Synthesis, Characterization, and DNA Binding and Cleavage Properties of Copper(II)-tryptophanphenylalanine-1,10-phenanthroline/2,2'-bipyridine Complexes

by Pulimamidi R. Reddy*, Nomula Raju, and Battu Satyanarayana

Department of Chemistry, Osmania University, Hyderabad – 500007, India (phone: +91-40-27171664; fax: +91-40-27090020; e-mail: rabi_pr@rediffmail.com)

The mononuclear dipeptide-based Cu^{II} complexes $[Cu^{II}(trp-phe)(phen)(H_2O)] \cdot ClO_4$ (1) and $[Cu^{II}(trp-phe)(bpy)(H_2O)] \cdot ClO_4$ (2) (trp-phe=tryptophanphenylalanine, phen=1,10-phenanthroline, bpy=2,2'-bipyridine) were isolated, and their interaction with DNA was studied. They exhibit intercalative mode of interaction with DNA. The intercalative interaction was quantified by *Stern–Volmer* quenching constant (K_{sq} =0.14 for 1 and 0.08 for 2). The Cu^{II} complexes convert supercoiled plasmid DNA into its nicked circular form hydrolytically at physiological conditions at a concentration as low as 5 μ M (for 1) and 10 μ M (for 2). The DNA hydrolysis rates at a complex concentration of 50 μ M were determined as 1.74 h⁻¹ (R=0.985) for 1 and 0.65 h⁻¹ (R=0.965) for 2. The rate enhancement in the range of 2.40–4.10 × 10⁷-fold compared to non-catalyzed double-stranded DNA is significant. This was attributed to the presence of a H₂O molecule in the axial position of the Cu complexes.

Introduction. - During the last decade, the interaction between transition metal complexes and DNA has received much attention [1-14], since binding studies of small molecules to DNA are important in the development of new therapeutic reagents and DNA probes [15–19]. Cu^{II}–Peptide–diimine complexes were shown to bind to DNA in a nonspecific (noncovalent) mode of interaction such as electrostatic, groove [20][21], intercalative, and partial intercalative binding [22]. Synthesis, structure, and nuclease properties of ternary Cu^{II}-peptides with 1,10-phenanthroline were reported and structurally characterized by X-ray crystallography [23]. Most of the applications of these complexes require that the complexes bind to DNA through an intercalative mode. Since aromatic moieties are known to play an important role in DNA binding through intercalation, we have isolated a peptide, trp-phe, with aromatic side chains and synthesized its Cu^{II} complexes with phen and bpy ligands. The DNA-binding properties of these Cu^{II} complexes were explored by spectroscopic and viscosity measurements. Their catalytic activity towards pUC19 DNA was also investigated. The rate of hydrolysis of DNA catalyzed by the complexes was determined by kinetics experiments. The rate enhancement in the range of $2.40 - 4.10 \times 10^{7}$ -fold compared to non-catalyzed double-stranded DNA is impressive.

Results and Discussion. – *Synthesis and Solubility.* The synthesis of **1** and **2** is schematically presented in *Scheme 1*. The complexes are partially soluble in MeOH and EtOH, but they show good solubility in aqueous MeOH/EtOH. They were non-

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

hygroscopic and stable in both solid and solution phases. The analytical data for the Cu^{II} complexes are in good agreement with the molecular formulae of the complexes. The molar conductance values are too low to account for any dissociation of the complexes in MeOH, indicating the non-electrolytic nature of the complexes (*Table 1*).

Scheme 1. Syntheses of Complexes 1 and 2

Table 1. Physicochemical Data for Complexes 1 and 2

Complex	$\mu_{\rm eff} ({ m BM})$ [nm]	ESI-MS	UV/VIS	$\Lambda_{\rm M}$ [Ω^{-1} cm ² mol ⁻¹]
$[Cu^{II}(trp-phe)(phen)(H_2O)] \cdot ClO_4 (1) [Cu^{II}(trp-phe)(bpy)(H_2O)] \cdot ClO_4 (2)$	2.01	593	206, 222, 268, 626	1.60
	1.69	587	244, 298, 310, 613	2.10

In spite of trying different conditions and solvents, we could not succeed in isolating single crystals. However, the complexes were fully characterized. The geometries were determined by UV/VIS and EPR studies. The molecular-modeling structures were also obtained to determine the bond distances. They are comparable with those obtained by X-ray crystallography for the analogous [Cu(gly-trp)(phen)] system [23].

