

Bioorganic & Medicinal Chemistry Letters 12 (2002) 1633-1636

Vitamin D₃: Synthesis of *seco*-C-9,11-*bisnor*-17-Methyl-1α, 25-dihydroxyvitamin D₃ Analogues

Yusheng Wu,^a Pierre De Clercq,^a Maurits Vandewalle,^{a,*} Roger Bouillon^b and Annemieke Verstuyf^b

^aGhent University, Department of Organic Chemistry, Laboratory for Organic Synthesis, Krijgslaan 281 S4, B-9000 Gent, Belgium ^bLaboratorium voor Experimentele Geneeskunde en Endocrinologie, K.U. Leuven, Onderwijs en Navorsing Gasthuisberg, Herestraat 49, B-3030 Leuven, Belgium

Received 14 January 2002; accepted 3 April 2002

Abstract—The synthesis and biological properties of *seco*-C-9,11-bisnor-17-methyl-1 α ,25-dihydroxyvitamin D₃ novel D-ring analogues are described. © 2002 Elsevier Science Ltd. All rights reserved.

The observation that 1α ,25-dihydroxyvitamin D₃ (1, calcitriol) is active in the regulation of cell proliferation and differentiation, next to the classical role in calciumbone homeostasis, has led in recent years to the development of analogues capable of dissociating cell differentiating effects from calcemic effects (Fig. 1).^{1–3}

Figure 1.

*Corresponding author. Tel.: +32-9-264-4460; fax: +32-9-264-4998; e-mail: pierre.declercq@rug.ac.be In the context of a long-standing study⁴ of analogues modified in the central part (C-8–C-20) we presently describe the synthesis of new 17-methyl 'D-ring' analogues, lacking the six-membered C-ring, **3** (natural A-ring) and **4** (19-*nor* compounds). The geminal dimethyl group at C-13 (steroid numbering) mimics C-12 and C-18, in **1** and **2** which are known to influence side chain orientations.³ As this also holds for the C-20 configuration we plan to produce both the *R* (natural) and *S* epimers. It is indeed generally assumed that the relative position in space of the 1 α - and 25-hydroxy groups is important for the biological activity and that the side chain occupies a very restricted topology at the binding site of the vitamin D receptor (VDR).^{3,5}

Analogues 3 and 4 will be constructed via the Lythgoe coupling⁶ of an appropriate 8-formyl-D-ring fragment 5 (from 1S,3R-camphoric acid 7) with respectively phosphine oxides **6a**⁸ and **6b**.^{7a}

In the preceding paper,⁹ we described the synthesis of the related 21-*nor*-17-methyl D-ring analogues via the unsaturated ester **8** which was found to be also a valuable precursor for the present target molecules (Scheme 1). Several approaches for the introduction of the required 21-methyl group, for example conjugate addition to **8** or substitution of tosylate **23b** (Scheme 2), failed due to the highly hindered position of C-20.

A viable route was then found, involving a copper mediated SN_2' reaction¹⁰ on allylic bromide **10** obtained from **8** (Scheme 1).

0960-894X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(02)00222-6

The reaction was completely diastereoselective and led to **11** with unnatural 20(*S*) configuration. This is in accordance with the Felkin rule¹¹ and with Corey's model¹² of $d-\pi^*$ complexation in SN₂' reactions.

Chemical proof followed from routine transformation of **11** into the rigid lactone **19** (Scheme 2). Lactonisation of intermediate **18** led to **19**(S) instead of the — on the

basis of Felkin's model — expected 20(R). Structure 19 was established by NOE, COSY, ¹H and ¹³C NMR experiments. Lactone 19 is the thermodynamically most stable epimer as in 20 there is severe sterical hindrance due to the 1,3-diaxial interaction between C-18 and C-21. That, indeed acid catalyzed epimerization had occurred during the lactonisation was shown by reduction of 18 and 19 which respectively led to the two epimeric diols 21 and 22.

