NOTE

N-acetyl-3,4-dihydroxy-L-phenylalanine, a second identified bioactive metabolite produced by *Streptomyces* sp. 8812

Jolanta Solecka¹, Aleksandra Rajnisz¹, Magdalena Postek¹, Joanna Zajko¹, Robert Kawecki², Vladimir Havlicek³, Elzbieta Bednarek⁴ and Lech Kozerski^{4,5}

The Journal of Antibiotics (2012) 65, 219–221; doi:10.1038/ja.2012.2; published online 1 February 2012

Keywords: antimicrobial activity; DD-peptidase inhibitor; JS-2; Streptomyces sp.

The emergence of multi-drug-resistant bacteria and the lack of new antibiotics in the antibiotic drug development pipeline is a major health concern.¹ Therefore, there is a constant need to search for novel antibacterial compounds. *Streptomyces* species are the richest source of bioactive metabolites, including antibacterial compounds.²

In this paper, we report the isolation of a second bioactive metabolite, N-acetyl-3,4-dihydroxy-L-phenylalanine, named JS-2 (Figure 1), from the supernatant of a *Streptomyces* sp. 8812 culture.^{3,4} In the course of our screening program for antimicrobial compounds from actinomycetal metabolites for specific inhibitors of DD-peptidases (EC 3.4.16.4), we used exocellular DD-carboxypeptidase/transpeptidase (DD-peptidase) 64–575 II from *Saccharopolyspora erythraea* 64–575 II.⁵ JS-2 exhibited slight inhibitory properties on the DD-peptidases 64–575 II and R39 from *Actinomadura* R39 (formerly *Streptomyces* R39).⁶ It showed antimicrobial activity against *Bordetella bronchiseptica* (*B. bronchiseptica*), *Staphylococcus epidermidis* (*S. epidermidis*) and *S. aureus* (methicillin-resistant (MRSA) or vancomycin resistant (VRSA).

Streptomyces sp. 8812 fermentation culture was conducted as reported previously.³ Isolation and purification of JS-2 was performed, guided by DD-peptidase 64–575 II assay.^{3,7} Purification steps were done as follows: anion exchange resin IRA-400 (AcO⁻), Backerbond SPE (PolarPlus C₁₈ column, J.T. Baker, Phillipsburg, NJ, USA) and HPLC (Atlantis, dC18, Waters, Milford, MA, USA) (Supplementary Figure 1S; Supplementary Purification of JS-2).

The structure of JS-2 compound was determined using 1- and 2D NMR spectroscopy, UV, IR and MS measurements. Physico-chemical properties of the compound are shown in Table 1.

The molecular formula of JS-2 was determined to be $C_{11}H_{13}NO_5$ on the basis of HRESI-MS.

NMR data are shown in Table 1 and in the Supplementary materials (Supplementary Figures 2S, 3S, 4aS, 4bS). NMR spectra were recorded at 298 K on Varian INOVA 500 MHz spectrometer (Varian, Palo Alto, CA, USA) operated at 499.8 MHz for ¹H. The 2D experiments were run by using the standard Varian software, except the HMBC experiment.^{8,9}

The ¹H NMR spectrum consists of seven signals: an ABM system in the aromatic part at 6.85, 6.70 and 6.79 p.p.m. (3H); an ABX aliphatic system at 2.80, 3.06 and 4.38 p.p.m. (3H); and a singlet from the CH₃ group at 1.93 p.p.m. (3H). Dynamic OH, COOH and NH protons are in fast exchange with bulk water and are not observed in the ¹H NMR spectrum. The assignment of protons was accomplished following the general rule of chemical-shift dispersion, using the proton–proton coupling pattern and the COSY spectrum.

Carbon resonances were obtained from the ¹H-{¹³C} HSQC (Supplementary Figures 4aS, 4bS) (six signals of proton-bearing carbon atoms) and ¹H {¹³C} HMBC (five signals of the quaternary carbon atoms) spectra. The ¹H {¹³C} HMBC spectrum was used also as a final tool to make assignment of carbon resonance and to confirm the structure of JS-2.