Characterization of Cu^{II}–trp-phe–phen/bpy Complexes. In the IR spectra of free dipeptide, the N–H and C=O stretching vibrations were observed at 3316 and 1684 cm⁻¹ respectively, the N–H stretching was merged with O–H stretching vibration of H₂O molecule and appeared as a broad band at 3420 cm⁻¹ for **1**, 3446 cm⁻¹ for **2** (NH₂+

 H_2O), and the C=O band was shifted to 1654 cm⁻¹ upon complexation in both the complexes. The ν_{as} (COO⁻) and ν_{s} (COO⁻) stretching vibrations for 1 and 2 were observed at 1654 and 1384 cm⁻¹, respectively. The large difference between the two values indicates that the COO- groups are coordinated to the metal ion in a monodentate fashion [24]. In phen, the peaks corresponding to the ring stretching frequencies (ν (C=C) and ν (C=N)) at 1502 and 1421 cm⁻¹ were shifted to higher frequencies (ca. 1518 and 1426 cm⁻¹, resp.); in bpy, the peaks corresponding to the ring stretching frequencies (ν (C=C) and ν (C=N)) at 1557 and 1452 cm⁻¹ were shifted to 1603 and 1474 cm⁻¹, respectively, indicating the coordination of the heterocyclic Natoms to the Cu ion for 1 and 2, respectively. The characteristic out-of-plane H-bending modes of free phen observed at 853 and 738 cm⁻¹ (for bpy at 780 and 714 cm⁻¹) were shifted to 848 and 722 cm⁻¹ (for bpy 768 and 703 cm⁻¹), respectively, upon metal complexation. The very strong bands at 1086 cm⁻¹ for **1** and 1094 cm⁻¹ for **2** were assigned to ν (Cl–O) of ClO₄. The rocking and wagging modes of M–OH₂ were observed at 920 cm⁻¹ and 623 cm⁻¹, respectively, for both the complexes [25]. The new non-ligand peaks at 454 and 512 cm⁻¹ were assigned to ν (Cu–O) and ν (Cu–N) stretching vibrations, respectively [26]. These values are comparable with those observed for analogous Cu^{II} complexes [23]. However, the slight variations may be attributed to the presence of an aromatic side chain in trp-phe.

The observed magnetic moment values (μ_{eff} =2.01 and 1.69 BM for 1 and 2, resp.) are indicative of paramagnetic nature of Cu complexes with spin (1/2) system [27].

The electronic spectra for the Cu^{II} complexes were recorded in MeOH. Four absorption bands with varied intensity were observed for **1** (*Fig. 1*) and **2** (Fig. S1)¹). The intense bands at 206 and 222 nm of **1**, and 244 and 298 nm of **2** were assigned to intra-ligand (π - π *) transition of phen and bpy ligands, respectively, while the less intense bands at 268 nm of **1** and at 310 nm of **2** were assigned to the LMCT transitions. Besides, a broad band observed at 626 nm for **1** and 613 nm for **2** in the spectra matches well with the reported ${}^{2}B_{1}g \rightarrow {}^{2}B_{2}g - (\nu_{1}) (d_{x^{2}-y^{2}} \rightarrow d_{yz})$ transition of the five-coordinated Cu^{II} in an approximate square-pyramidal geometry [28]. They agree well with the reported analogous systems [23].

The active chemical species of the complexes were identified by means of electrospray ionization mass spectrometry (ESI-MS). The peaks observed at m/z 593 and 587 were due to the formation of species [Cu(trp-phe)(phen)]⁺ for **1** and [Cu(trp-phe)(bpy)]+Na⁺ for **2**.

The solid-state EPR spectra of **1** and **2** at room temperature was indicative of S = 1/2, which also showed four *g*-tensor *viz*. g_1 , g_2 , g_3 , and g_4 values at 2.04, 2.09, 2.17, and 2.45, respectively, for **1**, and 2.08, 2.15, 2.31, and 2.45, respectively for **2**, where $g_4 > g_3 > g_2 > g_1$ (*Table 2*). It was observed earlier that if the value of g_4 is higher than 2.3, it is indicative of covalent character of the M–L bonds [29].

The EPR spectra of the complexes provided good evidence for distinguishing the two ground states of five-coordinated structure, *i.e.*, $d_{x^2} - d_{y^2}$ (square-pyramidal) and d_{z^2} (trigonal-bipyramidal). For the system with $g_3 > g_2 > g_1$, the ratio of $(g_2 - g_1)/(g_3 - g_2)$, hereafter called parameter R, will give information regarding the ground-state orbital. If R > 1, predominantly the ground-state is d_{z^2} , and if R < 1, the ground-state will

¹⁾ Supplementary material (Figs. S1-S4) for complex 2 is available upon request from the authors.

Fig. 1. *UV/VIS Absorption spectra of complex* $\mathbf{1}$ (*inset:* $d \rightarrow d$ transition).

Table 2. EPR Parameters of Complexes 1 and 2 (at room temperature)

Complex	g_1	g_2	g_3	g_4	R^{a})
$\frac{[\operatorname{Cu}^{II}(\operatorname{trp-phe})(\operatorname{phen})(\operatorname{H}_2\operatorname{O})] \cdot \operatorname{ClO}_4(1)}{[\operatorname{Cu}^{II}(\operatorname{trp-phe})(\operatorname{bpy})(\operatorname{H}_2\operatorname{O})] \cdot \operatorname{ClO}_4(2)}$	2.04 2.08	2.09 2.15	2.17 2.31	2.45 2.45	0.625 0.437
^a) $R = (g_2 - g_1)/(g_3 - g_2).$					

be $d_{x^2} - d_{y^2}$, which corresponds to square-pyramidal structure. The R (R < 1) values for **1** and **2** (*Table 2*) indicate a $d_{x^2} - d_{y^2}$ ground state, which is consistent with a distorted square-pyramidal structure [30].

