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Sulfoadhesin

Divergent syntheses of sulfated sialyl Lewis X oligosaccharides corresponding to the core 1 and core 6 branches of the L-selectin ligand are
reported. These synthetic targets incorporate a selectively protected serine residue at the reducing terminus, providing a functional handle for
further conjugation.

The selectins are a family of C-type lectins that mediate the been shown further that 6-sulfo-slis the primary recogni-
early stages of leukocyte homing to sites of inflammation. tion epitope fon-selectin and that anti 6-sulfo-st.antibod-
E- and P-selectin are induced on endothelial cells upon ies bind ligands expressed on HEV, thus inhibitirgelectin
cytokine stimulation from underlying inflamed tisstie- pinding® “Sulfoadhesin” represents a family of glycan
Selectin is constitutively expressed on leukocytes and is stryctures found on the glycoprotein ligands feselectin
involved in interactions with high endothelial venule (HEV)- (Figure 1). This family consists of a coceGalNAc residue
like blood vessels that develop at sites of chronic inflam- that is elaborated with one or more 6-sulfo-slaapping
mation? The interactions of the three selectins with their groups. An extended carbohydrate chain elaborated from the
cognate glycoprotein ligands are necessary for the adhesions_OH of the core GalNAc residue defines the core 1 branch.
of leukocytes to the endothelium and their subsequent . : . . .
extravasation into the tissue. Likewise, the core 6 branch is defined by elaboration from
the 6-OH of the same GalNAc residéiBoth the core 6 and

. A common cgrbohydr_ate motif shared _by many selectin core 1 branches bearing the 6-sulfo-Skpitope have been
ligands is the sialyl Lewis X tetrasaccharide (§Lit has shown to be involved in-selectin binding. However, the

(1) Rosen, S. D.; Bertozzi, C. Rurr. Opin. Cell. Biol.1994 6, 663—

673. (5) Mitsuoka, C.; Sawada-Kasugai, M.; Ando-Furui, K.; Izawa, M.;
(2) Lowe, J. B.Immunol. Re. 2002 186, 19—36. Nakanishi, H.; Nakamura, S.; Ishida, H.; Kiso, M.; Kannagi,JRBiol.
(3) Rosen, S. DAm. J. Pathol1999 155 1013-1020. Chem.1998 273 11225-11233.

(4) Hemmerich, S.; Leffler, H.; Rosen, S. D. Biol. Chem1995 270, (6) Bill, R. M.; Revers, L.; Wilson, I. B. HProtein GlycosylationKluwer

12035-12047. Academic Publishers: Norwell, MA, 1998.

10.1021/0l0493195 CCC: $27.50  © 2004 American Chemical Society
Published on Web 06/11/2004



s handle is critical for the conjugation of the carbohydrate

epitopes to any carrier of interest and thereby increases the

Core 6 HOOH scope of biological studies that can be performed with these
branch CoXoH compounds. A selectively protected serine residue was
OH OH CO,-HO _oH W NHAG introduced at the reducing terminus as an aglycone. Fur-
AHCSN-u-;-J\ g; oZ’,_{fT‘«o thermore, because serine is located at the reducing terminus
HO “s0- | in natural oligosaccharides of this type, compouhéd are
OH,OR C0,-HO _on 0. HO o o / biologically rel_evant. o . .
42/1 &/OZXKJ&, SL"L--O\_ N\ o The synthesis was initiated with compousi@which was
AR e Al e web g vt o iy deprotected with 20% triethylamine (TEA) in MeOH to
Core 1 7207 on Oy ™ provide triol 6, an intermediate common to all structures
branch HoOH iﬁ%.mxé (Scheme 1). Triob was then divergently converted Toor
o}

Scheme 1. Synthesis otx-GalNAc-Serine
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Figure 1. Structure of sulfoadhesin with core 1 and core 6 branches
highlighted.

