This article was downloaded by: [Temple University Libraries] On: 22 April 2015, At: 06:26 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

DIPHOSPHINE COMPOUNDS: PART I. NOVEL BIOLOGICALLY ACTIVE 1,1'bis-AND/OR 1,2-cis-(DIPHENYLPHOSPHINO-)ETHENE AND THEIR COMPLEXES $[M(CO)_n{Ph_2P(CH_n)_nPPh_2}] \& [Cu(CI)_2{Ph_2P(CH_n)_nPPh_2}],$ (M = W, Mo, Crn = 1,2...n)

Ibrahim M. A. Awad^a, Fatma S. M. Hassan^b, Adila E. Mohamed^b & Ahmed F. Al-Hossainy^b ^a Assiut University, Assiut, Egypt ^b South Valley University, Aswan, Egypt Published online: 16 Aug 2010.

To cite this article: Ibrahim M. A. Awad , Fatma S. M. Hassan , Adila E. Mohamed & Ahmed F. Al-Hossainy (2004) DIPHOSPHINE COMPOUNDS: PART I. NOVEL BIOLOGICALLY ACTIVE 1,1'bis-AND/OR 1,2-cis-(DIPHENYLPHOSPHINO-)ETHENE AND THEIR COMPLEXES [$M(CO)_n$ {Ph₂P(CH_n)_nPPh₂}] & [Cu(CI)₂{Ph₂P(CH_n)_nPPh₂}], (M = W, Mo, Crn = 1,2....n), Phosphorus, Sulfur, and Silicon and the Related Elements, 179:7, 1251-1266, DOI: <u>10.1080/10426500490468074</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426500490468074</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Phosphorus, Sulfur, and Silicon, 179:1251–1266, 2004 Copyright © Taylor & Francis Inc. ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500490468074

DIPHOSPHINE COMPOUNDS: PART I. NOVEL BIOLOGICALLY ACTIVE 1,1'bis-AND/OR 1,2-cis-(DIPHENYLPHOSPHINO-)ETHENE AND THEIR COMPLEXES [M(CO)_n{Ph₂P(CH_n)_nPPh₂}] & [Cu(Cl)₂{Ph₂P(CH_n)_nPPh₂}], (M=W, Mo, Crn = 1,2...n)

Ibrahim M. A. Awad,^a Fatma S. M. Hassan,^b Adila E. Mohamed,^b and Ahmed F. Al-Hossainy^b Assiut University, Assiut, Egypt;^a and South Valley University, Aswan, Egypt^b

(Received August 28, 2003; accepted November 7, 2003)

Interaction of $[Ph_2PC(=CH_2)PPh_2]$ (A)¹⁻³ and/or $[Ph_2P$ (CH=CH) $PPh_2](\mathbf{B})$ ligands in different molar ratio with hexacarbonyl metals $M(CO)_6$ gives $[M(CO)_nPh_2PC(=CH_2)PPh_2]$ and/or $[M(CO)_nPh_2P$ (CH=CH)PPh₂ where M=Cr, Mo or W, n = 2 and/or 4]. The carbon diphosphine complexes of type (A) which form four heteromembered rings and/or type (B) form five heteromembered rings which reacts (addition reaction) with some different amines (methyl amine, dimethyl amine), phenyl hydrazine and/or some of amino acids (glycine, alanine, aspartic acid, serene). The structures of A and/or B complexes and their amino derivatives have been characterized by using elemental analysis, IR spectra, ¹HNMR, ¹H-(³¹P)-NMR, and mass spectra. Ligands and their complexes were screened in vitro to investigate the biological activities (antibacterial and antifungi). Interestingly, complexes are having strong and remarkable activities increases than the free ligands.

Keywords: Antimicrobial screening; carbon diphenyl-phosphine derivatives; organometallic; transitions metal complexes

There is great interest in the coordination or organometallic chemistry generated by the anion $[Ph_2PCHPPh_2]^-$, these ligands form bimetallic complexes with or without metal-metal bonds, A-frames, and many other types of complexes.⁴⁻⁶ In recent years there has been growing

Address correspondence to Ibrahim M. A. Awad, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt. E-mail: ibramawad@yahoo.com

interest in the chemistry of hydrazides and hydrazones owing to their biological activity. In contrast there very little has been done with substituted (DPPMS) of type Ph₂PCHRPPh₂ (R = alkyl and/or, aryl or another functional group) although one might anticipate interesting electronic and stereochemical effects due to the presence of the R group(s). The benzoyl derivative [{W(CO)₄{Ph₂PCH(COPh)PPh₂}] has a photochemically induced chelate ring expansion (four of six-membered rings)⁷ and the corresponding hydrazone undergoes a thermal ring expansion, four- to seven-membered rings.⁸ The synthesis of the new and reactive igand tetraphenyl carbon or carbonyl group diphosphine [Ph₂P(CH_n)_nPPh₂] and their complexes have been studied. In this work A and B have been synthesized as free ligands and their complexes to improve and enhances in the biological activity.

EXPERIMENTAL

Apparatus

Infrared spectra (IR) was carried out by Shimadzu corporation Chart 200-91527, in KBr pellets. ¹HNMR spectra were recorded on a Varian Em-390-90MH_zNMR spectrometer using CDCl₃ as solvent and TMS as internal standard (chemical shifts in δ ppm). Microanalysis were performed on a perkin-Elmer240 E microanalysis. Mass spectra were recorded on JEOL mass spectrometer JMS600.