The thermal decomposition stoichiometries of the analytically characterized complexes were determined by TGA (thermogravimetric analyses). The spectra showed no mass loss in the temperature range of $25-180^{\circ}$. However, in the range of $180-240^{\circ}$, a mass loss of 3.2% (calc. 3.1%; 18 mass units) was observed. This is due to the loss of one coordinated H₂O molecule from **1** and **2**.

The minimum-energy conformers for the Cu complexes were calculated for the corresponding axial coordination of H₂O above and below the plane (*Fig.* 2 for 1; Fig. S2, for 2^1)). The energy differences between the two planes (H₂O coordination) were found to be 14.28 kcal/mol for 1 and 16.34 kcal/mol for 2, respectively. The extra stability found in below-the-plane systems may be attributed to an intramolecular H-bonding network between the axial H₂O molecule and the C=O O-atom of COO⁻, NH

Fig. 2. Proposed geometry and energy-minimized molecular structures, relative energies, and bond lengths of $\mathbf{1}$ with H_2O molecule a) above and b) below the plane

of amide group, and the stacking interaction between the indole ring of peptide and phenyl ring of phen/bpy.

Based on the above results, a structure is proposed with an approximate squarepyramidal geometry where four equatorial positions are occupied by NN and NO donor atoms of phen/bpy and peptide, respectively, and the axial position is occupied by a H₂O molecule. This concurs with the X-ray structure of Cu^{II}–gly-trp–phen complex [23] where an amide N-atom was coordinated in the axial position instead of a H₂O molecule.

DNA Binding. The interaction of small molecules with double-helical DNA may increase or decrease T_m , the temperature at which the double helix is cleaved into a single-stranded DNA. While increase in T_m values indicates an intercalative or phosphate binding, decrease is typical for base binding. The thermal denaturation profile of DNA in the absence and presence of complexes is provided in *Fig. 3.* As can be seen, an increase of *ca.* 4° for **1** and *ca.* 3° for **2** was observed in the T_m profile of complexes as compared to free DNA. This provides a clear evidence for an intercalative/phosphate binding of Cu complexes with DNA.

Hydrodynamic measurements that are sensitive to length change (*i.e.*, viscosity and sedimentation) are regarded as the least ambiguous and the most critical tests of a binding model in solution in the absence of crystallographic structural data [31]. A classical intercalation model demands that the DNA helix must lengthen as base pairs

Fig. 3. *Thermal denaturation profiles of* a) *free CT DNA, and* b) and c) *after addition of* **1** *and* **2**, *respectively.* The concentrations of **1** or **2** and DNA were 30 μM. *Inset:* differential melting curves.

are separated to accommodate the binding ligand/complex leading to an increase of DNA viscosity. In contrast, a partial intercalation of ligand/complex could bend (or kink) the DNA helix, and reduce its effective length and concomitantly its viscosity. The effect of **1** and **2** on the viscosity of DNA at room temperature is shown in *Fig. 4*. The viscosity of the DNA increases steadily with an increasing amounts of the complexes. Such behaviour is consistent with other intercalators (*i.e.*, EB), which increase the relative specific viscosity for the lengthening of the DNA double helix resulting from an intercalation. The results clearly emphasize that both of the complexes intercalate between adjacent DNA base pairs, causing an extension in the helix thereby increasing the viscosity of DNA [32].

Ethidium bromide (EB) emits intense fluorescence light in the presence of DNA, due to its strong intercalation between the adjacent DNA base pairs. It was reported earlier that the enhanced fluorescence can be quenched by the addition of a second molecule [33][34]. The extent of quenching fluorescence EB bound to DNA was used to determine the extent of binding between the second molecule and DNA. The emission spectra of EB bound to DNA in the absence and the presence of the complex 1 is shown in *Fig.* 5 (Fig. S3, for 2¹)). The addition of complexes to DNA pretreated with EB caused appreciable reduction in emission intensity, indicating that the complexes efficiently compete with EB in binding to DNA. According to the *Stern–Volmer* equation, $I_0/I = 1 + K_{sq}r$, where I_0 and I are the fluorescence intensities in

Fig. 4. Effect of increasing amounts of **1** (**■**) and **2** (**●**) on the relative viscosities of CT DNA at room temperature in 5 mM Tris · HCl buffer. Conditions: [DNA]=200 µM, [complex]=0–200 µM.

the absence and the presence of complexes, respectively, K_{sq} is linear *Stern–Volmer* quenching constant dependent on the ratio of concentration of bound EB to the concentration of DNA, and *r* is the concentration ratio of the complex to DNA. The quenching plots (Insets of *Fig. 5* and Fig. S3¹)) illustrate that the quenching of EB bound to DNA by the complexes is in good agreement with the linear *Stern–Volmer* equation, which indicates that the complexes bind to DNA. In the plot of I_0/I vs. [complex]/[DNA], K_{sq} is given by the ratio slope/intercept, the K_{sq} values for **1** and **2** are 0.14 and 0.08, respectively.

