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Abstract

A photocatalytic strategy for the synthesis of γ-ketoesters was reported. Using 

dimethyl sulfoxide (DMSO) as both the solvent and the terminal oxidant, oxidative 

coupling of vinylarenes with bromocarboxylates proceeded readily, giving a variety 

of γ-ketoesters in good isolated yields and with a broad functional-group tolerance.
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γ-Ketoesters are versatile building blocks in organic synthesis since ketone and 

ester groups are reactive centers in many well-established transformations.1 

Moreover, carbonyl moiety is a ubiquitous structural feature of many natural 

products and lists among the most significant structural elements of 

pharmaceuticals.2 Thus, the development of diverse synthetic approaches to 

prepare these compounds has been the subject of intense research. Typically, 

these compounds can be prepared through the conjugate addition of an acyl 

group to a Michael acceptor (Scheme 1, eq. 1).3

Another attractive approach toward γ-ketoesters involves intermolecular 

addition of carbonyl alkyl radicals to olefins. Since inefficiency of 

intermolecular radical reactions, highly efficient radical acceptors were usually 

employed to solve this problem, and such preformed compounds include: 

enolates4 and enamines.5 In this regard, Hosomi et al. reported the 

AIBN-initiated reaction of ethyl 2-bromopropanoate with tributylstannyl 

enolate to produce γ-ketoester (Scheme 1, eq. 2).4b Kim et al. reported 

photoinduced radical alkylations of activated alkyl iodides using vinyl triflates 

in the presence of hexadimethyltin in benzene under irradiation at 300 nm, 

which gave γ-ketoesters after homolytic scission of the O-sulfone bond 

(Scheme 1, eq. 3).4e However, these methodologies require organotin 

compounds either as a starting material or as a radical initiator, which 

negatively impact the environment. Zhang and coworkers recently reported the 

visible-light-mediated radical addition of α-brominated carboxylates to 
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enamines to give the corresponding γ-ketoesters (Scheme 1, eq. 4).5c Overall, 

these above-mentioned methodologies require preformed radical acceptors as a 

substrate, which are sometimes difficult to make and thus detract from the 

practicality of these methods. Therefore, the oxidative coupling involving the 

direct C–H functionalization of alkenes would be an attractive alternative to the 

preparation of γ-ketoesters due to its step economy by the avoidance of the 

pre-functionalization process.6 For example, the Wan group recently reported 

an elegant cobalt-catalyzed oxidative coupling between vinylarenes and 

α-bromoesters to construct γ-ketoesters involving a cascade organocobalt 

addition/trapping/Kornblum−DeLaMare rearrangement (Scheme 1, eq. 5).7 

However, this protocol suffers from high reaction temperatures as well as needs 

to be carried out under strong oxidative conditions and the use of triethylamine 

as solvent.

Scheme 1 Synthesis of γ-ketoesters
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It is well known that α-bromocarboxylate can generate electrophilic alkyl 

radicals under visible-light irradiation.8 Accordingly, we envisioned that these 

electron-deficient radicals generated by the photocatalyzed reduction of the 

C-Br bond in α-bromocarboxylates can be applied in the oxyalkylation of 

alkenes, leading to the formation of γ-ketoesters, which may overcome the 

aforementioned limitations.9 In this process, the photogenerated carbonyl alkyl 

radicals are trapped by styrene, followed by single electron transfer (SET) and 

Kornblum-type oxidation,10 finally furnishing γ-ketoesters (Scheme 2, path a). 

From a synthetic point of view, this methodology is intriguing due to its mild 

conditions and the use of readily available styrenes and α-bromocarboxylates as 

starting materials. However, we need to overcome several obstacles in this 

transformation. One obstacle is determining how to avoid the undesired 

deprotonation reaction, which gives the alkenylation product (path b).8d 

Another noticeable side reaction is the well-documented atom transfer radical 

addition (ATRA) of α-bromocarboxylates to styrenes (path c).8b, 8c

Scheme 2. Our strategy for the synthesis of γ-ketoesters
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With these considerations in mind, we commenced our investigation with the 

optimization of the reaction conditions by irradiating a degassed DMSO 
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solution of 4-tertbutylstyrene (1a) and ethyl 2-bromopropanoate (2a) in the 

presence of 1 mol% fac-Ir(ppy)3 and 2 equiv. of Na2CO3 under a 24 W 

household fluorescent lamp. To our delight, the desired γ-ketoester 3a was 

obtained in 83% isolated yield after 20 h of irradiation (entry 1). Based on this 

encouraging preliminary result, the reaction parameters such as the 

photocatalyst or base used were examined to obtain the optimal reaction 

conditions, and the results are summarized in Table 1. As shown in Table 1, 

[Ir(ppy)2(dtbbpy)](PF6) was also able to promote the reaction but to a lesser 

extent than fac-Ir(ppy)3 (entry 2). Other common photocatalysts such as 

Ru(bpy)3Cl2
.6H2O and the organic photocatalyst Rose Bengal, showed 

comparatively less catalytic activity since these photocatalysts provided trace 

amounts of 3a (entries 3 to 4). The base could influence the reaction efficiency 

as it could potentially neutralize the byproduct HBr (entries 5 to 10). Replacing 

