80 mA/cm² (I = 400 mA). After completion of the reaction (monitored by thin-layer chromatography, ethyl acetate/n-hexane 2:1), the solvent was evaporated under reduced pressure (about 40 torr), and then, 20-ml ethanol (80%) was added to the reaction mixture. The precipitate was separated by centrifugation.

Spectral data for selected new products. *8,8-Dimethyl-4nitro-5-(4-nitro-phenyl)-2,3,5,7,8,9-hexahydro-1H-imidazo[1,2a]quinolin-6-one (7a).* Yellow crystal; mp 258–260°C; yield (96%); IR (KBr) (v_{max} , cm⁻¹): 3343 (NH), 1725 (C=O), 1617, 1520, 1510. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 1.00 (3H, S, CH₃), 1.02 (3H, s, CH₃), 1.88 (1H, d, *J* = 12.2, CH), 1.96 (1H, d, *J* = 13.50, CH), 2.14 (1H, d, *J* = 13.8, CH), 2.43 (1H, d, *J* = 12.6, CH), 3.56, 3.74 (3H, m, CH), 4.41 (1H, d, *J* = 11.1 CH), 6.30 (1H, Scheme 2. Plausible mechanism for the condensation of dimedone, aldehydes, and 2-(nitromethylene)imidazolidine. [Color figure can be viewed at wileyonlinelibrary.com]

s, CH₃),7.47 (1H, t, ArH), 9.20 (1H, s, NH). ¹³C NMR (75.4 MHz, CDCl₃) $\delta_{\rm C}$ (ppm) 26.0, 29.3, 31.8, 43.4, 44.8, 49.2, 106.5, 112.4, 121.2, 122.5, 129.2, 134.5, 146.4, 147.1, 149.8, 151.3, 193.3. *Anal.* Calcd for C₁₉H₂₀N₄O₅: C, 59.37; H, 5.24; N, 14.58%. Found: C, 59.25; H, 5.34; N, 14.40%.

5-(4-Hydroxy-phenyl)-8,8-dimethyl-4-nitro-2,3,5,7,8,9-

hexahydro-1H-imidazo[1,2-a]quinolin-6-one (7b). Yellow crystal; mp 274–276°C; yield (95%); IR (KBr) (v_{max} , cm⁻¹): 3343 (NH), 1725 (C=O), 1520, 1124. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 1.00 (3H, s, CH₃), 1.02 (3H, s, CH₃), 1.87 (1H, d, J = 12.6, CH), 1.96 (1H, d, J = 13.1, CH), 2.14 (1H, d, J = 13.50, CH), 2.43 (1H, d, J = 12.3, CH), 3.31 (3H, s, CH₃), 3.62–3.77 (3H, m, CH₂), 4.41 (1H, d, J = 11.4, CH), 6.27 (1H, s, CH), 7.47 (1H, t, J = 8.1, ArH), 7.69 (1H, d, J = 7.8, ArH), 7.96 (2H, d, J = 5.1, ArH), 9.19 (1H, s, NH). ¹³C NMR (75.4 MHz, CDCl₃) $\delta_{\rm C}$ (ppm) 27.5, 31.3, 32.8, 34.7, 45.6, 53.2, 59.8, 84.9, 107.2, 147.0, 147.2, 157.0, 204.5. *Anal.* Calcd for C₁₉H₂₁N₃O₄: C, 64.21; H, 5.96; N, 11.82%. Found: C, 64.31; H, 5.85; N, 11.70%.