Fluorescence *Scatchard* plots for the binding of EB to CT DNA in the presence of complexes were obtained as described by *Lepecq* and *Paoletti* [35]. The binding isotherms of EB and DNA in the absence and presence of the complexes were determined experimentally, and are presented in *Fig. 6*. As can be seen from the plots, a decrease of slope upon the addition of the complexes **1** and **2** confirm an exclusive intercalative mode of binding with DNA.

DNA Cleavage. The cleavage activity was demonstrated by gel-electrophoresis experiments using supercoiled (SC) plasmid pUC19 DNA in a medium $Tris \cdot$ HCl/NaCl buffer. These experiments were monitored by the addition of varying concentrations of the complex (0–100 µM) to 2 µl of pUC19 DNA, and the total volume was increased to 16 µl by adding 5 mM $Tris \cdot$ HCl/5 mM NaCl buffer. When DNA was incubated with increasing concentrations of the complexes, SC DNA was degraded to nicked circular

Fig. 5. Emission spectra of EB bound to DNA in the absence (\cdots) and presence (-) of **1** [1]/[DNA]=0, 0.8, 1.60, 2.41, 3.19, 3.97, and 4.78, $\lambda_{ex} = 540$ nm. Inset: Stern–Volmer quenching plot.

(NC) form. The catalytic activities of **1** and **2** are depicted in *Fig.* 7. The activity of **1** starts at a concentration as low as 5 μ M (*Fig.* 7,*a*). At 50 μ M, a complete conversion of SC plasmid DNA into the NC form was observed, and at 100 μ M of **1**, the DNA was completely smeared (*Fig.* 7,*b*). In contrast, only 40% cleavage was achieved with **2** (*Fig.* 7,*c*). This may be due to the efficient binding of **1** with DNA compared to that of **2** and may also be due to the generation of stable [Cu(phen)₂]⁺ species which could be related to the presence of an indole ring of trp-phe moiety, which is known to stabilize the radical species. Similar observations were made by *García-Raso et al.* [23].

To ensure that the Cu complexes are solely responsible for the cleavage, several control experiments were performed under identical conditions. No cleavage of DNA was observed with free Cu (100 μ M) and free ligands (100 μ M; *Fig. 7,a*; *Lanes 5, 6*, and 7, resp.). In a control experiment with DMSO (1 mM), a known radical scavenger, only slight inhibition (*ca.* 2%) of DNA cleavage was observed (*Fig. 7,a, Lane 8* for 1; and *Fig. 7,c, Lane 7* for 2), ruling out the possibility of DNA cleavage *via* OH·-based depurination pathway and also a possible oxidative cleavage [36] (dioxygen+Cu complex+traces of DNA). This observation indicates that the DNA cleavage was the result of hydrolysis of a phosphodiester bond [37–42]. Thus, the present study reveals that no diffusable radical is involved in the DNA cleavage, as no external agents like H₂O₂, MPA, ascorbic acid, or light were employed in the cleavage experiments.

138

Fig. 6. Fluorescence Scatchard plots for the EB to CT DNA in the absence (\blacktriangle) and presence of $\mathbf{1}(\bullet)$ and $\mathbf{2}$ (\bullet). The term r_{EB} is the concentration ratio of bound EB to total DNA, and c_{f} is the concentration of free EB.

The cleavage of pUC19 DNA by **1** and **2** was kinetically monitored by quantification of SC and NC forms of DNA. The observed distribution of SC and NC DNA in agarose gel provides a measure of the extent of hydrolysis of the phosphodiester bond in each plasmid DNA, and the data were used to perform simple kinetics. The kinetic plots (*Fig. 8* for **1** and Fig. S4, for **2**¹)), which show a decrease of SC and an increase of NC forms of DNA *vs.* time, follow the *pseudo*-first-order kinetics, and both forms fitted well to a single exponential curve. From these curve fits, the DNA hydrolysis rates were determined as 1.74 (R=0.985) and 0.65 h⁻¹ (R=0.963) for **1** and **2**, respectively. The enhancement of DNA hydrolysis rate constant by metal complexes in the range of 0.09-0.25 h⁻¹ was considered impressive [43][44]. With the rate constants of 1.74 (for **1**) and 0.65 h⁻¹ (for **2**), which amounts to $2.40-4.10 \times 10^7$ -fold rate enhancement compared to non-catalysed double stranded DNA, is significant considering the type of ligands and experimental conditions.