Preparation of Organometallic Compounds

Synthesis of Olefinic Diphosphine Ligands

The olefinic diphosphines, 1,1-*Bis*-(diphenylphosphino)ethene (A) and/or 1,2-*cis*-(diphenylphosphino)ethene(B), were prepared according to the following procedure:¹⁶ Triphenylphosphine (86.8 g, 0.33 mmol) and lithium (4.6 g, 0.66 mmol) in thf (750 cm³) were stirred overnight under dinitrogen. The solution was treated with 2-chloro-2-methylpropane (36.5 cm³, 0.33 mmol) to remove phenyl-lithium and was then decanted, under dinitrogen, into a large dropping funnel. The resulting solution of LiPPh₂, was slowly added to 1,1-dichloro-ethene and/or 1,2-*cis*-dichloro-ethene(16.1 g, 0.165 mmol) in dry benzene (60 cm³). Then dilute HCl (250 cm³) was added, most of the thf solvent was removed by rotary evaporator, the organic was extracted and separated using dry ether. After removal of the solvents oil remained which crystallized on addition of absolute methanol. (A) and/or (B) ligands (colorless, air-stable crystals) were recrystallized from dry ethanol. Yield 35 g (31%); m.p. (114°C and/or 85°C).

Synthesis of Olefinic Diphosphine Complexes

The hot ethanolic solution of the vinylidene diphosphine ligand (**A**) and/or 1,2-cis-(diphenylphosphino-)ethene (**B**) (0.396 g) was added dropwise under stirring to a solution of the respective metal (0.22, 0.266, and 0.351 g) $M(CO)_6$ (M = Cr, Mo and W) and/or (0.132 g) CuCl₂ in decane solvent (20 ml); stirring at 70–80°C was continued for 40 min. The reaction mixture was cooled and the precipitated product was filtered, washed thoroughly with distilled water, dried, and recrystallized from ethanol/water (3/1).

Synthesis of Functionalized Diphosphine Complexes of Amines

The free diphosphine ligands (**A**) and/or (**B**) does not react with amines or hydrazine but complexation, even to a relatively weakly electron withdrawing group, $(OC)_4M$ (M = W, Mo, or Cr), is sufficient to render (-C=CH₂ and *cis*-CH=CH–) reactive toward Michael type additions. A toluene solution of the tungsten complexes I(1a) and/or II(1a) when heated and shaken with an excess of different amines: [aspartic acid I(2a), sereneI(3a) and/or alanineI(4a)] to give amino complexes derivatives after 12, 18, and/or 16 h (80°C), yield ranged from (74–85%). The corresponding Mo and Cr complexes reacted similarly.

PHYSIOLOGICAL ACTIVITY

Antibacterial and Antifungal Activity

All the newly synthesized ligands and their chelates were tested in vitro for antibacterial and antifungal activities, which were measured by using the disc-diffusion method.^{9,10} The tested compounds were dissolved in sterile N,N,-dimethyl formamide (reagent grade) and added at a concentration of 0.5 mg/disc. (Whatman No, 3 filter paper. 0.5 cm diameter). The antibacterial spectrum was tested with six strains of bacteria, namely: Serratia marcescems (DSM/608), Bacillus cereus (DSM 345), Pseudomonas aerginosa (DSM/1299), Micrococcus roseus (DSM348), Klebsiella pneumoniae (DSM 581), and Staphylococcus aureus (DSM 346). Also, the antifungal effect was tested with three species of fungi, namely: Aspergillus flavus (Link Aucc 164), Penicillium chrysogenum (thom Aucc 530), and Alternaria alternata (Fries Keissler Aucc1110), Fusarium equisioti (DSM62203), Alternaria tenussima (DSM63360), Aspergillus tammarii (ATCC10836), Penicillium digirtatum (DSM62840), and Penicillium paxilli (CBS28047). The culture medium for bacteria was normal nutrient agar (NA) (composed of beef extract, 3 g peptone, 5 g agar, 15 g/l and adjusted to PH = 7 before sterilization at 121°C for 30 min). Glucose-Czapek's agar medium, (NaNO₃, 2 g; KH₂PO₄, 1 g; MgSO₄·7H₂O, 0.5 g; KCl/0.5 g glucose. 10 g; agar, 15 g/L of distilled water) was used for fungi. The inoculated plates were incubated plates at $37 \pm 1^{\circ}$ C for 24–48 h in the case of bacteria and at 28°C for 7–8 days in the case of fungi. The inhibition zones of microbial growth produced by different compounds were measured.¹¹

RESULTS AND DISCUSSION

Interaction of free ligand type $[(Ph_2P)_2C=CH_2]$ with some transition metals such as $(M = Cr(CO)_6, Mo(CO)_6, W(CO)_6, and CuCl_2)$ by the anion $[Ph_2P(CH)PPh_2]^-$ reacts with electrophiles to give mixtures.¹² When complexed to a group VI metal carbonyl $[M(CO)_4$ $\{Ph_2PCHPPh_2\}]^{-,13}$ it reacts as a carbonion ion. The data for elemental analysis and infrared spectra tabulated in Table I. The formation of the $[(CO)_4M(Ph_2P)_2C=CH_2]$ was obtained by heating $M(CO)_6$ with 1,1 bis-(diphenyl phosphino) ethene in decane solvent under reflux (M=Cr, Mo, and W).

