Efficient Synthesis of *N*-Benzyloxycarbonyl- and *N*-tert-Butoxycarbonyl-(*S*)-Isoserine and their Derivatives

Ryszard Andruszkiewicz,* Monika Wyszogrodzka

Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 80-952 Gdańsk, Poland Fax +48(58)3471144; E-mail: ryszarda@chem.pg.gda.pl

Received 23 September 2002

Abstract: A mild and efficient synthesis of N-protected (*S*)-isoserine from (*S*)-malic acid monoester via an oxazolidin-2-one is described.

Key words: amino acids, asymmetric synthesis, oxazolidin-2-ones, ring opening, protecting groups

(S)-Isoserine, i.e. (S)-3-amino-2-hydroxypropanoic acid is an amino acid component of biologically active peptides produced by the *Bacillus brevis* V_m⁴ strain: edeine antibiotics and tatumine.¹ It has also been found in a group of keramamides F-K², cytotoxic peptides isolated from Theonella sp sponges. These marine organisms are also known to produce a variety of cyclic glycopeptides including theopalauamide,³ theonellamides A-F,⁴ and theonegramide,⁵ all containing (S)-isoserine. This nonprotein amino acid has also been applied in a semisynthetic aminoglycoside antibiotic derivatives (e.g. gentamycin and butyrosin).⁶ Recently, polyamides containing (S)isoserine have been used in DNA recognition studies.⁷ Several practical methods for the synthesis of optically active isoserines using malic acid, substituted imidazolin-2ones, or chiral cyanohydrins as starting materials have been reported.⁸

In connection with our program centered on edeine antibiotic analogues⁹ and glucosamine-6-phosphate synthase inhibitors¹⁰ we needed an N-protected (*S*)-isoserine and its constrained analogue to be built into peptide conjugates or to serve as a chiral synthon for further synthesis. Therefore, we report here a simple synthetic approach to N-protected isoserine and its cyclic derivative, which starts from cheap starting materials, proceeds in good yields, and allows easy scale-up to multigram scale.

The preparation of the title compounds was carried out from enantiomerically pure 1-monoesters of (S)-malic acid, which are easily accessible from (S)-malic acid 1 by adopting a literature reported procedure,¹¹ in which treatment of malic acid with trifluoroacetic acid anhydride furnished the corresponding trifluoroacetate of (S)-malic anhydride (Scheme 1). Regioselective opening of the anhydride with one equivalent of anhydrous benzyl or methyl alcohol provided optically active 1-monoesters. The 1monoesters 2a and 2b were then converted to the corresponding oxazolidin-2-ones 4a and 4b. Oxazolidin-2ones were effectively formed by refluxing 2a and 2b with diphenylphosphoryl azide (DPPA) and triethylamine (Et₃N) in *t*-BuOH. The isocyanates **3a** and **3b** transiently formed underwent internal cyclization to 4a and 4b with good yields.¹² However, due to the good solubility of **4b** in aqueous phase, the extraction process was ineffective, therefore, pure 4b was obtained by using column chromatography. For further synthetic use, there is no need to use column chromatography and compound 4b may also be used without isolation for the next reaction. Owing to the

Scheme 1

Synlett 2002, No. 12, Print: 02 12 2002. Art Id. 1437-2096,E;2002,0,12,2101,2103,ftx,en;G27902st.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

low reactivity of the nitrogen atom in a heterocyclic ring, the nitrogen in 4a was proteced using di-tert-butyl dicarbonate (Boc)₂O, Et₃N and a catalytic amount of DMAP in THF at -20 °C,¹³ thus obtaining the desired N-Boc derivative 5a in good yield. Under the same reaction conditions, compound 5c was obtained from 4b. On the other hand, the reaction of 4a with an excess of benzyloxycarbonyl chloride (Cbz-Cl) in a THF/Et₃N solution at -20 °C and DMAP furnished the N-Cbz derivative 5b.14 The critical ring opening in the protected oxazolidin-2-ones 5a, 5b and 5c was performed using benzyltrimethylammonium hydroxide in THF at -40 °C.¹⁵ In all cases, hydrolysis of the esters was also observed. The low temperature conditions for base induced opening of the oxazolidin-2-ones were essential to avoid the formation of undesired byproducts. We also found that the treatment of protected oxazolidin-2-ones with NaOH or LiOH in THF solutions, even at low temperature gave rise to N-deprotected and other non identified products. Hydrolysis of 5a and 5c yielded the same products 6a with the same melting point and optical rotation.