Scheme 1. (a) See ref 8; (b) DIBALH, CH_2Cl_2 , $-78 \rightarrow 50$ °C, 2.5 h; (c) CBr_4 , Ph_3P , CH_2Cl_2 , $-60 \rightarrow 35$ °C, 2 h; (d) $CuBrMe_2S$, MeLi, $ZnCl_2$, THF, $-78 \rightarrow -50$ °C, 4.5 h, then 9, $-78 \rightarrow rt$, 5.5 h; (e) 9-BBN, THF, 50 °C, 3.5 h, then 30% H_2O_2 , 50 °C, 1 h; (f) $Py \cdot SO_3$, $DMSO - CH_2Cl_2$, $-20 \rightarrow 15$ °C, 1.5 h, (g) $(MeO)_2P(O)CHN_2$, *t*-BuOK, THF, $-78 \circ C$, 40 min, 11, $-78 \rightarrow rt$; (h) LDA, HMPA, THF, -20 °C, then R_2CO , $-30 \rightarrow 5$ °C, 2–3 h; (i) TBAF, THF, rt; (j) $(COCl)_2$, DMSO, CH_2Cl_2 , $-78 \circ C$, then Et_3N , $-78 \rightarrow -10$ °C, 2–3 h; (k) 5%, Rh/Al_2O_3 , 1 atm H_2 , EtOAc, rt 8 h.

Scheme 2. (a) TBAF, THF, rt, 4 h; (b) (COCl₂), DMSO, $-78 \,^{\circ}$ C, then Et₃N, $-78 \rightarrow -10 \,^{\circ}$ C, 3 h; (c) (i) MeMgBr, THF, 20 $^{\circ}$ C, 2 h, (ii) PDC, CH₂Cl₂, rt, 12 h; (d) O₃, NaOH, MeOH–CH₂Cl₂, $-78 \,^{\circ}$ C, 3 h; (e) *m*-CPBA, CHCl₃, rt 3 days; (f) LiOH, THF–MeOH, rt, overnight; (g) TsOH, CH₂Cl₂, rt, 12 h, (h): DIBALH, CH₂Cl₂, $-78 \rightarrow -40 \,^{\circ}$ C, 3 h; (i) O₃, hexane–CH₂Cl₂–MeOH, py, $-78 \,^{\circ}$ C, 2 h, then, NaBH₄, $-78 \rightarrow 20 \,^{\circ}$ C, 4 h; (j) DBU, CH₂Cl₂, rt, 12 h, 45–49% conversion; (k) (i) MeOCH₂PPh₃·Cl, LDA, THF–HMPA (5:2), $-20 \rightarrow 0 \,^{\circ}$ C, 1 h, then 25, $-40 \rightarrow$ rt, 2.5 h; (l) Hg(OAc)₂, THF, rt, 1 h, then 7% KI, (m) (MeO)₂P(O)CHN₂ *t*-BuOK, THF, $-78 \,^{\circ}$ C, 1 h, 27, $-75 \,^{\circ}$ C, \rightarrow rt, 16 h; (n) LDA, HMPA, THF, $-20 \,^{\circ}$ C, then R₂CO, $-30 \rightarrow 5 \,^{\circ}$ C, $2 \rightarrow 3$ h; (o) TBAF, THF, rt; (p) (COCl)₂, DMSO, CH₂Cl₂, $-78 \,^{\circ}$ C, then Et₃N, $-78 \rightarrow -10 \,^{\circ}$ C, 2 -3 h; (q) 5%, Rh/Al₂O₃, 1 atm H₂, EtOAc, rt 8 h.

Transformation of **11** into the C-8 formyl precursors **15** and **16** is straightforward; hydroboration and oxidation gave **12**, which upon Seyferth's¹³ reaction led to alkyne **13**. Reaction of lithiated **13** with a series of ketones gave **14a,b,c** which were then transformed into **14a,b,c** (two steps) and **16a,b,c** (three steps).

For the synthesis of analogues with the natural 20(R) configuration (Scheme 2) we planned to equilibrate aldehyde 24 to epimer 25. Therefore 11 was transformed in two steps to 24. Base catalyzed equilibration gave a 1:1 ratio of 24 and 25 which could be separated by preparative HPLC. Homologation (1C) of 25 led, via 26, to 27, the C-20 epimer of 12. Subsequent synthesis of precursors 29a,b,c and 30a,b,c was carried out in essentially the same yields as described for 14a,b,c or 15a,b,c (see Scheme 1) from 2.

Finally Lythgoe coupling⁶ of the 8-formyl precursors with phosphine oxide **6a** or **6b** and subsequent depro-

Scheme 3. (a) BuLi, THF, $-78 \degree C \rightarrow -20 \degree C$, 3 h; (b) TBAF, THF, rt, 12 h.

 Table 1.
 Biological activities

tection afforded the title compounds **3** and **4** (Scheme 3) with six different side chains each with respectively the 20-(R) and -(S) configuration (see Table 1).