The formation of the $[(CuCl_2)(Ph_2P)_2C=CH_2]$ was precipitated by heating CuCl₂ solution with 1,1 bis-(diphenyl-phosphino) ethene in methyl alcohol at room temperature or in decane solvent under reflux at least 5 h, the ¹H NMR spectral data are useful in characterizing their complexes.

Interaction of free ligand type $[Ph_2PCH=CHPPh_2]$ with some transition metals such as $(M = Cr(CO)_6, Mo(CO)_6, W(CO)_6, and CuCl_2)$

	% Elemen	ntal an	alysis	IR spectra	in ${ m cm}^{-1}$	Phy	sical
	calculat	ed/(fou	ind)		$\nu = CH_{2}^{-}$	prope	erties
Compounds	C%	H%	N%	$\nu(CO)$	Vinylidene	Yield%	$m.p.^{\circ}C$
				Four-member 1	rings		
$C_{26}H_{22}P_2(\mathbf{A})$	78.78(A)	5.59	_	_	1651	31	$114^{\circ}\mathrm{C}$
Mol. $Wt = 396.40$	78.69(B)	5.54			894	White	
$C_{30}H_{22}CrO_4P_2$	64.29(A)	3.96	_	2000s, 1980w,	$1652\mathrm{m}$	82%	$195^{\circ}\mathrm{C}$
Mol. $Wt = 560.44$	63.87(B)	3.99		1890w, 1860sb	890s	White	
$C_{30}H_{22}WO_4P_2$	52.05 (A)	3.02		2000s, 1980w,	$1656\mathrm{m}$	77%	$215^{\circ}\mathrm{C}$
Mol. $Wt = 692.05$	52.11(B)	3.00		1891w, 1860b	887s	Yellow	
$C_{30}H_{22}M_0O_4P_2$	59.62 (A)	3.67	_	2020, 1942,	$1650\mathrm{m}$	89%	201°C
Mol. $Wt = 606.38$	$59.17\left(B\right)$	3.71		1850, 1850	$892\mathrm{s}$	White	

TABLE I Elemental Analysis of $[(CO)_4M\{(Ph_2P)_2C=\!\!\!\!=CH_2\}]$ (A) and Their $(M=Cr^{+6},\,Mo^{+6},\,and\,W^{+6})$ Complexes

IR spectra: strong (s), weak (w), board (b).

	% E aı calcula	lementa nalysis ated/(fou	l nd)	IR spectra	in cm ⁻¹		Physical properties	
Complexes	C%	H%	N%	$\nu(CO)$	(CH=CH) cis	Yield%	Color	m.p.°C
				Six-member	r rings			
$C_{26}H_{22}P_2(\mathbf{B})$ Mol. Wt = 396.40	78.78 (78.75)	5.59 (5.57)		_		31	White crystals	$85^{\circ}C$
$C_{30}H_{22}CrO_4P_2$ Mol. Wt = 560.44	64.21 (63.87)	3.92 (3.99)	—	2000s, 1980w, 1890w, 1860sb	1673(v) 974(s)	87	White	198°C
$C_{30}H_{22}WO_4P_2$ Mol. Wt - 692.05	52.25 (52.11)	3.02 (3.00)		2000s, 1980w, 1890w 1860b	1670(v) 978(s)	74	White	$230^{\circ}\mathrm{C}$
$C_{30}H_{22}M_0O_4P_2$ Mol. Wt = 606.38	59.22 (59.17)	(3.69 (3.71)	—	2020, 1942, 1850, 1850	1669(v) 968(s)	68	White	$209^{\circ}\mathrm{C}$
$\begin{array}{l} \text{Mol. Wt} = 000.98\\ \text{C}_{26}\text{H}_{22}\text{Cl}_2\text{CuP}_2\\ \text{Mol. Wt} = 529.00 \end{array}$	58.98 (58.83)	4.21 (4.18)	_	2000s, 1980w, 1890w, 1860b	1672(v) 978(s)	94	Blue	187°C

TABLE II Elemental Analysis, IR Spectra of
$[(CO)_4M{(Ph_2P-CH=CH-PPh_2)}](B)$ and Their $(M = Cr^{+6}, Mo^{+6}, W^{+6}, and M^{+6})$
Cu ⁺²) Complexes

IR spectra: strong (s), weak (w), board (b), variable (v).

by heating $M(CO)_6$ with 1,2-bis(diphenyl-phosphino) ethene in decane solvent under reflux (M = Cr, Mo, and W). The data for elemental analysis and infrared spectra tabulated in Table II. The formation of the $[(CuCl_2)Ph_2PCH=CHPPh_2]$ was precipitated by heating CuCl₂ solution with 1,2 bis-(diphenyl-phosphino) ethene in methyl alcohol at room temperature or in decane solvent under reflux at least 5 h, the ¹H NMR spectral data are useful in characterizing this complex.