Based on the above conclusions, a tentative mechanism for the hydrolytic cleavage of DNA may be as follows: *i*) activation of the Cu-coordinated H_2O molecule, and formation of a nucleophile Cu–OH species; *ii*) phosphodiester coordination with amide and amine N-atoms through an electrostatic interaction; *iii*) intramolecular OH transfer from Cu^{II} to phosphate. There are literature reports on an intramolecular pathway for the hydrolysis of phosphate diester [45]. A hydrolytic cleavage mechanism was established by enzymatic religation of the termini with T4 DNA ligase which

Fig. 7. Agarose gel-electrophoresis pattern for the cleavage of supercoiled pUC19 DNA by 1 and 2 at 37° in a buffer containing 5 mM Tris \cdot HCl/5 mM aqueous NaCl. a) Lane 1: DNA control, Lane 2: DNA+1 (5 μ M), Lane 3: DNA+1 (10 μ M), Lane 4: DNA+1 (25 μ M), Lane 5: DNA+Cu(NO₃)₂ (100 μ M), Lane 6: DNA+phen (100 μ M), Lane 7: DNA+trp-phe (100 μ M), Lane 8: DNA+1 (25 μ M)+DMSO (1 mM). b) Lane 1: DNA control, Lane 2: DNA+1 (25 μ M), Lane 3: DNA+1 (50 μ M), Lane 4: DNA+1 (100 μ M). c) Lane 1: DNA control, Lane 2: DNA+2 (10 μ M), Lane 3: DNA+2 (25 μ M), Lane 4: DNA+2 (50 μ M), Lane 5: DNA+2 (75 μ M), Lane 6: DNA+2 (100 μ M), Lane 7: DNA+2 (100 μ M)+DMSO (1 mM).

requires 5'-phosphate and 3'-OH groups. Based on the efficiency of religation, it was concluded that hydrolysis gave equally probable 3'- and 5'-products [46].

Accordingly, a L–M–OH form, which is the active species in the hydrolysis of phosphate backbone in an enzyme/model, is depicted in *Scheme 2*.

Conclusions. – Two new Cu^{II} –peptide–phen/bpy complexes were successfully synthesized, and their structures were established. Their DNA binding and cleavage abilities were investigated. The Cu^{II} complexes bind to CT DNA in an exclusive intercalative mode. They show good catalytic activity in the absence of any external agents or light under physiological conditions.

P. R. R. thanks the Council of Scientific and Industrial Research (CSIR) New Delhi for financial assistance through major research project. He also thanks UGC for the award of Emeritus Fellowship.

Fig. 8. Disappearance of supercoiled (SC) DNA and formation of nicked circular form (NC) in the presence of complex **1**. Conditions: [complex]=50 μM; in aqueous buffer (pH 7.2) at 37°.

Experimental Part

General. Boc-tryptophan, phenylalanine methyl ester, $Cu(NO_3)_2 \cdot 3 H_2O$, 2,2'-bipyridine, 1,10phenanthroline, and ethidium bromide (EB) were obtained from *Sigma* (99.99% purity), USA, and were of anal. grade. The peptide trp-phe was synthesized by the known procedure [47]. The calf thymus (CT) DNA was obtained from *Fluka* (Switzerland); and pUC 19 DNA, agarose, and *Tris*·HCl were obtained from *Bangalore Genei* (India). All the chemicals were used as supplied. UV/VIS Spectra: *Shimadzu 160A* spectrophotometer (800–200 nm) and *JASCO V-530* UV/VIS spectrophotometer; with 1-cm quartz micro-cuvettes. IR Spectra: *Perkin-Elmer* FT-IR spectrometer, in KBr pellets, in the 4000–400 cm⁻¹ range. ESI-MS: *Quattro Lc* (*Micro mass*, Manchester, UK) triple quadruple mass spectrometer with MassLynx software. Elemental analyses: *Heraeus Carlo Erba 1108* elemental analyzer. Molar conductivity: *Digisun* digital conductivity bridge (model: *DI-909*) with a dip-type cell. Magnetic susceptibilities of complexes: at r.t. on a *Faraday* balance (*CAHN-7600*) using Hg[Co(NCS)₄] as the standard; diamagnetic corrections were made by using *Pascal*'s constants [48]. EPR Spectra: *JEOL* (*JES-FA200*) X-band spectrometer at r.t. TGA Analyses: *METTLER TOLEDO* (*TGA/SDTA 851e*) thermo-analyzer at 25–300°, heating rate of 5°/min. The molecular-modeling calculations were carried out with semi-empirical PM3 Hamiltonian as implemented in hyperchem software programme package. Gel pattern of electrophoresis was photographed by *Alpha-Innotec* gel documentation system (USA).

Concentrated CT DNA stock soln. was prepared in 5 mM *Tris*·HCl/50 mM NaCl in double dist. H₂O at pH 7.5, and the concentration of DNA soln. was determined by UV absorbance at 260 nm ($\varepsilon = 6600 \text{ M}^{-1} \text{ cm}^{-1}$) [49]. Soln. of CT DNA in 5 mM *Tris*·HCl/50 mM NaCl (pH 7.5) gave a ratio of UV absorption at 260 and 280 nm, A_{260}/A_{280} , of *ca*. 1.8–1.9, indicating that the DNA was sufficiently free of protein [50]. All stock solns. were stored at 4° and were used within 4 d. The concentration of EB was determined spectrophotometrically at 480 nm ($\varepsilon = 5680 \text{ M}^{-1} \text{ cm}^{-1}$) [51].