IR absorption at 3366 and 1724–1608 cm⁻¹ suggested the presence of hydroxyl and carbonyl groups in the structure (Supplementary Figure 5S). The UV spectrum showed a typical pattern for an aromatic compound. Strong absorption at 280 nm confirmed a phenolic moiety (Supplementary Figure 6S). According to the interpretation of these data, compound JS-2 presents the structure of N-acetyl-3,4-dihydroxy-L-phenylalanine.

Unequivocal confirmation of the JS-2 structure has been obtained by its comparison with a synthetic sample prepared by acetylation of

E-mail: jsolecka@pzh.gov.pl

Received 19 September 2011; revised 5 January 2012; accepted 10 January 2012; published online 1 February 2012

npg

¹Laboratory of Biologically Active Compounds, National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland; ²Siedlce University, Siedlce, Poland; ³Institute of Microbiology, Laboratory of Molecular Structure Characterization, Prague, Czech Republic; ⁴National Medicines Institute, Warsaw, Poland and ⁵Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland

Correspondence: Dr J Solecka, Laboratory of Biologically Active Compounds, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, Warsaw 00-791, Poland.

L-Dopa with excess of acetic anhydride in hot water. The analytical sample was obtained by preparative HPLC (RPC18, 5% acetonitrile in 0.1% aq. AcOH). The spectral data of the obtained product fully agreed with the above analysis.

Under the procedures described previously,^{10–12} the inhibitory effect of DD-carboxypeptidases activity was measured. Thioester C₆H₅-CO-NH-(D)CH(CH₃)-CO-S-CH₂-COOH was used as a substrate^{10,12} (Supplementary Bioassay). JS-2 and structurally related compounds, 3,4-dihydroxy-L-phenylalanine (Sigma, St Louis, MO, USA), 3,4-dihydroxy-D-phenylalanine (Sigma) and N-acetyl-3,4-dihydroxy-D-phenylalanine (synthesized analogously as L- form) were examined. The IC₅₀ values of these compounds for DD-peptidases 64–575 II and R39 are presented in Table 2.

Results showed that IC_{50} values ranged from 3.96 to 17.79 mM. The IC_{50} values of JS-2 for DD-peptidase 64–575 II and for DD-peptidase R39 were compared with the IC_{50} values of L-Dopa, D-Dopa and N-acetyl-D-Dopa for these enzymes. The IC_{50} values of JS-2 for DD-peptidases 64-575 II and R39 were the lowest. In each case, L-isomer of the compound inhibited both DD-peptidases in lower concentration than the D-isomer. Furthermore, the inhibitory activity of evaluated

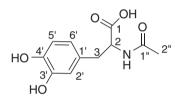


Figure 1 Chemical structure of JS-2.

compounds was weaker for DD-peptidase 64–575 II than for DD-peptidase R39.

The IC₅₀ values of β -lactam antibiotics for DD-peptidase 64–575 II and R39 were compared with the IC₅₀ values of JS-2 for both enzymes.^{5,13} IC₅₀ values of many β -lactam antibiotics (ranging from 1.6 mM to 0.015 μ M) for DD-peptidase 64–575 II, as well as for DD-peptidase R39 (ranging from 5 to 0.03 μ M) were lower than the IC₅₀ value of the investigated compounds for these enzymes. JS-2 exhibited weak inhibitory effects on the DD-peptidases 64–575 II and R39. However, so far, no protoalkaloid inhibitors of DD-peptidases have been described.