$^{1}\text{H}\,\text{NMR},\,^{1}\text{H}-\{^{31}\text{P}\}$ NMR Spectrum (400 MHz) and Mass Spectrum

A remarkable feature of the ¹H NMR and ¹H-{³¹P} NMR spectrum of $[Ph_2PC(=CH_2)PPh_2]$ this complex was established by the presence of a "virtual triplet" with the extremely large splitting of ca. 60 and 400 Hz. Splitting equal to $[^{3}J(P-C=C-H)(cis) + ^{3}J(P-C=C-H)(trans)]$.^{14,15}

Cis-1,2-ethylene diphosphine complexes $[(CO)_4M\{(Ph_2P)CH=CH(PPh_2)\}]$ is prepared by treatment of *cis*-1,2 diphenyl phosphino ethylene with hexacarbonyl metal in n-decane under reflux in oil bath at 250°C, (M = Cr and W), in 73% yield. A remarkable feature of the ¹H NMR spectrum of these complexes was confirmed by the presence of a single band at $\delta = 4.83$ ppm. This separation is equal to $[^{3}J(P-CH=C-H)(\underline{cis})+^{3}J(-CH=CH-P)(\underline{trans})]$ $^{3}J(PCCP)$ Coupling.¹⁶ Studies of vicinal P-H¹⁷ and P-C¹⁸ coupling make it reasonable to expect a Karplus type of dependence of $^{3}J(^{31}PCC^{31}P)$

FIGURE 1 $^{1}\text{H}-\{^{31}\text{P}\}$ NMR of $[Ph_2PC(=CH_2)PPh_2]$.

coupling on dihedral angle ψ , defined as in V, and this is indeed so for the ${}^{3}J({}^{31}P^{\nu}CC{}^{31}P)$ coupling, for example, for the ethylenic derivatives it is found that $J_{trans}>J_{cis}$. For the ethane derivative the value of ${}^{3}J$ (${}^{31}P{}^{-31}P)$ is even greater than in the trans ethylene compound.

This is rather surprising if the observed coupling constant is a result of averaging over different conformation [cf. vicinal (H, H) coupling in ethane and ethylene¹⁹ and suggests that there is a preponderance of

FIGURE 2 $^{1}H-\{^{31}P\}$ NMR of $[Ph_2PCH=CHPPh_2]$.

the conformer with phosphorus atoms mutually trans. In the diphosphines the conventional dependence of coupling constant on dihedral angle²⁰ does not hold, as demonstrated by the result $J_{cis} \gg J_{trans}$. This can be accounted for in terms of Ion-pair (I.p) orientation effects (i.e., the Ione pair –P–C–C dihedral angle φ and φ') and has previously been obtained^{21,22} experimental for the coupling ³J(³¹PCCH). By analogy with these results it is to be expected that large positive values of ${}^{3}J({}^{31}P-{}^{31}P)$. When the angles φ and φ' are both small. Therefore a conformation equal $({}^{3}J = 105 \text{ Hz})$. Molecular models suggest that the need to minimize interactions between the phenyl group is responsible for the adoption of this conformation, but in the trans isomer, the two diphenylphosphino-groups are sufficiently far apart to allow essentially free rotation about the two olefin C–P bounds. The mass spectra of these complexes showed a molecular ion peak, the isotopic distribution patterns of which were in agreement with the assigned molecular formula. In addition to the molecular ion, intense patterns were observed consistent with the consecutive loss of up three carbonyl ligands.

Addition of Amines and/or Amino Acids to the Complexes of Type $(A)[(CO)_4M{(Ph_2P)_2C=CH_2}]$ and Type $(B)[(CI)_2Cu{(Ph_2P)_2C=CH_2}](M = Cr, Mo, W)$

previously that We have reported the complex $[(OC)_{4}M$ $\{Ph_2P\}_2C=CH_2\}$ undergoes Michael type addition with a variety of amines, hydrazine and amino acids to give functionalized phosphine complexes whereas the free ligand $(Ph_2P)_2C=CH_2$ (vdpp) is inactive toward these addition.²³ For example aniline to give $[(CO)_4M{Ph_2P}_2CH-CH_2N-C_6H_5]$ and now report that such additions are extensive and can be used as the basis for the synthesis of a wide range of complexes containing functionalist diphosphines. A preliminary communication on this work has been published. We find that the free diphosphine $(Ph_2P)_2C=CH_2$, does not react with hydrazine either after prolonged heating 72 h with or without addition of hydrazine hydrochloride, or with amine after prolonged heated (48 h) with or without addition of concentrated hydrochloric acid but complexation, even to a relatively weakly electron withdrawing group, $M(CO)_4$ (M = Cr, Mo, and W) is sufficient to render the double bond (C=CH₂) reactive toward Michael type addition. A toluene solution of the vinylidene tungsten complex $[(CO)_4W\{(Ph_2P)_2C{=}CH_2\}]^{24}$ when warmed and shaken with an excess of glycine (as amino acids) at room temperature or heated 8 h gave after 1 h a white solution and pale yellow crystalline adducts [(CO)₄M{(Ph₂P)₂CH–CH₂NH–CH₂COOH}