The affinity to the pig intestinal mucosa vitamin D receptor (VDR) was evaluated as described previously.¹⁴ The relative affinity of the analogues was calculated from their concentration needed to displace 50% of [³H] 1 α ,25(OH)₂D₃ from its receptor compared with the activity of **1** (assigned a value of 100%). The in vivo calcemic effects were tested in vitamin D-replete normal NMRI mice by daily intraperitoneal injections of 1 α ,25(OH)₂D₃, its analogues or the solvent during 7 consecutive days, using serum calcium concentration as parameter.

The biological evaluation was determined in vitro on different cell lines (HL 60, MCF-7, keratinocytes). All results are the mean of at least three experiments and are expressed as percentage activity (at 50% dose response) in comparison with 1α ,25(OH)₂D₃ (=100% activity). The affinity of the D-ring analogues for VDR varied between 30 and 80% compared to **1** (Table 1).

The antiproliferative (MCF-7, keratinocytes) activities are high, especially for the hexafluoro analogues; as a general observation it appears that, within a pair of 20epimers, the S-epimer is the more potent. Several analogues display high ratios of differentiation between antiproliferative and calcemic effects. The antiproliferative activities of WY 1112 and WY 1113 are comparable with the in vitro activity of known 'top' analogues such as 20-*epi*-22-oxa-24,26–27-trihomo-1 α ,25(OH)₂D₃ (KH 1060)¹⁵ or 20-*epi*-22-ethoxy-23-yne-24,26,27-trihomo-1 α ,25(OH)₂D₃ (CB 1093).¹⁶

Side chain	Code	C-20	A-ring	VDR	HL-60	MCF-7	Keratinocytes	Calcium serum
	1	R	3	100	100	100	100	100
	WY 821	S	3	85	800	2000	1000	8
Д КОН	WY 1036	R	3	6	50	60	100	0.25
	WY 1116	S	4	40	600	400	600	0.5
	WY 1037	R	4	3	10	8	80	0.12
ОН	WY 826	S	3	85	1250	15,000	7000	100
	WY 1018	R	3	50	150	300	400	2
	WY 1117	S	4	60	500	7500	7000	20
	WY 1019	R	4	10	80	150	300	0.5
CF ₃ CF ₃	WY 1112	S	3	60	400	30,000	20,000	>100
	WY 1038	R	3	30	150	2500	2400	10
	WY 1113	S	4	40	400	20,000	16,000	100
	WY 1039	R	4	9	100	600	1500	50
СН	WY 9361	S	3	75	800	1250	3250	3
	WY10061	R	3	60	80	600	500	3
	WY 1106	S	4	40	350	1300	2000	4
	WY 1046	R	4	7	85	70	200	0.12
Сон	WY 9371	S	3	80	600	750	800	25
	WY 10051	R	3	80	75	150	80	2
	WY 1107	S	4	60	400	700	300	2
	WY 1047	R	4	50	50	85	85	0.25
CF ₃ OH CF ₃	WY 939	S	3	75	1250	8000	15,000	25
	WY 10071	R	3	60	250	4500	3600	6
	WY 1108	S	4	50	400	6000	15,000	25
	WY 1048	R	4	50	300	1500	3000	3

Further details of the biological activities and considerations obtained from comparison with other D-ring analogues will be published elsewhere.

Acknowledgements

We thank the 'FWO', the 'Ministerie voor Wetenschapsbeleid' and THERAMEX S.A. for financial support.

References and Notes

 Bouillon, R.; Van Baelen, H. Saudi Med. J. 1989, 10, 260.
 DeLuca, H. F.; Burmester, J.; Darwish, H.; Krisinger, J. In Comprehensive Medicinal Chemistry; Pergamon: New York, 1990; vol. 3, p 1129.

3. Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocrine Reviews 1995, 16, 200.