Finally, catalytic hydrogenation (Scheme 2) of **5a** in methyl alcohol afforded the Boc protected acid **7a** in good yield.¹⁶ Hydrogenolysis did not damage the heterocyclic ring.

Scheme 2

In conclusion, we have developed a new, mild and efficient route to N-protected isoserines and isoserine cyclic derivative from 1-monoesters of (*S*)-malic acid via oxazolidin-2-ones.

Acknowledgment

The authors are indebted to the Faculty of Chemistry, Gdańsk University of Technology for financial support.

References

- (a) Hettinger, T. P.; Craig, L. C. *Biochemistry* **1970**, *9*, 1224.
 (b) Heaney-Kieras, J.; Kurylo-Borowska, Z. J. *Antibiot.* **1980**, *33*, 359.
- (2) (a) Sowinski, J. F.; Toogood, P. L. *Tetrahedron Lett.* 1995, 68, 67. (b) Kobayashi, J.; Itagaki, F.; Shigemori, I.; Takao, T.; Shimonishi, Y. *Tetrahedron* 1995, 51, 2525.
 (c) Sowinski, J. F.; Toogood, P. L. *Chem. Commun.* 1999, 981. (d) Uemoto, H.; Yahiro, Y.; Shigemori, H.; Tsuda, M.; Takao, T.; Shimonishi, Y.; Kobayashi, J. *Tetrahedron* 1998, 54, 6719. (e) Dohren, H.; von Kleinkauf, H. *Biotechnology* 1999-2001, 7, 313.

- (3) (a) Schmidt, E. W.; Bewley, C. A.; Faulkner, D. J. J. Org. Chem. 1998, 63, 1254. (b) Moore, B. S. Nat. Prod. Rep. 1999, 16, 653.
- (4) (a) Matsunaga, S.; Fusetani, N. J. Org. Chem. 1995, 60, 1177. (b) Taylor, C. M. Tetrahedron 1998, 54, 11317.
- (5) Bewley, C.; Faulkner, D. J. J. Org. Chem. 1994, 59, 4849.
- (6) (a) Wright, J. J.; Cooper, A.; Daniels, P. J. L.; Nagabhushan, T. L.; Rane, D.; Turner, W. N.; Weinstein, J. J. Antibiot. 1976, 29, 714. (b) Haskell, T. H.; Rodebaugh, R.; Plessas, N.; Watson, D.; Westland, R. D. Carbohydr. Res. 1973, 28, 263.
- (7) Floreancig, P. E.; Swalley, S. E.; Trauger, J. W.; Dervan, P. B. J. Am. Chem. Soc. 2000, 122, 6342.
- (8) For a review see: Andruszkiewicz, R. Pol. J. Chem. 1998, 72, 1.
- (9) (a) Andruszkiewicz, R.; Walkowiak, A. Org. Prep. Proc. Int. 2001, 33, 379. (b) Czajgucki, Z.; Sowinski, P.; Andruszkiewicz, R. Amino Acids 2002, in press.
- (10) (a) Andruszkiewicz, R.; Milewski, S.; Borowski, E. J. Enzyme Inhib. 1995, 9, 123. (b) Andruszkiewicz, R.; Jedrzejczak, R.; Zieniawa, T.; Wojciechowski, M.; Borowski, E. J. Enzyme Inhib. 2000, 15, 429.
- (11) Cammas, S.; Renard, I.; Boutault, K.; Guerin, P. *Tetrahedron: Asymmetry* **1993**, *4*, 1925.
- (12) Typical Procedure for the Preparation of 4a and 4b: The appropriate substrate 2a,b (5 mmol), and DPPA (1.18 mL, 5.5 mmol) were dissolved in t-BuOH (20 mL). The reaction flask was flushed with argon, and Et₃N (0.75 mL, 5.5 mmol) was added. The reaction mixture was refluxed for 4 h and cooled to r.t. The solvent was removed under reduced pressure, the residue dissolved in EtOAc (50 mL). In the case of 4a, the solution was washed with sat. NaHCO₃ solution, water and finally dried over anhyd MgSO₄. After evaporation of the solvent, the solid residue was crystallized from EtOAc and hexane to yield 4a (0.77 g, 70%). Mp: 128-129 °C; $[\alpha]_{D}$ +10.0 (*c* 1, EtOAc). ¹H NMR (200 MHz, CDCl₃): δ = 3.66–3,74 (dd, $J_{4a,4b}$ = 9.5 Hz, $J_{4a,5a}$ = 5.6 Hz, 1 $H CHCH_2$, $4H_a$), 3.85–3.95 (dd, $J_{4b,4a} = 9.5 Hz$, 1 H, $CHCH_2$, 4 H_h), 5.05–5.10 (dd, $J_{5a,4b}$ = 9.5 Hz, $J_{5a,4a}$ = 5.6 Hz, 1 H, CHCH₂, 5 H_a), 5.28 (s, 2 H, CH₂C₆H₅), 5.9 (br s, 1 H, NH), 7.40(s, 5 H, C₆H₅). Anal. Calcd for C₁₁H₁₁NO₄: C, 59.73; H, 5.01; N, 6.33. Found: C, 59.58; H, 5.12; N, 6.38. In the case of 4b, after evaporation of the solvent, the product was purified by column chromatography (silica gel, hexaneethyl acetate 2:3) furnishing 4b (0.58g, 80%) which was crystallized from ethyl acetate and hexane. Mp: 95-97 °C; $[\alpha]_{D}$ +20.1 (c 1, EtOAc). ¹H NMR (200 MHz, CDCl₃): $\delta =$ $3.65-3.75(dd, J_{4a,4b} = 9.6 Hz, J_{4a,5a} = 5.5 Hz, 1 H, CHCH_2, 4$ H_a), 3.85 (s, 3 H, CH_3), 3.86–3.96 (dd, $J_{4a,4b} = 9.6$, $J_{4b,5a} = 5.5$ Hz, 1 H, CHC H_2 , 4 H_b), 5.01–5.09 (dd, $J_{5a,4b} = 9.6$ Hz, $J_{5a,4b} = 5.5$ Hz, 1 H, $CHCH_2$, 5 H_a), 6.24 (br s, 1 H, NH). Anal. Calcd for C₅H₇NO₄: C, 41.38; H, 4.86; N, 9.65. Found: C, 41.22; H, 4.74; N, 9.60.
- (13) **Typical Procedure, 4a,b to 5a–5c:** Compound **4a** or **4b** (9 mmol), DMAP (25 mg) and Et₃N (1.5 mL, 11 mmol) were dissolved in dry THF (25 mL) and cooled in an ice bath. A solution of $(Boc)_2O$ (2.05 g, 9.4 mmol) in THF (8 mL) was added to a stirred reaction mixture over 20 min. The temperature of the reaction was kept between 5 °C and 10 °C overnight. Then, equimolar amounts of NaHSO₄ (1.32 g, 11 mmol) in water (10 mL) were added. After evaporation of the solvent under reduced pressure, the white suspension was dissolved in EtOAc (50 mL), and the solution was washed with dilute NaHSO₄ solution, water and finally dried (MgSO₄) and evaporated. The solid was crystallized from diethyl ether and hexane to give **5a** (2.5 g, 85%). Mp: 130–131 °C; $[\alpha]_D + 24.0$ (*c* 1, EtOAc). ¹H NMR (200 MHz,

