

Available online at www.sciencedirect.com

Tetrahedron Letters

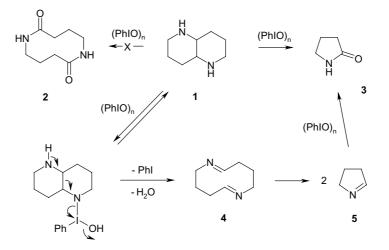
Tetrahedron Letters 45 (2004) 2051–2052

Comments on 'Unusual oxidative rearrangement of 1,5-diazadecalin'

Tammo Winkler*

Syngenta Crop Protection AG, CH 4002 Basel, Switzerland

Received 9 January 2004; revised 14 January 2004; accepted 16 January 2004


Abstract—Oxidation of *cis* or *trans* 1,5-diazadecalin with $(PhIO)_n$ yields 2-pyrrolidinone and not 1,6-diaza-2,7-cyclodecadione, as reported. This is shown by a comparison of the NMR data of the reaction product with those of 2-pyrrolidinone and 1,6-diaza-2,7-cyclodecadione.

© 2004 Elsevier Ltd. All rights reserved.

It was recently reported¹ in this journal that oxidation of *cis* or *trans* 1,5-diazadecalin (1) with (PhIO)_n yields the ring expanded bislactam 1,6-diaza-2,7-cyclodecadione (2) (Scheme 1). The reaction product was described as an oil and its NMR data were given. 1,6-Diaza-2,7-cyclodecadione, however, is a high-melting solid, whose X-ray structure analysis has been published.² Furthermore, the ¹H and ¹³C NMR data given¹ for the reaction product are those of 2-pyrrolidinone **3**, as can easily be seen by a comparison with literature data of 2-pyrrolidinone³ and of **2**⁴ (see Table 1). At room temperature,

the ¹H NMR spectrum of **2** in CDCl₃ shows six separate signals for the axial and equatorial protons of the three nonequivalent CH_2 groups due to the stable centro-symmetrical crown conformation of the macrocyclic ring. A detailed analysis of this spectrum has been published in 1982 in a study of the solution conformation of **2**.⁴

The formation of 2-pyrrolidinone can be explained by the decay of the postulated¹ intermediate bisimine 4 to the monomeric 1-pyrroline (5) or its hydrate, which is in

Scheme 1.

Keywords: Diazadecalins; Macrocyclic bislactams; NMR; Conformational analysis. * Tel.: +41-613-235047; fax: +41-613-233704; e-mail: tammo.winkler@syngenta.com

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.01.062

Table 1. ¹³C and ¹H NMR chemical shifts of 2 and 3 in CDCl₃

				5
	C(2)	C(3)	C(4)	C(5)
2 ^a	175.4	35.7	26.6	39.4
3 ¹	179.8	30.5	21.2	42.7
3 ³	179.59	30.28	20.75	42.44
	H-3	H-4	H-5	
2 ^b	2.01 t,	2.17 q,	4.10 q,	
	2.32 d	1.80 d	2.91 d	
3 ¹	2.25 t	2.08 quintet	3.36 t	
3 ³	2.29 t	2.12 quintet	3.40 t	

^a This work; cf. ¹³C NMR chemical shifts in DMSO-*d*₆ or EtOH-*d*₆⁴.

^b The chemical shift of the axial protons is listed first. At 25 °C, a slight exchange broadening is observed: Therefore only the multiplicities caused by the large geminal and trans diaxial vicinal coupling constants are given (cf. the analysis⁴ of the spectrum at 0 °C).

turn oxidized to 2-pyrrolidinone as shown⁵ by Ochiai et al. (see Scheme 1).

References and notes

- Li, X.; Xu, Z.; DiMauro, E. F.; Kozlowski, M. C. Tetrahedron Lett. 2002, 43, 3747–3750.
- Tereshko, V.; Monserrat, J. M.; Pérez-Folch, J.; Aymamí, J.; Fita, I.; Subirana, J. A. Acta Crystallogr., Sect. B 1994, B50, 243–251.
- Pouchert, C. J.; Behnke, J. In *The Aldrich Library of ¹³C and ¹H FT NMR Spectra*, 1st ed.; Aldrich Chemical Company: Milwaukee, 1993; Vol. 1, p 1285, spectra B.
- 4. Winkler, T.; Leutert, T. Helv. Chim. Acta 1982, 65, 1760-1763.
- Ochiai, M.; Inenaga, M.; Nagao, Y.; Moriarty, R. M.; Vaid, R. K.; Duncan, M. P. *Tetrahedron Lett.* **1988**, *29*, 6917–6920.