	% Elem calcu	iental a lated/(fo	nalysis ound)	IR spectra in	cm^{-1}	p	Physica ropertie	l es
Complexes	C%	H%	N%	ν(CO)	(NH)	Yield%	Color	m.p.°C
$C_{31}H_{27}NO_4P_2W$ Mol. Wt = 723.34	51.09 (51.47)	3.80 (3.76)	1.95 (1.94)	2000s, 1980w, 1890w, 1860sb	3300s	87	White	$255^{\circ}\mathrm{C}$
$C_{31}H_{27}NO_4P_2Cr$ Mol. Wt = 591.49	62.75 (62.95)	4.71 (4.60)	2.37 (2.35)	2000s, 1980w, 1890w, 1860b	3290s	63	Yellow	$225^{\circ}\mathrm{C}$
$C_{31}H_{27}NO_4P_2Mo$ Mol. Wt = 635.44	57.98 (58.59)	$\begin{array}{c} 4.12 \\ (4.28) \end{array}$	$\begin{array}{c} 2.20 \\ (2.19) \end{array}$	2020, 1942, 1850, 1850	3305s	75	White	$204^{\circ}\mathrm{C}$

TABLE III Elemental Analysis of $[(CO)_4M\{(Ph_2P)_2CHCH_2NH-CH_3\}]~(M=Cr^{+6},~Mo^{+6},~and~W^{+6})$ Amino Complexes

IR spectra: strong (s), weak (w), board (b).

(M = Cr or W)] in excellent (80%) yield Table III. The corresponding molybdenum and chromium complexes reacted similarly.

¹H NMR, ¹H-{³¹P} NMR Spectrum (400 MHz)

The tungsten complex $[(CO)_4W\{(Ph_2P)_2CH^1-CH_2^2NH^3CH_3^4]$ Figure 3 showed four multiples all showing first order coupling to one or more groups of protons. At $\delta = 1.97$ p.p.m, a triplet of relative intensity 1H was observed and assigned to CH¹ proton, coupling with two equivalent protons CH_2^2 , $J(CH^1CH_2^2) = 7.1$ Hz. A well resolved and sharp doublet is observed at $\delta = 2.86$ p.p.m. Assigned to CH_3^4 protons at $\delta = 2.73$ p.p.m, relative intensity 3H each. Finally a broad signal is observed at

FIGURE 3 ${}^{1}H{}^{31}P{}$ NMR [(CO)₄W{(Ph₂P)₂CH¹-CH₂²NH³CH₃⁴].

 $\delta = 0.85$ p.p.m, of relative intensity 1H assigned to the NH³ proton which disappeared on addition of D₂O.

The ¹H-{³¹P} NMR spectrum of complex [(CO)₄W{(Ph₂P)₂CHCH₂ NH–CH₃}] is reproduced in Figure 3 and showed a triplet, adoublet of quartets and another triplet, of relative intensities corresponding to 1H, 2H, and 3H respectively. The triplet of relative intensity 1H is assigned to CH, coupling with two equivalent protons CH_2 , ³J–(CH–CH₂) = 7.3 Hz. The doublet of quartets of relative intensity 2H is assigned to the CH₂, coupling to the methyl protons, ⁵J(CH₂CH₃) = 2.5 Hz and the triplet of relative intensity 3H is assigned to methyl protons coupling to the CH₂ protons. In the ¹H NMR spectrum, cupling to phosphorus was shown by the CH proton, the signal being a triplet of triplets, ²J(PCH) = 10.0 Hz and by the CH₂ protons, the signal become a triplet of quartets of quartets of quartets. ³J(PCH₂) = 11 Hz, these date and infrared data are tabulated in the following Tables IV and V.

Addition of Amines and Amino Acids to the Complexes of Type (B) [(CO)₄M{(Ph₂PCH=CH–PPh₂}] and Type [(CI)₂Cu{Ph₂PCH=CHPPh₂}] (M = Cr, Mo and W)

Although tertiary phosphines are important ligands in chemistry, relatively little has been done with functionalist phosphines, partly because of difficulties in synthesis. The complex $[(OC)_4M\{(Ph_2PCH=CH(PPh_2)\}]$ undergoes Michael type addition with aniline to give

TABLE IV Infrared Spectra of Characteristic Complexes of Type (A) $[(CO)_4M{(Ph_2P)_2CHCH_2-R}]$ (M = Cr⁺⁶, Mo⁺⁶, and W⁺⁶)

Complex	R	М	ν (CO)/Cm ⁻¹	$\nu(\rm NH)Cm^{-1}$
I(2c)	-NHCH(COOH)CH ₂ (COOH)	\mathbf{Cr}	2020, 1960, 1890, 1855	3300
I(2a)	-NHCH(COOH)CH ₂ (COOH)	W	2025, 1940, 1858, 1850	3300
I(2b)	-NHCH(COOH)CH ₂ (COOH)	Mo	2020, 1945, 1890, 1840	3200
I(3c)	-NHCH(COOH)CH ₂ (OH)	\mathbf{Cr}	2002, 1920, 1885, 1855	3300
I(3a)	-NHCH(COOH)CH ₂ (OH)	W	2002, 1930, 1890, 1860	3100
I(3b)	-NHCH(COOH)CH ₂ (OH)	Mo	2002, 1925, 1890, 1860	3200
I(4c)	-NHCH(COOH)(CH ₃)	\mathbf{Cr}		3300
I(4a)	-NHCH(COOH)(CH ₃)	W	_	3300
I(4b)	-NHCH(COOH)(CH ₃)	Mo	_	3100
I(5c)	-NHCH ₂ (COOH)	\mathbf{Cr}	2250, 1920, 1860, 1810	3200
I(5a)	-NHCH ₂ (COOH)	W	2250, 1910, 1855, 1815	3100
I(5b)	-NHCH ₂ (COOH)	Mo	2250, 1900, 1860, 1810	3300
I(6c)	$-N(CH_3)_2$	W	2020, 1940, 1850, 1820	_
I(6a)	$-N(CH_3)_2$	\mathbf{Cr}	2021, 1940, 1840, 1810	_
I(6b)	$-N(CH_3)_2$	Mo	2020, 1945, 1845, 1815	—