Syntheses of Peptide and Complexes. The dipeptide trp-phe was synthesized by conventional solnphase method [47] using EDCI and HOBt as coupling agents and dry CH_2Cl_2 as solvent. While (*tert*butoxy)carbonyl (Boc) group was used for N-protection, the C-terminal was protected as methyl ester (COOMe). Deprotection of Boc was achieved with TFA/CH₂Cl₂ 1:1, and saponification of the methyl ester required LiOH in THF/MeOH/H₂O 3:1:1. ¹H-NMR (200 MHz, CDCl₃): 2.00 (br., 2 H); 2.93–3.95 (*m*, 5 H); 4.85 (*m*, 1 H); 6.82–7.20 (*m*, 8 H); 7.21 (*m*, 2 H); 8.00 (*m*, 1 H); 10.10 (*d*, 2 H). ESI-MS: 351.

To a mixture of trp-phe (0.351 g, 1.0 mmol) and KOH (0.056 g, 1.0 mmol) in H₂O, an aq. soln. of $Cu(NO_3)_2 \cdot 3 H_2O$ (0.241 g, 1.0 mmol) was added with stirring, followed by the addition of phen (0.198 g, 1.0 mmol) or bpy soln. (0.156 g, 1.0 mmol) in MeOH (2 ml). The stirring was continued for *ca*. 3 h at 60°. After cooling to r.t., an aq. soln. of $NaClO_4 \cdot H_2O$ (0.181 g, 1.0 mmol) was added, and stirring was continued for another 30 min. The resulting violet-blue precipitate was filtered and washed with EtOH and cyclohexane, and dried *in vacuo* to afford 72 and 65% of **1** and **2**, resp.

Data of [*Cu*^{II}(*trp-phe*)(*phen*)(*H*₂*O*)]*ClO*₄ (**1**). UV/VIS (MeOH): 626, 268, 222, 206. IR (KBr): 3420 (br.), 3263s, 2953*m*, 1684vs, 1654s, 1576*m*, 1518s, 1426s, 1384s, 1146*m*, 1086*m*, 920*m*, 848s, 722*m*, 623*w*, 512*m*, 454*m*. ESI-MS: 593 ([Cu(trp-phe)(phen)]⁺). Anal. calc. for C₃₂H₃₀ClCuN₅O₈ (711.61): C 54.01, H 4.25, N 9.84; found: C 53.01, H 4.02, N 9.95. μ_{eff} =2.01 BM. Λ_{M} (10⁻³ M in MeOH, 25°)=1.60 Ω^{-1} cm² mol⁻¹.

Data of [Cu^{II}(trp-phe)(bpy)(H₂O)]ClO₄ (**2**). UV/VIS (MeOH): 613, 310, 298, 244. IR (KBr): 3446 (br.), 3253s, 2954m, 1684vs, 1654s, 1603m, 1474s, 1445vs, 1382s, 1250m, 1094m, 1032s, 768vs, 731m, 703m, 623w, 512m, 454m. ESI-MS: 587 ([[Cu(trp-phe)(bpy)]+Na]⁺). Anal. calc. for C₃₀H₃₀ClCuN₅O₈ (687.59): C 52.40, H 4.40, N 10.19; found: C 52.01, H 4.25, N 10.56. μ_{eff} =1.69 BM. Λ_{M} (10⁻³ M in MeOH, 25°)=2.10 Ω⁻¹ cm² mol⁻¹.

DNA Binding. Thermal-Denaturation Studies. The thermal-denaturation studies were performed on Shimadzu 160A spectrophotometer equipped with a thermostatic cell holder. DNA ($30 \mu M$) was treated with complexes **1** or **2** ($30 \mu M$) in a ratio of 1:1 in buffer ($5 \, \text{mM} \, Tris \cdot \text{HCl}/50 \, \text{mM} \, \text{NaCl}$) at pH 7.5. The samples were continuously heated at the rate of 1°/min while monitoring the absorption changes at 260 nm. Melting-temp. (T_m) and the melting-interval (ΔT_m) data were obtained according the procedure reported in [52].

Viscometric Studies. Viscometric titrations were performed with an *Ostwald* viscometer at r.t. The concentration of DNA was 200 μ M, complex concentration was varied from 0–200 μ M, and the flow times were measured with a digital timer. Each sample was measured three times for accuracy, and an average flow time was determined. Data is presented as (η/η_0)^{1/3} vs. [complex]/[DNA], where η is the viscosity of DNA in the presence of complex and η_0 that of DNA alone. Viscosity values were calculated from the

observed flow time of DNA containing solns. (t) corrected for that buffer alone (5 mm Tris·HCl/50 mm NaCl) (t_0), $\eta = (t-t_0)$.