CDCl₃): $\delta = 1.56$ [s, 9 H (*CH*₃)C], 4.00–4.07 (dd, $J_{4a,4b} = 10.7$, $J_{4a,5a} = 5.5$ Hz, 1 H, CH*CH*₂, 4 H_a), 4.14–4.24 (dd, $J_{5a,4b} = 9.5$ Hz, $J_{4a,4b} = 10.7$ Hz, 1 H, CH*CH*₂, 4 H_b), 4.91–4.99 (dd, $J_{5a,4b} = 9.5$ Hz, $J_{5a,4a} = 5.5$ Hz, 1 H, *CH*CH₂), 5.29 (s, 2 H, *CH*₂C₆H₅), 7.40 (s, 5 H, *C*₆H₅). Anal. Calcd for C₁₆H₁₉NO₆: C, 59.18; H, 5.96; N, 4.36. Found: C, 59.34; H, 5.92; N, 4.22. In the same manner compound **5c** was obtained (1.54 g, 70%). Mp: 76–78 °C; $[a]_D$ +36.8 (*c* 2.5, MeOH). ¹H NMR (200 MHz, CDCl₃): $\delta = 1.55$ [s, 9 H (*CH*₃)C], 3.87 (s, 3 H, CH₃), 4.00–4.08 (dd, $J_{4a,4b} = 10.7$, $J_{4a,5a} = 5.5$ Hz, 1 H, CH*CH*₂, 4H_a), 4.14–4.25 (dd, $J_{5a,4b} = 9.5$ Hz, $J_{4a,4b} = 10.7$ Hz, 1 H, CH*CH*₂, 4 H_b), 4.89–4.97 (dd, $J_{5a,4b} = 9.5$ Hz, $J_{5a,4a} = 5.5$ Hz, 1 H, *CHCH*₂). Anal. Calcd for C₁₀H₁₅NO₆: C, 48.98; H, 6.17; N, 5.71. Found: C, 49.17; H, 6.22; N, 5.58.