Complex	м	R	$\frac{\delta(\mathbf{p})}{\mathbf{p}.\mathbf{p}.\mathbf{m}}$	\mathbf{M}^+
I(2c)	Cr	–NHCH ^a (COOH)CH ₂ ^b (COOH)	$3.82^{\rm a}, 2.58^{\rm b}$	693.08
I(3b)	Mo	-NHCH ^a (COOH)CH ₂ ^b (OH)	$3.58^{a}, 3.88^{b}$	711.05
I(4a)	W	-NHCH ^a (COOH)(CH ₃ ^b)	$3.67^{a}, 1.23^{b}$	781.37
I(7c)	\mathbf{Cr}	-NH-NH-Ph ^(0,m,p)	$6.66^{\circ}, 7.18^{\mathrm{m}}, 6.71^{\mathrm{p}}$	668.34
I(5a)	W	-NHCH ₂ ^a (COOH)	3.49 ^a	767.25
I(6c)	\mathbf{Cr}	$-N(CH_3)_2$	2.27 ^a	605.32

TABLE V ¹H-{³¹P} NMR and Mass Spectral Data for Some Complexes of the Type (A) $[(CO)_4M {(Ph_2P)_2CHCH_2-R}](M = Cr^{+6}, Mo^{+6}, and W^{+6})$

In CDCl₃, Chemical shifts, δ , at high frequency of TMS.

 $a = CH; b = CH_2; o, m, p = ortho, meta, para.$

 $[(CO)_4M{Ph_2PCH-CH_2(PPh_2)N-C_6H_5}]$ and now report that such additions are extensive and can be used as the basis for the synthesis of a wide range of complexes containing functionalist diphosphines (Scheme 1). We find that the free diphosphine $(Ph_2P)CH=CH(PPh_2)$, does not react with hydrazine either after prolonged heating (72 h) with or without addition of hydrazine hydrochloride, or with amine after prolonged heated (48 h) with or without addition of concentrated hydrochloric acid but complexation, even to a relatively weakly electron withdrawing group, $M(CO)_4$ (M = Cr, Mo, or W) is sufficient to render the double bond (-CH=CH-) reactive towards Michael type addition. Treatment of the trans complex $[(CO)_4M{Ph_2PCH} CH_2(PPh_2)N-C_6H_5$] with an excess of methyl amine at room temperature gave after one hour a white solution and pale yellow crystalline adducts, $[(CO)_4M\{(Ph_2P)_2CH-CH_2NHCH_3\}$ (M = Cr or W)] in excellent (87%) yield. The molybdenum complex was prepared in a similar fashion in >89% yield.

¹H NMR Spectrum (400 MHz)

The tungsten complex $[(CO)_4W{Ph_2PCH^1-CH_2^2PPh_2NH^3CH_2^4COOH]$ showed four multiples all showing first order coupling to one or more groups of protons. At $\delta = 1.97$ p.p.m, a triplet of relative intensity 1H was observed and assigned to CH¹ proton, coupling with two equivalent protons CH₂², ³J(CH¹ CH₂²) = 7.1 Hz. A well resolved and sharp doublet is observed at $\delta = 2.86$ p.p.m. Assigned to CH₃⁴ protons at $\delta =$ 3.99 p.p.m¹, relative intensity 3H each. Finally a 1H assigned to the NH³ and COOH⁵ proton which disappeared on addition of D₂O.

Methods of determining $J^{3(^{31}P-^{31}P)}$ in symmetrical compounds using ${}^{1}H-{}^{31}P$ double resonance experiments were some years age.^[25] The ${}^{1}H-{}^{31}P$ NMR spectrum of complex [(CO)₄W

SCHEME 1 Chemistry related to the reactions of Vinylidine(diphenyl phosphino)ethene complexes [{(Ph₂P)₂-C= $CH_2 M^{n+}(CO)_4 M^{n+}(CO)_4$.

{Ph₂PCHCH₂PPh₂NH–CH₃}] is reproduced and showed a triplet, a doublet of quartets, and another triplet, of relative intensities corresponding to 1H, 2H, and 3H, respectively. The triplet of relative intensity 1H is assigned to CH, coupling with two equivalent protons CH_2 , ${}^3J(CH-CH_2) = 6.4$ Hz. The doublet of quartets of relative intensity 2H is assigned to the CH₂, coupling to the methyl protons, ${}^5J(CH_2CH_3) = 2.3$ Hz and the triplet of relative intensity 3H is assigned to methyl protons coupling to the CH₂ protons. In the H n.m.r. spectrum, Fig. (4), coupling to phosphorus was shown by the CH proton, the signal being a triplet of triplets, ${}^2J(PCH) = 9.8$ Hz and by the CH₂ protons, the signal become a triplet of quartets of quartets, ${}^3J(PCH_2) = 10$ Hz, these date and infrared data are shown in Table VI.