Fluorescence-Spectroscopic Studies. Fluorescence spectra were recorded with *SPEX-Fluorolog* 0.22 m fluorimeter equipped with a 450-W Xe lamp. The slit widths were $2 \times 2 \times 2 \times 2$, and the emission spectral range was 550–650 nm. All fluorescence titrations were carried out in 5 mm *Tris*·HCl/50 mm NaCl (pH 7.5). Soln. containing DNA and EB was titrated with varying concentrations of **1** and **2**. The concentration of DNA and EB was maintained at 41 µM, and the concentration of complexes was in the range of 0–196 µM. The solns. containing DNA and EB were mixed (equimolar ratio), and the complexes **1** and **2** were added and allowed to equilibrate. They were excited at 540 nm (λ_{max} for EB), and the fluorescence emissions at 598 nm (λ_{max}) were recorded.

Fluorescence spectra were also utilized to obtain *Scatchard* plots. For this, titration of DNA against EB in the absence and presence of Cu complexes were performed. Initial concentration of DNA in 5 mm *Tris*·HCl/50 mM NaCl was 20 μ M, and the concentration of **1** and **2** were kept at 50 μ M. After each addition of EB to the solns. containing DNA and Cu complexes, the emission spectra were recorded in the range of 550–650 nm with excitation at 540 nm at 25°. Corrections were made to the data for the volume changes during the course of titrations. The data were analyzed by the method of *Lepecq* and *Paoletti* [35] to obtain bound (c_b) and free (c_f) concentration of EB, and *Scatchard* plots were obtained by plotting $r_{EB}/c_f vs. r_{EB}$ (where $r = c_b/c$ conc. of DNA).

DNA Cleavage. The DNA cleavage experiments were performed with supercoiled (SC) plasmid pUC19 DNA at pH 7.2 in *Tris*·HCl buffer. DNA Cleavage experiments were monitored by the addition of varying concentrations of the complexes **1** and **2** ($0-100 \ \mu$ M) to 2 μ l of pUC19 DNA, the total volume was increased to 16 μ l by adding 5 mM *Tris*·HCl/5 mM NaCl buffer. After mixing, DNA solns. were incubated for 1 h at 37°. The samples were subjected to electrophoresis in TAE (*Tris*·AcOH EDTA buffer) for 2 h at 60 V. The gel was stained with 0.5 μ g/ml EB and photographed under UV light.

Blank experiments were carried out using free $Cu(NO_3)_2 \cdot 3 H_2O$ and free ligands (trp-phe, phen) at 100 μ M. Experiments were also carried out with known radical scavenger DMSO. Kinetic analyses were carried out at a fixed concentration of DNA and **1** or **2** (50 mM), with different incubation times under identical experimental conditions.

REFERENCES

- [1] M. J. Clarke, F. Zhu, D. R. Frasca, Chem. Rev. 1999, 99, 2511.
- [2] J. Liu, W.-J. Mei, A.-W. Xu. C.-P. Tan, S. Shi, L.-N. Ji, Antiviral Res. 2004, 66, 65.
- [3] J. Liu, W.-J. Mei, A.-W. Xu, C.-P. Tan, L.-N. Ji, *Transition Met. Chem. (Dordrecht, Neth.)* **2003**, *28*, 500.
- [4] D. S. Sigman, A. Mazumder, D. M. Perrin, Chem. Rev. 1993, 93, 2295.
- [5] K. E. Erkkila, D. T. Odom, J. K. Barton, Chem. Rev. 1999, 99, 2777.
- [6] M. Narra, P. Elliott, S. Swavey, Inorg. Chim. Acta 2006, 359, 2256.
- [7] D. Lawrence, V. G. Vaidyanathan, B. U. Nair, J. Inorg. Biochem. 2006, 100, 1244.
- [8] H. Chao, L.-N. Ji, Bioinorg. Chem. Appl. 2005, 3, 15.
- [9] L.-F. Tan, H. Chao, Y.-J. Liu, H. Li, B. Sun, L.-N. Ji, Inorg. Chim. Acta 2005, 358, 2191.
- [10] J.-Z. Wu, L. Yuan, Y. Yu, Inorg. Chim. Acta 2006, 359, 718.
- [11] A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, J. Am. Chem. Soc. 1990, 112, 4960.
- [12] L.-F. Tan, H. Chao, H. Li, Y.-J. Liu, B. Sun, W. Wei, L.-N. Ji, J. Inorg. Biochem. 2005, 99, 513.
- [13] P. J. Dandliker, R. E. Holmlin, J. K. Barton, Science 1997, 275, 1465.
- [14] I. Ortmans, C. Moucheron, A. Kirsch-De Mesmaeker, Coord. Chem. Rev. 1998, 168, 233.
- [15] L.-N. Ji, X.-H. Zou, J.-G. Liu, Coord. Chem. Rev. 2001, 216-217, 513.
- [16] H. Xu, K.-C. Zheng, L.-J. Lin, H. Li, Y. Gao, L.-N. Ji, J. Inorg. Biochem. 2004, 98, 87.
- [17] Y.-J. Liu, H. Chao, L.-F. Tan, Y.-X. Yuan, W. Wei, L.-N. Ji, J. Inorg. Biochem. 2005, 99, 530.
- [18] G. Yang, J. Z. Wu, L. Wang, L. N. Ji, X. Tian, J. Inorg. Biochem. 1997, 66, 141.
- [19] G. Yang, L. Wang, L.-N. Ji, J. Inorg. Biochem. 1997, 67, 289.