Na2CO3 with other inorganic bases such as K2CO3, K3PO4 or NaHCO3 led to a 

drop in isolated yield (entries 5 to 7). No improvement of the yield was 

observed when organic bases were employed (entries 8 to 10). The effect of 

bases on reaction outcomes was further confirmed by the observation of a 

significant drop of yield when reaction was performed in the absence of base 

(entry 11 vs entry 1). Control experiments showed that light and photoredox 

catalysts were essential for the successful transformation because the reactions 

did not proceed in the absence of light irradiation or a photocatalyst (entries 12 

and 13).
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Table 1 Optimization of the reaction conditions a

Br
OEt

O

+
1 mol% f ac-Ir(ppy)3

2 equiv. Na2CO3
DMSO, N2, r.t, CFL

O
OEt

O
1a 2a 3a

tBu
tBu

standard conditions

entry change from the “standard conditions” yield (%)b

1 standard conditions 83
2 [Ir(ppy)2(dtbbpy)](PF6) instead of fac-Ir(ppy)3 71
3 Ru(bpy)3Cl2·6H2O instead of fac-Ir(ppy)3 <2
4 Rose Bengal instead of fac-Ir(ppy)3 <2
5 K2CO3 instead of Na2CO3 70
6 K3PO4 instead of Na2CO3 49
7 NaHCO3 instead of Na2CO3 53
8 Et3N instead of Na2CO3 40
9 DBU instead of Na2CO3 51
10 Pyridine instead of Na2CO3 33
11 No base 37
12 No photocatalyst NRc

13 No light NRc

a Reaction conditions: 1a (0.50 mmol, 1.00 equiv.), 2a (1.00 mmol, 2.00 equiv.), photocatalyst (5 μmol, 
0.010 equiv.), base (1.00 mmol, 2.00 equiv.), DMSO (2 mL), 24 W CFL, N2, r.t., 20 h. b isolated yield, 
C NR = No reaction.

With the optimized reaction conditions established, we then examined the 

substrate scope of this transformation with an array of styrenes using ethyl 

2-bromopropanoate 2a as the alkyl radical source. As shown in Scheme 3, a 

variety of substituted vinylarenes was compatible with the optimal conditions 

and afforded the corresponding γ-ketoesters in moderate to good yields. The 

electronic effect of the arenes had little impact on the course of the reaction, 

and terminal vinylarenes bearing electron-donating substituents such as methyl 

(3c) and acetoxy (3d) groups and electron-withdrawing substituents such as 

phenyl (3e) and halogen (3f-3i) groups at the para-position all delivered the 

corresponding products in good yields. Additionally, 3-substituted styrene (1i) 

and naphthalene-derived substrate 1j worked well in this reaction, and the 
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corresponding ketoesters was obtained in acceptable yields. Furthermore, the 

internal alkene 1k can react smoothly to give the desired product 3k in 69% 

yield. Unfortunately, aliphatic alkenes failed to give desired products in this 

transformation.

Scheme 3. Scope of styrenes a
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a Reaction conditions: 1 (0.50 mmol, 1.00 equiv.), 2a (1.00 mmol, 2.00 equiv.), fac-Ir(ppy)3 (5 μmol, 
0.010 equiv.), Na2CO3 (1.00 mmol, 2.00 equiv.), DMSO (2 mL), 24 W CFL, N2, r.t., 20 h.

Next, we examined the generality of this transformation with respect to different 

α-bromoesters, and the results are summarized in Scheme 4. As depicted in Scheme 4, 

this photoinduced oxidative coupling is effective for a variety of α-brominated 

carboxylates. For example, methyl and tert-butyl 2-bromopropanoate as well as 

isopropyl and n-butyl ethyl bromoacetate engage in the coupling in good yield 

(4a-4d). In addition, tertiary α-carbonyl alkyl bromides worked well in the current 

reaction system, and the corresponding γ-ketoesters were obtained in good yield (4e 

and 4f).  It is known that primary α-carbonyl alkyl bromides are less likely to 

undergo single-electron reduction of C-Br bonds than are their secondary and tertiary 

counterparts due to the relatively instability of the primary alkyl radicals generated.11 
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To our delight, primary alkyl bromides 2g and 2h proved to be a compatible reaction 

partner in the current transformation and afforded the desired products 4g and 4h, 

respectively, in moderate isolated yield. Furthermore, γ-butyrolactone also exhibited 

robust reactivity in the reaction, with the desired product obtained in good yield (4j). 