To examine the specificity spectrum of the JS-2 compound, inhibition assays were performed for a range of common proteolytic enzymes: pancreatic elastase (type IV) from porcine pancreas, carboxypeptidase A from bovine pancreas, trypsin from porcine pancreas, and papain from Papaya latex, according to the procedures described in our previous paper,³ and leucine aminopeptidase (type IV-S) from porcine kidney microsomes as reported by Cahan *et al.*¹⁴ It was determined that at a concentration of 1.4 mM, the JS-2 compound causes 50% inhibition of carboxypeptidase A, whereas the rest of the enzymes remained active at higher concentration, 1.84 mM.

Antibacterial activity of JS-2 was tested by liquid microdilution method (Spectrostar Omega, BMG Labtech, Offenburg, Germany), under standard conditions according to the CLSI references.¹⁵

A panel of Gram-positive and Gram-negative bacterial strains was used (Supplementary Bioassay). The JS-2 compound showed weak antibacterial activity against *B. bronchiseptica*, *S. aureus* (MRSA and VRSA) and *S. epidermidis* (Table 2). Moreover, JS-2 showed a 4-h delay of growth of *S. aureus* (MSSA) at 256 μ g ml⁻¹, a 2.5-h delay of bacterial growth at concentration 128 μ g ml⁻¹, and a 2-h delay of bacterial growth at 64 μ g ml⁻¹, although the general MIC value for

Table 1 (a	a) Physico-chemical	properties and (b)	1 H and 1	¹³ C NMR data of JS-2
------------	---------------------	--------------------	---------------------	----------------------------------

Appearance		White-cream crystal									
(a)											
Molecular weight		239	239								
Molecular formula HRESI-MS (m/z) Calcd Found UV (MeOH) λ_{max} nm (ϵ) [α] $_{0}^{24}$ +41.1 ⁰		C ₁₁ H ₁₃ NO ₅ 238.07210 (M-H) ⁻ 238.07226 (M-H) ⁻									
							231 (2850), 281 (2290)				
							(c=1.11, H ₂ O)				
							IR (KBr) v_{max} (cm ⁻¹)		3366, 1724, 1608, 1527, 1445, 1375, 1286, 1115, 814, 589		
		Position	$\delta_{\mathcal{C}}^{a}$	$\delta_H{}^a$ (J in Hz)	¹ H- ¹³ C correlations	δ _N a					
		(b)									
1	180.9										
2	59.0	4.38 (dd, 8.7, 4.9)	C1', C3								
3	39.6	2.80 (dd, 14.0, 8.7)	C1', C6', C2', C2, C1								
		3.05 (dd, 14.0, 4.9)	C1', C6', C2', C2, C1								
Ľ	133.2										
<u>2</u> ′	119.5	6.79 (d, 2.1)	C4', C6', C3, C3'								
3 [′]	146.3										
1´	145.2										
ō	118.8	6.85 (d, 8.1)	C3', C1', C4', C6'								
5′	124.2	6.70 (dd, 2.1, 8.1)	C4', C2'								
1″	175.9										
2″	24.5	1.93 (s)	C1"								
NH				-25							

^aThe ¹H and ¹³C chemical shifts, δ , given in p.p.m., were referenced against the internal reference TSPA-d₄, solvent H₂O/D₂O (9:1).

Table 2 Biological activity of JS-2 and structurally related compounds: (a) inhibitory effect on pp-peptidases and (b) *in vitro* antibacterial activity (MIC μ g ml⁻¹)

	Inhibition, IC ₅₀ (тм)					
	JS-2	⊥-Dopa	N-Ac-D-Dopa	D-Dopa		
DD-peptidases	(N-Ac-L-Dopa)					
(a)						
DD-peptidase 64-575 II	10.97	13.84	11.85	17.79		
DD-peptidase R39	3.95	5.11	4.92	6.05		
	(MIC $\mu g m l^{-1}$)					
Microorganism	JS-2	L-Dopa	N-Ac-D-Dopa	D-Dopa		
(b)						
S. aureus (MSSA)	>256	128	640	80		
S. aureus (MRSA)	256	128	640	40		
S. aureus (VRSA)	256	128	320	40		
S. epidermisis	64	32	320	40		
B. bronchiseptica	40	20	320	40		
Acinetobacter baumanii	>640	80	>640	640		
Proteus vulgaris	>640	160	640	160		
P. mirabilis	>640	160	>640	160		
Burkholderia cepacia	>640	640	>640	320		
Pseudomonas aeruginosa	>640	640	>640	640		
Stenotrophomonas maltophilia	>640	160	640	40		