5-(2,4-Dimethoxy-phenyl)-8,8-dimethyl-4-nitro-2,3,5,7,8,9*hexahydro-1H-imidazo[1,2-a]quinolin-6-one (7c).* Yellow crystal; mp 260–262°C; yield (63%); IR (KBr) (v_{max}, cm⁻¹): 3273 (NH), 1713 (C=O), 1605, 1503, 1145. ¹H NMR (300 MHz, CDCl₃) δH (ppm) 1.01 (3H, s, CH₃), 1.92–2.07 (3H, m, CH), 2.53 (1H, m, CH), 3.38–3.47 (3H, m, CH), 3.51–3.58 (1H, m, CH), 3.68 (3H, s, CH), 3.71 (3H, s, CH₃), 5.68 (1H, s, CH) 6.30 (1H, dd, J = 6.3, 2.2, ArH) 6.45 (1H, d, J = 2.2, ArH), 6.69 (1H, d, J = 8.4, ArH), 9.32 (1H, s, NH). ¹³C NMR 18.5, 29.8, 32.1, 32.8, 43.9, 53.3.55.0, 56.0, 58.4, 84.5, 97.8,103.7, 104.2, 123.1, 128.1, 156.8, 157.0, 158.4, 205.9. *Anal.* Calcd for C₂₁H₂₅N₃O₅: C, 63.15; H, 6.31; N, 10.52%. Found: C, 63.28; H, 6.41; N, 10.39%.

8-Methyl-4-nitro-5-(3,4,5-trimethoxy-phenyl)-2,3,5,7,8,9hexahydro-1H-imidazo[1,2-a]quinolin-6-one (7e). Yellow crystal; mp 240–242°C; yield (50%); IR (KBr) (v_{max}, cm⁻¹): 3700 (NH), 3376, 2955, 1693 (C=O), 1590, 1505, 1123. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 0.91 (3H, s, Me), 1.05 (3H, s, Me), 2.03 (1H, d, J = 16, CH), 2.21 (1H, d, J = 16.1 CH), 2.52–2.58 (2H, m, CH₂), 3.57 (3H, s, CH₃), 3.78–3.83 (2H, m, CH₂), 3.98–4.01 (1H, m, CH), 4.13–4.19 (1H, m, CH), 5.07 (1H, s, CH), 6.44 (2H, s, ArH), 9.74 (1H, s, NH). ¹³C NMR (75.4 MHz, CDCl₃) $\delta_{\rm C}$ (ppm) 13.8, 39.2, 109.2, 109.8, 113.2, 120.2, 120.9, 123.1, 127.2, 135.3, 140.2, 153.3, 170.8. Anal. Calcd for C₂₂H₂₇N₃O₆: C, 61.53; H, 6.34; N, 9.78%. Found: C, 61.43; H, 6.44; N, 9.63%.

5-(4-Methoxyphenyl)-8,8-dimethyl-4-nitro-2,3,5,7,8,9hexahydroimidazo[1,2-a]quinolin-6(1H)-one (7f). Yellow crystal; mp 200–202°C; yield (94%); IR (KBr) (v_{max} , cm⁻¹): 3700 (NH), 3371, 3220, 2957, 1655 (C=O), 1606, 1510, 1409. ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) = 0.92 (3H, s, CH₃), 1.01 (3H, s, CH₃), 1.89–1.94 (4H, s, CH₂), 3.55 (3H, s, CH₃), 3.64–3.70 (4H, m, CH₂), 4.75 (1H, s, CH), 6.71 (2H, d, *J* = 6.3, ArH), 7.08 (2H, d, *J* = 7.08, ArH), 8.41 (1H, s, NH). ¹³C NMR

CONCLUSION

In conclusion, a simple electrosynthesis method has been developed to prepare nanosized particles of octahydro-imidazo[1,2-a]quinolin-6-ones derivatives *via* a multicomponent reaction. The electrosynthesis process is crucial for the green synthesis of inexpensive and highly electrocatalytically active intermediate for sustainable energy production. Albeit, the process can be used for a myriad of nanoparticles of organic compounds.

Acknowledgment. This study was supported by Islamic Azad University Branch of Karaj.

REFERENCES AND NOTES

[1] Zeinab, M.; Daneshtalab, M. Heterocycles 2012, 85, 2651.

[2] Perry, C. M.; Lamb, H. M. Drugs 1999, 58, 375.

[3] Kuznik, A.; Bencina, M.; Svajger, U.; Jeras, M.; Rozman, B.; Jerala, R. J Immunol 2011, 186, 4794.