Notably, this methodology can also be applied to more complex α-bromoesters 

derived from geraniol and L-menthol, giving the desired product in good yields (4k 

and 4l).

Scheme 4. Scope of α-bromoesters a
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tBu

a Reaction conditions: 1a (0.50 mmol, 1.00 equiv.), 2 (1.00 mmol, 2.00 equiv.), fac-Ir(ppy)3 (5 μmol, 
0.010 equiv.), Na2CO3 (1.00 mmol, 2.00 equiv.), DMSO (2 mL), 24 W CFL, N2, r.t., 20 h.

To further evaluate the synthetic utility and generality of the current reaction, 

we extend the application scope of this procedure to the preparation of other 

functionalized ketones. As depicted in Scheme 5, γ‑ketonitrile (5a),12 β-CF3 

ketone (5b)13 and β-nitro ketone (5c)14 could be readily synthesized from the 

corresponding alkyl bromides through the oxidative alkylation of styrenes 

under light-mediated conditions.15
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Scheme 5. Scope of alkyl bromides 2 a

Br FG+ 1 mol% f ac-Ir(ppy)3
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DMSO, N2, r.t, CFL
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a Reaction conditions: 1a (0.50 mmol, 1.00 equiv.), 2 (1.00 mmol, 2.00 equiv.), fac-Ir(ppy)3 (5 μmol, 
0.010 equiv.), Na2CO3 (1.00 mmol, 2.00 equiv.), DMSO (2 mL), 24 W CFL, N2, r.t., 20 h.

Scheme 6. Gram-scale reaction
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To evaluate the scalability of the current protocol, a 5 mmol scale for the 

synthesis of 3a was carried out (Scheme 6). The reaction of 5 mmol 1a with 10 

mmol 2a could proceed smoothly under standard conditions and afforded the 

γ-ketoester 3a in 71% isolated yield.

To gain further insight into the reaction mechanism, several control 

experiments were carried out. First, no desired γ-ketoester 3b could be detected 

when using acetophenone as the substrate instead of styrene, suggesting a 

late-stage oxidation of the alkene double bond in this transformation (Scheme 7, 

eq. 1). Second, the reaction was totally shut down in the presence of the radical 

scavenger 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (Scheme 7, eq. 2). 

Additionally, alkyl radical A (Scheme 8) could be trapped with 
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1,1-diphenylethylene to give the product 6 in 43% yield (Scheme 7, eq. 3). 

These results, along with the control experiments shown in Table 1, suggested 

both the visible-light- driven nature and the intermediacy of an alkyl radical in 

the reaction. Third, trace amounts of 3a was detected when the reaction was 

carried out in DMF, CH3CN or MeOH under otherwise identical conditions 

(Scheme 7, eq. 4). It is possible that the residual O2 in the N2 gas reacted with 

radical intermediate B (Scheme 8) to form compound 3a.16 Furthermore, 

product 3a was obtained in 30% yield when reaction was performed under an 

atmosphere of oxygen (Scheme 7, eq. 5). These results reveal that O2 was also 

able to promote the reaction but not a major pathway. Finally, to classify the 

oxidation of DMSO, the use of tetramethylene sulfoxide in place of DMSO also 

led to 3a in moderate yield (Scheme 7, eq. 6). This result indicates that DMSO 

plays a key role in this photoinduced oxidative coupling.

Scheme 7. Mechanistic studies
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According to the aforementioned information and previous reports,8d, 17 a 

possible reaction pathway for this transformation is outlined in Scheme 8. First, 

photocatalyst fac-IrIII(ppy)3 is irradiated with visible light to provide a 

photoexcited state, *fac-IrIII(ppy)3 (E1/2
IV/*III = −1.73 V vs SCE in MeCN),18 

which readily reduces α-bromoester 2a (Ered = −0.8 V vs SCE in MeCN)19 via 

single electron transfer to generate the reactive alkyl radical A, along with the 

oxidized photocatalyst fac-IrIV(ppy)3. Radical A then undergoes the rapid 

addition reaction with styrene 1 to afford the new radical B. Subsequently, 

intermediate B20 is oxidized by fac-IrIV(ppy)3 (E1/2
IV/III = +0.77 V vs SCE in 

MeCN)18 to produce carbocation C and close the photoredox catalytic cycle. 

Finally, the Kornblum-type oxidation of intermediate C with DMSO affords the 

corresponding γ-ketoesters.