this bacteria was higher than 256 μ g ml⁻¹ (Supplementary Figure 7S). Additionally, for comparison, the antimicrobial activity of compounds: 3,4-dihydroxy-L-phenylalanine, 3,4-dihydroxy-D-phenylalanine and N-acetyl-3,4-dihydroxy-D-phenylalanine were examined. These compounds showed a slightly higher activity than JS-2 (Table 2).

Moreover, other activities of JS-2 were also examined, including genotoxicity and hemolytic properties. For assessment of genotoxicity, two genetically modified *Bacillus subtilis* strains, M45 rec⁻ and H17 rec⁺, obtained from Dr Yoshito Sadaie (Department of Induced Mutation, National Institute of Genetics, Shizuoka, Japan) were examined by the disc-diffusion method according to Kada's procedure.^{3,16} The JS-2 compound did not inhibit the growth of the tested *B. subtilis* strains; hence, it was determined as nongenotoxic.

The hemolysis test was carried out according to a method described in literature.³ No hemolytic activity of JS-2 was observed on human erythrocytes.

In conclusion, N-acetyl-3,4-dihydroxy-L-phenylalanine (JS-2) had been identified earlier as a *Streptomyces akiyoshiensis* metabolite¹⁷ and obtained by semisynthesis using microorganisms; for example, *Pseudomonas striafaciens* and *Vibrio tyrosinaticus*.^{18,19} Only its antitumour properties were studied so far.^{17,20} DD-peptidase inhibitory activity and antimicrobial properties of JS-2 have not been previously defined. JS-2 compound belongs to a group of protoalkaloids, β-phenylethylamines and -amides isolated usually as plant metabolites.²¹ Results of this study demonstrate that β-phenylethylamides, like JS-2, may show antimicrobial activities and inhibitory properties on some closely related proteinases (for example DD-peptidases). Natural compounds themselves are highly important, as they constitute also the basis for developing synthetic drugs. In the last 10 years among the launched antibiotics, there are more natural product-derivative new antibiotic templates compared with those synthetically derived.¹ Protoalkaloid JS-2 shows weak antibacterial activity; however, due to the lack of hemolytic properties and genotoxicity, it can be considered as a candidate for chemical modifications that can increase its antibacterial activity.

ACKNOWLEDGEMENTS

This study was supported in part by the European Union, Ministry of Regional Economy, Grant UDA-POIG. 01.03.01-14-136/09.