4. (a) Bouillon, R.; De Clercq, P.; Pirson, P.; Vandewalle, M. Novel structural analogues of vitamin D; patent PCT/EP 93.202037.3; priority date 09-07-1993. (b) Sabbe, K.; D'Halleweyn, C.; De Clercq, P.; Vandewalle, M.; Bouillon, R.; Verstuyf, A. Bioorg. Med. Chem. Lett. 1996, 6, 1697. (c) Gui-Dong, Z.; Yongjun, C.; Xiaoming, Z.; Vandewalle, M.; De Clercq, P.; Bouillon, R.; Verstuyf, A. Bioorg. Med. Chem. Lett. 1996, 6, 1703. (d) Yong-Yung, C.; De Clercq, P.; Vandewalle, M. Tetrahedron Lett. 1996, 52, 9361. (e) Wu, Y.; Shi, L.; D'Halleweyn, C.; Van Haver, D.; De Clercq, P.; Vandewalle, M. Bioorg. Med. Chem. Lett. 1997, 7, 928. (f) Linclau, B.; De Clercq, P.; Bouillon, R.; Verstuyf, A.; Vandewalle, M. Bioorg. Med. Chem. Lett. 1997, 11, 1461 and 1465. (g) Sas, B.; De Clercq, P.; Vandewalle, M. Synlett 1997, 10, 1167. (h) Verstuyf, A.; Verlinden, L.; Van Baelen, H.; Sabbe, K.; D'Hallewyn, C.; De Clercq, P.; Vandewalle, M.; Bouillon, R. J. Bone Miner. Res. 1998, 13, 549. (i) Zhou, X.; Zhu, G.-D.; Van Haver, D.; Vandewalle, M.; De Clercq, P. J.; Verstuyf, A.; Bouillon, R. J. Med. Chem. 1999, 42, 3539. (j) Verstuyf, A.; Verlinden, L.; Van Etten, E.; Shi, L.; Wu, Y.; D'Halleweyn, C.; Van Haver, D.; Zhu, G.-D.; Chen, Y.-J.; Zhou, X.; Haussler, M. R.; De Clercq, P.; Vandewalle, M.; Van Baelen, H.; Mathieu, C.; Bouillon, R. *J. Bone Miner. Res.* **2000**, *2*, 237; for an analogous approach, see: Kutner, A. Zhao, H.; Fitak, H.; Wilson, S. R. *Bioorg. Chem.* **1995**, *23*, 22. Hilpert, H.; Wirz, B. *Tetrahedron* **2001**, *57*, 681.

5. Rochel, N.; Wurtz, J. M.; Mitscher, A.; Klaholz, B.; Moras, D. *Mol. Cell* **2000**, 173.

6. (a) Lythgoe, B.; Moran, T. A.; Nambudiry, M. E. N.; Tideswell, J.; Wright, P. W. J. Chem. Soc., Perkin Trans. 1 1978, 590. (b) Kocienski, P. J.; Lythgoe, V. J. Chem. Soc., Perkin Trans. 1 1978, 1290.

7. (a) Perlman, K. L.; Sicinski, H. K.; DeLuca, H. F. *Tetrahedron Lett.* **1990**, *31*, 1823. (b) Bouillon, R.; Sarandeses, L. A.; Allewaert, K.; Zhao, J.; Mascarenas, J. L.; Mourino, A.; Vrielynck, S.; De Clercq, P.; Vandewalle, M. *Bone Miner. Res.* **1993**, *8*, 1009.

Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho,
 A. D.; Sereno, J. F.; Uskokovic, M. R. J. Org. Chem. 1986, 51, 3098.

9. Wu, Y.; Sabbe, K.; De Clercq, P.; Vandewalle, M.; Verstruyf, A.; Bouillon, R. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1629.

 (a) Nakamura, E.; Sekiya, K.; Arai, M.; Aoki, S. J. Am. Chem. Soc. 1989, 111, 3091. (b) Lipshutz, B. H.; Ellsworth, D. L.; Siahaan, T. J. Am. Chem. Soc. 1988, 110, 4834.

11. Cherest, M.; Felkin, H.; Prident, N. Tetrahedron Lett. 1968, 2199.

12. Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3063.

13. (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. **1971**, *36*, 1379. (b) Gilbert, J. C.; Weeracoriva, U. J. Org. Chem. **1979**, *44*, 4997.

14. Bouillon, R.; Allewaert, K.; Van Leeuwen, J. P. T. M.; Tan, B. K.; Xiang, D. Z.; De Clercq, P.; Vandewalle, M.; Pols, H. A. P.; Bos, M. P.; Van Baelen, H.; Birkenhäger, J. C. J. *Biol. Chem.* **1992**, *267*, 3044.

15. Binderup, L.; Latini, P.; Binderup, E.; Bretting, C.; Calverley, M.; Hansen, K. *Biochem. Pharmacol.* **1991**, *42*, 1569.

Pakkala, I.; Savli, H.; Knuutila, S.; Binderup, L.; Pakkala,
 S. Leuk. Res. 1997, 4, 321.