- [20] Y. Jin, M. A. Lewis, N. H. Gokhale, E. C. Long, J. A. Cowan, J. Am. Chem. Soc. 2007, 129, 8353.
- [21] R. Nagane, T. Koshigoe, M. Chikira, E. C. Long, J. Inorg. Biochem. 2001, 83, 17.
- [22] R. S. Kumar, S. Arunachalam, Eur. J. Med. Chem. 2009, 44, 1878.
- [23] Á. García-Raso, J. J. Fiol, B. Adrover, V. Moreno, I. Mata, E. Espinosa, E. Molins, J. Inorg. Biochem. 2003, 95, 77.
- [24] L. H. Abdel-Rehman, L. P. Battaglia, M. R. Mahmoud, Polyhedron 1996, 15, 327.
- [25] K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds', 3rd edn., John Wiley & Sons, New York, p. 228.
- [26] G. G. Mohamed, M. M. Omar, A. M. M. Hindy, Spectrochim. Acta, Part A 2005, 62, 1140.
- [27] R. N. Patel, N. Singh, V. L. N. Gundla, Indian J. Chem., Sect. A 2006, 45, 614.
- [28] T. Murakami, S. Hatakeyama, S. Igarashi, Y. Yukawa, Inorg. Chim. Acta 2000, 310, 96.
- [29] D. Kivelson, R. Neiman, J. Chem. Phys. 1961, 35, 149.
- [30] P. Kopel, Z. Trávniček, J. Marek, M. Korabik, J. Mrozinski, Polyhedron 2003, 22, 411.
- [31] S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 1993, 32, 2573.
- [32] S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 1992, 31, 9319.
- [33] B. C. Baguley, M. Le Bret, *Biochemistry* 1984, 23, 937.
- [34] J. R. Lakowicz, G. Webber, Biochemistry 1973, 12, 4161.
- [35] J.-B. Lepecq, C. Paoletti, J. Mol. Biol. 1967, 27, 87.
- [36] R. Ren, P. Yang W. Zheng, Z. Hua, Inorg. Chem. 2000, 39, 5454.
- [37] L. A. Basile, A. L. Raphael, J. K. Barton, J. Am. Chem. Soc. 1987, 109, 7550.
- [38] T. Itoh, H. Hisada, T. Sumiya, M. Hosono, Y. Usui, Y. Fujii, Chem. Commun. 1997, 677.
- [39] K. M. Deck, T. A. Tseng, J. N. Burstyn, Inorg. Chem. 2002, 41, 669.
- [40] L. Zhu, O. dos Santos, C. W. Koo, M. Rybstein, L. Pape, J. W. Canary, Inorg. Chem. 2003, 42, 7912.
- [41] L. Bonfá, M. Gatos, F. Mancin, P. Tecilla, U. Tonellato, Inorg. Chem. 2003, 42, 3943.
- [42] F. Mancin, P. Tecilla, New. J. Chem. 2007, 31, 800.
- [43] J. Rammo, R. Hettich, A. Roigk, H.-J. Schneider, Chem. Commun. 1996, 105.
- [44] A. Roigk, R. Hettich, H.-J. Schneider, Inorg. Chem. 1998, 37, 751.
- [45] J.-H. Li, J.-T. Wang, P. Hu, L.-Y. Zhang, Z.-N. Chen, Z.-W. Mao, L.-N. Ji, Polyhedron 2008, 27, 1898.
- [46] R. Ott, R. Krämer, Appl. Microbiol. Biotechnol. 1999, 52, 761.
- [47] M. Bodanszky, A. Bodanszky, 'The Practices of Peptide Synthesis', Springer, New York, 1984.
- [48] B. N. Figgi's, J. Lewis, 'Modern Coordination Chemistry', Eds. J. Lewis, R. C. Wilkinson, Wiley Interscience, NewYork, 1967, pp. 403.
- [49] J. Marmur, J. Mol. Biol. 1961, 3, 208.
- [50] M. E. Reichmann, C. A. Rice, C. A. Thomas, P. Doty, J. Am. Chem. Soc. 1954, 76, 3047.
- [51] F. Garland, D. E. Graves, L. W. Yielding, H. C. Cheung, Biochemistry 1980, 19, 3221.
- [52] 'Methods in Molecular Biology', Eds. W. D. Wilson, F. A. Tanious, M. Fernandez-Saiz, C. T. Rigl, K. R. Fox, Humana, Clifton, New Jersey, 1997, pp. 90.

Received November 21, 2010