[4] Kayarmar, R.; Nagaraja, G. K.; Naik, P.; Manjunatha, H.; Revanasiddappa, B. C.; Arulmoli, T. J Saudi Chem Soc 2017, 21, S434.

[5] Smith, E. B.; Schwartz, M.; Kawamoto, H.; You, X.; Hwang, D.; Liu, H.; Scherr, D. S. J Urol 2007, 177, 2347.

[6] A Patil, S.; A Patil, S.; Patil, R.; Hashizume, R. Mini Rev Med Chem 2016, 16, 309.

[7] Ager, I. R.; Barnes, A. C.; Danswan, G. W.; Hairsine, P. W.; Kay, D. P.; Kennewell, P. D.; Matharu, S. S.; Miller, P.; Robson, P. J Med Chem 1988, 31, 1098. [8] Huang, M.; Xie, S. X.; Ma, Z. Q.; Huang, Q. Q.; Nan, F. J.; Ye, Q. Z. J Med Chem 2007, 50, 5735.

[9] Fulekar, M. H. Nanotechnology: importance and applications; IK International Pvt Ltd, New Delhi, 2010.

[10] Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.; Vasquez-Medrano, R. Green Chem 2010, 12, 2099.

[11] Feroci, M.; Chiarotto, I.; Orsini, M.; Sotgiu, G.; Inesi, A. Adv Synth Catal 2008, 350, 1355.

[12] Du, P.; Brosmer, J. L.; Peters, D. G. Org Lett 2011, 13, 4072.
[13] Green, R. A.; Pletcher, D.; Leach, S. G.; Brown, R. C. D. Org Lett 2016, 18, 1198.

[14] de Robillard, G.; Devillers, C. H.; Kunz, D.; Cattey, H.; Digard, E.; Andrieu, J. Org Lett 2013, 15, 4410.

[15] Barhdadi, R.; Comminges, C.; Doherty, A. P.; Nedelec, J. Y.; OToole, S.; Troupel, M. J Appl Electrochem 2007, 37, 723.

[16] Allen, G. D.; Buzzeo, M. C.; Davies, I. G.; Villagrán, C.; Hardacre, C.; Compton, R. G. J Phys Chem B 2004, 108, 16322.

[17] Yang, H.; Gu, Y.; Deng, Y.; Shi, F. Chem Commun 2002, 274.

[18] Liu, F.; Liu, S.; Feng, Q.; Zhuang, S.; Zhang, J.; Bu, P. Int J Electrochem Sci 2012, 7, 4381.

[19] Forte, G.; Chiarotto, I.; Inesi, A.; Loreto, M. A.; Feroci, M. Adv Synth Catal 2014, 356, 1773.

[20] Feroci, M.; Chiarotto, I.; Orsini, M.; Pelagalli, R.; Inesi, A. Chem Commun 2012, 48, 5361.

[21] Ogawa, K. A.; Boydston, A. J Org Lett 2014, 16, 1928.

[22] Chiarotto, I.; Feeney, M. M.; Feroci, M.; Inesi, A. Electrochim Acta 2009, 54, 1638.

[23] Chiarotto, I.; Feroci, M.; Orsini, M.; Sotgiu, G.; Inesi, A. Tetrahedron 2009, 65, 3704.

[24] Makarem, S.; Fakhari, A. R.; Mohammadi, A. A. Monatsh Chem 2012, 143, 1157.

[25] Makarem, S.; Fakhari, A. R.; Mohammadi, A. A. Ind Eng Chem Res 2012, 51, 2200.

[26] Mohammad, D. Z.; Mirza, B.; Makarem, S. J Heterocyclic Chem 2017, 54, 1763.

[27] Alizadeh, A.; Rezvanian, A. Comptes rendus Chimie 2014, 17, 103.

[28] Ruddraraju, K. V.; Parsons, Z. D.; Llufrio, E. M.; Frost, N. L.; Gates, K. S. J Org Chem 2015, 80, 12015.