not been directly measured. ®
To evaluate the individual contributions of the sulfoadhesin
branches ta-selectin binding, the synthesis of 6-O-sulfated o
oligosaccharides corresponding to corel)lgnd core 6 2) st
branches and their nonsulfated counterpaBs 4) was
undertaken (Figure 2). Although sulfated oligosaccharides
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R=H respectively. The use of arphthalimido group was deemed
OH,OH co2 HO OH to be incompatible with the protecting groups of the serine
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residue. Therefore, theg-phthalimido (NPht) group o®'©

: AcHN was replaced with a R-2',2',2'-trichloroethylcarbonyl

on HO (NHTroc) group to providelO in a three-step procedure
HOOH HoX (Scheme 2).
AcHN g To maximize the efficiency of the synthesis of hexasac-
if §:ﬁ°5 OH charidesl and 3, a route was developed that incorporated
' CbzHN I two key regioselective glycosylation reactions. Known

compoundL1'* was reacted witff usingN-iodosuccinimide
Figure 2. Synthetic targets corresponding to corell énd core (NIS) and trifluoromethanesulfonic acid (TfOH) as promoters
6 (2) branches and their nonsulfated counterpaBsagd 4, to give the disaccharide in good yield with complete
respectively). regioselectivity (Scheme 2). The acetyl esters of this disac-
charide were then removed to provitiz Compoundl2 was
. . . condensed with1l0 under identical conditions to yield
similar to1 and2 have been synthesized previously by other tetrasaccharid&3, again with complete regioselectivity and

grou ps’ th? mcorpt_)r_anon of reactive functional groups a.t in excellent yield for this type of unprecedented transforma-
their reducing termini has not been reported. Such a reactlvetion
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Scheme 2. Synthesis of Core 1 Tetrasaccharide
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with acid. All the free hydroxyl groups were then protected
as acetyl esters to givel. The azide ofL4 was reductively

acetylated using neat AcSH, and this was followed by
removal of the NHTroc group with Zn and subsequent

acetylation of the unmasked amine to provitte and 16,

respectively. The ®-TBDPS group ofL6 was then removed

Scheme 3. Synthesis of Core 1 Continued
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Scheme 4. Completion of Compoun@
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to provide the selectively protected compouhd a key
intermediate, needed for selective sulfation. Indeed, global
deprotection of all the ester functionality Y with NaOMe
in MeOH/H,O gave 18 (Scheme 4), whereas sulfation
followed by deprotection yieldetid (Scheme 5). Enzymatic
sialylation of the tetrasaccharide intermediates using a
recombinanti-2,3-sialyltransferasex2,3-SiaT) angB-CMP-
p-sialic acid as the donor, followed by fucosylation with an
o-1,3-fucosyltransferase{1,3-FucT) angB-GDP+.-fucose,
gave the desired compountisand 3 in excellent yieldt?

For the synthesis of compoun@sand 4, compoundl10
was condensed wit8 using NIS/TfOH to give20 (Scheme

Scheme 5. Completion of Compound
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Scheme 6. Synthesis of Core 6 Scheme 7. Completion of Compound2 and4
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6). Protecting group manipulations similar to those used to Aﬁﬁﬁwo&‘)o&&o
generatel 7 were used to convef0 to 23 over three steps. HO POHQ% Ao
Just as in the case af7, the 60-TBDPS group oR23 was et Mo
removed to provide trisaccharidt. 2 ACHN
Compound 24 was then either fully deprotected or oH
subjected to sulfation/deprotection conditions to pro28e CbzHN I

and 26, respectively. Elaboration of these trisaccharides by
enzymatic sialylation and fucosylation procedures gave core

6 pentasaccharid@sand4, again in excellent yield (Scheme ) ) ) )
7). two novel regioselective glycosylations. This allowed for

minimal protecting group manipulations and maximal effi-

In conclusion, syntheses of 6-sulfo-gLglycans corre-
sponding to the branches of theselectin ligand sulfoadhesin ~ C€NCY-
were completed. Both core 1 and core 6 oligosaccharides

were synthesized in a divergent fashion from common  sypporting Information Available: Synthetic procedures
intermediates. Furthermore, the synthesis of core 1 involvedang spectral data of all new compounds. This material is

available free of charge via the Internet at http://pubs.acs.org.
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