BIOLOGICAL EVALUATION

Antibacterial Activity

Data from the inhibition zones of various bacteria used Table VII revealed that these ligands and their chelates exhibited variable and pronounced activities against all bacteria (inhibition zones ranged from 0.80-10.00 mm). All compounds are potent effects against *Staphylococcus aurous*, *Serratia marcescens* expect B, II(7c), I(1a), I(1b), and II(1b). On the other hand, compounds, A, I(1c), I(3c), I(4c), A + Cu(II), II(1c), II(7c), and (B) are active against *Micrococcus roseus* (inhibition zones ranged from 0.75-11.5 mm) only.

Complex	R	М	$\nu(CO)/Cm^{-1}$	$\nu(\rm NH)Cm^{-1}$
II(8c)	-NHCH(COOH)CH ₂ (COOH)	\mathbf{Cr}	2020, 1960, 1890, 1855	3300
II(8a)	-NHCH(COOH)CH ₂ (COOH)	W	2025, 1940, 1858, 1850	3300
II(8b)	-NHCH(COOH)CH ₂ (COOH)	Mo	2020, 1945, 1890, 1840	3200
II(7c)	-NHCH(COOH)CH ₂ (OH)	\mathbf{Cr}	2002, 1920, 1885, 1855	3300
II(7a)	-NHCH(COOH)CH ₂ (OH)	W	2002, 1930, 1890, 1860	3100
II(7b)	-NHCH(COOH)CH ₂ (OH)	Mo	2002, 1925, 1890, 1860	3200
II(6c)	-NHCH(COOH)(CH ₃)	\mathbf{Cr}	_	3300
II(6a)	-NHCH(COOH)(CH ₃)	W	_	3300
II(6b)	-NHCH(COOH)(CH ₃)	Mo	_	3100
II(4c)	-NHCH ₂ (COOH)	\mathbf{Cr}	2250, 1920, 1860, 1810	3200
II(4a)	-NHCH ₂ (COOH)	W	2250, 1910, 1855, 1815	3100
II(4b)	-NHCH ₂ (COOH)	Mo	2250, 1900, 1860, 1810	3300
II(3c)	$-N(CH_3)_2$	W	2020, 1940, 1850, 1820	_
II(3a)	$-N(CH_3)_2$	\mathbf{Cr}	2021, 1940, 1840, 1810	_
II(3b)	$-N(CH_3)_2$	Mo	2020, 1945, 1845, 1815	_

TABLE VI Infrared Spectra of Characteristic Complexes Type (B) [(CO)₄M $\{Ph_2P)_2CHCH_2-R\}$](M = Cr⁺⁶, Mo⁺⁶, W⁺⁶)

Downloaded by [Temple University Libraries] at 06:26 22 April 2015

TABLE VII Antimicrobial Screening of Some Diphenyl Phosphine Ligands and Their Cu(II), W(VI), Cr(VI), and Mo(VI) Chelates (Inhibition Zones in mm)

			Antibacter	ial activi	ity					Antifungal	activity			
	Serratia Marce- scens	Bacillus cereus	Pseudo- monas aeruginosa	Micro- coccus roseus	Klebsiella	Staphyl- lococcus aureus	Asper- gillus Flavus Link	Penicill- ium Chryso-	Alternaria alternata (Fries)	Fusarium equisioti	Alternaria tenussima	Aspergillu stammarii	Penicillium digirtatum	Penicill-ium paxilli
Compd	1608 ^a	345	1299	348 348	DSM 581	346	AUCC- 164	AUCC530	AUCC 1110	62203	63360	ALCC- 10836	62840	28047
A	1.00	3.50	$-ve^{c}$	0.75	-00	3.00	-ve	8.50	5.00	0.95	6.00	10.0	-ne	-ve
I(1c)	2.10	5.00	-ve	1.90	2.80	4.50	-ve	2.50	-ve	4.50	4.10	6.00	1.80	-ve
I(3c)	8.20	7.00	5.00	7.60	-ve	9.50	-ve	4.00	2.50	6.00	6.50	6.10	-ve	-ve
I(4c)	3.00	3.80	5.80	6.80	-ve	4.00	3.00	2.80	1.50	9.50	-ve	4.00	3.80	-ve
В	-ve	-ve	-ve	-ve	-ve	2.50	-ve	1.00	3.00	1.80	4.00	-ve	-ve	-ve
II(1c)	5.10	1.80	-ve	4.80	3.00	5.00	1.00	4.00	-ve	6.50	6.70	-ve	-ve	6.00
II(7c)	-ve	-ve	-ve	1.50		7.50	7.80	-ve	-ve	-ve	2.00	-ve	-ve	4.10
II(6c)	7.80	8.50	7.90	7.00	3.80	6.85	4.50	3.80	-ve	8.02	-ve	4.50	-ve	4.00
I(1a)	3.20	-ve	-ve	-ve	2.00	3.00	-ve	-ve	2.00	-ve	-ve	-ve	1.50	-ve
I(1b)	5.50	-ve	-ve	-ve	3.40	7.50	4.90	1.80	-ve	-ve	-ve	-ve	-ve	-ve
II(1a)	-ve	0.80	-ve	-ve	-ve	1.50	1.70	2.90	-ve	1.01	-ve	-ve	-ve	-ve
II(lb)	0.80	-ve	1.80	-ve	-ve	1.10	1.20	3.00	1.10	0.61	-ve	-ve	8.80	-ve
$\mathbf{A} + \mathbf{Cu}(\mathbf{II})$	8.00	9.50	-ve	11.5	8.10	10.0	6.70	11.0	9.80	11.50	8.80	10.0	-ve	2.00
$\mathbf{B} + \mathbf{Cu(II)}$	1.80	3.00	-ve	-ve	-ve	5.20	-ve	-ve	-ve	1.00	-ve	5.80	2.00	-ve
	ĥ	Č				č		. .	,					