- Butler, M. S. & Cooper, M. A. Antibiotics in the clinical pipeline in 2011. J. Antibiot. 64, 413–425 (2011).
- 2 Berdy, J. Bioactive microbial metabolites. J. Antibiot. 58, 1–26 (2005).
- 3 Solecka, J., Rajnisz, A. & Laudy, A. E. A novel isoquinoline alkaloid, DD-carboxypeptidase inhibitor, with antibacterial activity isolated from *Streptomyces* sp. 8812. Part I: Taxonomy, fermentation, isolation and biological activities. *J. Antibiot.* 62, 575–580 (2009).
- 4 Solecka, J. *et al.* A novel isoquinoline alkaloid, DD-carboxypeptidase inhibitor, with antibacterial activity isolated from *Streptomyces* sp. 8812. Part II: Physicochemical properties and structure elucidation. *J. Antibiot.* **62**, 581–585 (2009).
- 5 Solecka, J. & Kurzatkowski, W. Affinity of exocellular DD-carboxypeptidase/transpeptidase from Saccharopolyspora erythraea PZH 64-575 to beta-lactam compounds. *Med. Dosw. Mikrobiol.* **51**, 151–165 (1999).
- 6 Frère, J.- M., Moreno, R. & Ghuysen, J. M. Molecular weight, amino acid composition and physicochemical properties of the exocellular DD-carboxypeptidase-transpeptidase of *Streptomyces* R39. *Biochem. J.* **143**, 233–240 (1974).
- 7 Frère, J. M., Leyh-Bouille, M., Ghuysen, J. M., Nieto, M. & Perkins, H. R. Exocellular DD-carboxypeptidases/transpeptidases from *Streptomyces. Methods Enzymol.* 45, 610–636 (1976).
- 8 Meissner, A. & Sørensen, O. W. Economizing spectrometer time and broadband excitation in small-molecule heteronuclear NMR correlation spectroscopy. Broadband HMBC. *Magn. Res. Chem.* **38**, 981–984 (2000).
- 9 Koźmiński, W., Bednarek, E., Bocian, W., Sitkowski, J. & Kozerski, L. The new HMQCbased technique for the quantitative determination of heteronuclear coupling constans. Application for the measurement of ³J(H'_i, P_{i+1}) in DNA oligomers. *J. Magn. Reson.* **160**, 120 (2003).
- 10 Adam, M., Damblon, C., Plaitin, B., Christiaens, L. & Frere, J.- M. Chromogenic depsipeptide substrates for β-lactamases and penicillin-sensitive DD-peptidases. *Biochem. J.* 270, 525–529 (1990).
- 11 Pratt, R. F. Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins). Cell. Mol. Life Sci. 65, 2138–2155 (2008).
- 12 Adam, M. et al. Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem. J. 279, 601–604 (1991).
- 13 Dusart, J. et al. DD-carboxypeptidase-transpeptidase and killing site of β-lactam antibiotics in Streptomyces strains R39, R61 and K11. Antimicrob. Agents Chemother. 3, 181–187 (1973).
- 14 Cahan, R., Hetzroni, E., Nisnevitch, M. & Nitzan, Y. Purification and identification of a novel leucine aminopeptidase from *Bacillus thuringiensis israelensis. Curr. Microbiol.* 55, 413–419 (2007).
- 15 CLSI. Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Eighth Edition M07-A8 [ISBN 1-56238-689-1]. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA (2009).
- 16 Kada, T., Hirano, K. & Shirasu, Y. Bacillus subtilis rec-assay test. In Chemical Mutagenesis Vol. 6 (eds de Sevres, F. E. & Hollaender, A.) 149 (Plenum Press, New York, 1980).
- 17 Smith, K. C. & White, R. L. Isolation of N-acetyl-3,4-dihydroxy-L-phenylalanine from Streptomyces akiyoshiensis. J. Nat. Prod. 58, 1274–1277 (1995).
- 18 Chibata, I., Kakimoto, T., Nabe, K. & Shibatani, T. 3,4-Dihydroxy-L-phenylalanine. Japanese Patent. 72 39,692 (Tanabe Seiyaku Co., Ltd), 08 Dec (1972).
- 19 Nakayama, K., Yoshida, H. & Tanaka, Y. B-(3,4-Dihydroxyphenyl)-L-alanine derivatives. Japanese Patent. 12,092 (Kyowa Hakko Kogyo Co, Ltd), 02 Feb (1974).
- 20 Inoue, S., Ito, S., Imai, Y., Kasuga, T. & Fujita, K. Growth inhibition of melanoma cells by N-protected dopa derivatives. *Biochem. Pharmacol.* **36**, 3540–3543 (1987).
- Bentley, K. W. β-Phenylethylamines and the isoquinoline alkaloids. *Nat. Prod. Rep.* 23, 444–463 (2006).

Supplementary Information accompanies the paper on The Journal of Antibiotics website (http://www.nature.com/ja)