(14) **Synthesis of 5b:** (5*S*)-5-Benzyloxycarbonyl-2-oxazolidinone 4a (1.99 g, 9 mmol) was dissolved in THF (30 mL) and Et₃N (10 mL). The reaction mixture was cooled to -20 °C. A solution of benzyl chloroformate (2.6 mL, 18) mmol) in THF (3.3 mL) was slowly added over 20 min. The stirred reaction mixture was then kept at -10 °C overnight. The reaction mixture was quickly neutralized with a stoichiometric amount of cold 10% aq solution of NaHSO₄ and extracted with EtOAc (2×50 mL). The extracts were washed with water, dried (MgSO₄) and evaporated. The solid residue was dissolved in a small volume of hot EtOAc and diluted with a large volume of diethyl ether. Crystals were collected to give **5b** (2.4g, 80%). Mp: 112–114 °C; [α]_D +24.0 (*c* 2.5, EtOAc). ¹H NMR (200 MHz, CDCl₃): $\delta = 4.04 - 4.12 \text{ (dd, } J_{4a,4b} = 10.6, J_{4a,5a} = 5.5 \text{ Hz}, 1 \text{ H}, \text{CH}CH_2,$ 4H_a), 4.18–4.28 (dd, $J_{5a,4b} = 9.5$ Hz, $J_{4a,4b} = 10.6$ Hz, 1 H, $CHCH_2$, 4 H_b), 4.93–5.01 (dd, $J_{5a,4b} = 9.5$ Hz, $J_{5a,4a} = 5.5$ Hz, 1 H, CHCH₂), 5.27 (s, 2 H, CH₂C₆H₅-benzyl ester), 5.31 (s, 2 H, $CH_2C_6H_5$ -benzyloxycarbonyl group), 7.35–7.45 (br s,

10 H, $2 \times C_6 H_5$). Anal. Calcd for $C_{19}H_{17}NO_6$: C, 64.22; H, 4.82; N, 3.94. Found: C, 64.34; H, 4.68; N, 3.88.

- (15) (a) Representative Experimental Procedure: Compound 5a-5c (5 mmol) was quickly dissolved in dry THF (50 mL) and cooled under argon to -40 °C. Benzyltrimethylammonium hydroxide (5.5 mL of 40% solution in methanol, 10.5 mmol) was added over 20 min to the solution of 5a-5c and stirred for an additional 1 h. HOAc (1.1 mL) and water (2.5 mL) were then added and the reaction mixture was warmed to r.t. and the solvent was evaporated under reduced pressure. The residue was extracted with EtOAc (2×50 mL). The extracts were washed, dried over MgSO4 and evaporated. The solid residue was crystallized from a mixture of EtOAc and hexane to yield 6a (0.77 g, 75%). Mp: 93–94 °C; [α]_D +6.4 (*c* 2.5, MeOH). Similarly, **6b** was also obtained (0.89 g, 75%). Mp: 117–119 °C; $[\alpha]_{D}$ +3.2 (*c* 2.5, MeOH). Physical and spectral data for **6a** and **6b** are in agreement with literature values, see ref.^{15b} (b) Burger, K.; Windeisen, E.; Pires, R. J. Org. Chem. 1995, 60, 7641.
- (16) **Preparation of 7a:** Compound **5a** (0.64 g, 2 mmol) was dissolved in a mixture of THF (10 mL) and MeOH (15 mL) and palladium on activated carbon (5%, 50 mg) was added. The reaction flask was flushed with hydrogen and the hydrogenation was performed at atmospheric pressure for 1 h at r.t. The catalyst was filtered off and the solvents were evaporated. The residue was crystallized from a mixture of EtOAc and hexane to give **7a** (0.43g, 94%). Mp: 99–100 °C; $[\alpha]_D + 28.2$ (*c* 1, MeOH). ¹H NMR (500 MHz, CDCl₃): $\delta = 1.56$ [s, 9 H (*CH*₃)C], 4.08–4.11 (dd, *J*_{4a,4b} = 10.7, *J*_{4a,5a} = 5.4 Hz, 1 H, CH*CH*₂, 4 H_a), 4.21–4.25 (dd, *J*_{5a,4b} = 9.8 Hz, *J*_{5a,4a} = 5.4 Hz, 1 H, *CHCH*₂). Anal. Calcd for C₉H₁₃NO₆: C, 46.75; H, 5.67; N, 6.06. Found: C, 46.78; H, 5.52; N, 5.98.