^aDSM = Deutsche Semmlungvos Microorgamifman (German Collection of microorganisms). ^bAUCC = Assiut University Culture Collection.

c(-ve) =Compound not active biological. ^dATCC = America Culture Collection.

 e CBS = Holland culture collection.

Antifungal Activity

The antifungal results table clearly show that all compounds are highly effective against *Penicilliu chrysogenum*, *Aspergillus fiavus* (link), and/ or *Alternaria alternata* (Fries) expect A, I(3c), II(1c), II(7c), B, A + Cu(II), I(1b), and II(1a) derivatives (inhibition zones ranged from (1.00-9.80 mm). Interestingly, the synthesized compounds showed good and more antifungal than antibacterial activities.

Furthermore, compound I (3C) type of (A) with serene (amino acid) chromium and compound A-Cu(II) vinyl copper complexes are highly biologically active against all bacteria and fungi used (inhibition zones) ranged from (1.90–9.50 mm) for bacteria and (2.00–11.00 mmm) for fungi. Also compound II(6c) type of (B) with alanine (amino acid) chromium are potent active against *all bacteria* used (inhibition zones ranged from 3.80–8.5 mm).

REFERENCES

- Gary R. Cooper, David M. Mcewan, and Bernard L. Shaw, *Inorganica Chimica Acta*, 76, L165–L166 (1983).
- [2] Gary R. Cooper, Fatma Hassan, Bernard L. Shaw, and Thornton-Pett, J. Chem. Soc., Chem. Commun., 614–616 (1985).
- [3] Xavier L. R. Fontaine, Fatma Hassan, Simon J. Higgins, et al., J. Chem. Soc., Chem. Commun., 1635–1636 (1985).
- [4] M. P. Brown, R. J. Puddephatt, M. Rashidi, and K. R. Seddon, J. Chem. Soc. Dalton Trans., 1540 (1978).
- [5] L. S. Benner and A. L. Balch, J. Am. Chem. Soc., 100, 6099 (1978).
- [6] D. M. Hoffmann and R. Hoffmann, Inorg. Chem., 20, 3543 (1981).
- [7] S. Al-Jibori, M. Hall, A. T. Hutton, and B. L. Shaw, J. Chem. Commun., 1069 (1982).
- [8] S. Al-Jibori, W. S. McDonald, and B. L. Shaw, J. Chem. Soc. Chem. Commun., 287 (1982).
- [9] E. S. Moss and A. L. Mequon, Atlas of Medical Mycology (Williams and Wilkins, Balimore, 1969), 3rd ed., p. 366.
- [10] K. K. Chaturred, Jain Nork, P. Jain, and R. Kawshal, Indian Drugs, 15, 57 (1978).
- [11] J. D. Sleight and M. C. Timburg, Notes on Medical Bacteriology (Churchill Livingston, USA, 1981), p. 43.
- [12] K. Issleib and H. P. Abicht, J. Prakt. Chem., 312, 456 (1970).
- [13] S. Al-Jibori and B. L. Shaw, J. Chem. Soc. Chem. Commun., 286 (1982).
- [14] W. A. Anderson, R. Freeman, and C. A. Reilly, J. Chem. Phys., 39, 1518 (1963).
- [15] Y. Y. Samitov, E. A. Berdnikov, F. R. Tantasheva, B. Y. Margulis, and E. G. Kataev, *Zhur. Obschei Khim.*, 45, 2130 (1975).
- [16] Ion J. Colquhoun and William McFarlane, J. Chem. Soc. Dalton Trans., 1915–1921 (1982).
- [17] G. A. Mavel, Ann. Rep. NMR Spectrosc., 5B, 1 (1972).
- [18] L. D. Quin, The Heterocyclic Chemistry of Phosphorus (John Wiley, New York, 1981), p. 280.
- [19] J. N. Murrell, Prog. NMR Spectrosc., 6, 1 (1971).

- [20] G. A. Mavel, Ann. Rep. NMR Spectrosc., 5B, 1 (1972).
- [21] L. D. Quin, The Heterocyclic Chemistry of Phosphorus (John Wiley, New York, 1981), p. 327.
- [22] C. H. Bushweller, J. A. Brunelle, W. A. Anderson, and H. S. Bilotsky, *Tetrahedron Lett.*, 3261 (1972).
- [23] G. R. Cooper, D. M. McEwan, and B. L. Shaw, Inorg. Chim. Acta, 76, L165 (1983).
- [24] G. T. Andrews, I. J. Colquhoun, W. McFarlane, and S. O. Grim, J. Chem. Soc., Dalton Trans., 2353 (1982).
- [25] W. McFarlane and D. S. Rycroft, J. Chem. Soc., Faraday Trans., 2, 377 (1974).