Scheme 8. Tentative reaction pathway
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In summary, we have successfully developed a visible-light-induced reaction of 

a wide variety of α-brominated carboxylates with styrenes to prepare various 

synthetically important γ-ketoesters. A distinct advantage of this protocol over 
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all previous methods is the use of inexpensive and readily available substrates 

as well as the use of DMSO as both the solvent and the terminal oxidant. We 

envisage that these features render the present protocol to be attractive in the 

syntheses of an array of medicinally and agrochemically relevant carbonyl 

compounds.

Experimental Section

General experimental information: Reagents were used as received without 

further purification unless otherwise indicated. Solvents were dried and 

distilled prior to use. Reactions were monitored with thin layer chromatography 

using silica gel GF254 plates. Organic solutions were concentrated in vacuo with 

a rotavapor. Flash column chromatography was performed using silica gel 

(200−300 meshes). Petroleum ether used had a boiling point range of 60−90°C. 

Melting points were measured on a digital melting point apparatus without 

correction of the thermometer. Nuclear magnetic resonance spectra were 

recorded at ambient temperature (unless otherwise stated) at 400 MHz (100 

MHz for 13C) in CDCl3. Chemical shifts were reported in ppm (δ) using TMS 

as internal standard, and spin−spin coupling constants (J) were given in Hz. 

High resolution mass spectrometry (HRMS) analyses were carried out on an 

FTICR HR-ESI-MS.

General procedure for the synthesis of γ-ketoesters: fac-Ir(ppy)3 (5.00 μmol, 0.010 

equiv.) and Na2CO3 (1.00 mmol, 2.00 equiv.) were added to a flame-dried Schlenk 
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flask containing a stirring bar and purged by evacuating the flask and backfilling with 

argon three times. Then anhydrous DMSO (2 mL), vinylarene (0.50 mmol, 1.00 

equiv.) and bromocarboxylate (1.00 mmol, 2.00 equiv.) were added. The reaction 

mixture was degassed by the freeze-pumpthaw method and then irradiated with a 

24W household fluorescent lamp from a distance of 2 cm for 20 h. After completion 

of the reaction, the mixture was added with 10 mL of H2O and extracted with ethyl 

acetate (10 mL) for three times. The combined organic layer was dried (Na2SO4) and 

concentrated to give crude residue which was purified by flash column 

chromatography to give the corresponding product.

Ethyl 4-(4-(tert-butyl)phenyl)-2-methyl-4-oxobutanoate (3a, known compound, 

cas: 1522361-86-9). Compound 3a was obtained as an oil in 83% yield (115 mg) after 

flash chromatography (Silica gel, petroleum ether: ethyl acetate = 50:1). 1H NMR 

(400 MHz, CDCl3) δ/ppm= 7.84 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 4.08 (q, 

J = 7.1 Hz, 2H), 3.38 (dd, J = 17.4, 7.7 Hz, 1H), 3.11 – 2.98 (m, 1H), 2.93 (dd, J = 

17.4, 5.7 Hz, 1H), 1.27 (s, 9H), 1.22 – 1.15 (m, 6H). 13C NMR (100 MHz, CDCl3) 

δ/ppm= 197.8, 176.0, 156.9, 134.2, 128.0, 125.5, 60.6, 41.8, 35.1, 35.1, 31.1, 17.3, 

14.2. Spectral data are in good agreement with literature values.7

Ethyl 2-methyl-4-oxo-4-phenylbutanoate (3b, known compound, cas: 6938-44-9). 

Compound 3b was obtained as an oil in 70% yield (77 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 50:1). 1H NMR (400 

MHz, CDCl3) δ/ppm= 7.94 – 7.81 (m, 2H), 7.56 – 7.44 (m, 1H), 7.43 – 7.32 (m, 2H), 

4.08 (q, J = 7.1 Hz, 2H), 3.41 (dd, J = 17.5, 7.8 Hz, 1H), 3.21 – 2.99 (m, 1H), 2.94 
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(dd, J = 17.5, 5.5 Hz, 1H), 1.28 – 1.15 (m, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm= 

198.1, 176.0, 136.7, 133.2, 128.6, 128.0, 60.6, 41.9, 35.1, 17.3, 14.2. Spectral data are 

in good agreement with literature values.7

Ethyl 2-methyl-4-oxo-4-phenylbutanoate (3c, known compound, cas: 

1522361-90-5). Compound 3c was obtained as an oil in 70% yield (82 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 60:1). 1H NMR (400 

MHz, CDCl3) δ/ppm= 7.80 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 4.08 (q, J = 

7.1 Hz, 2H), 3.38 (dd, J = 17.4, 7.8 Hz, 1H), 3.08 – 3.01 (m, 1H), 2.92 (dd, J = 17.5, 

5.6 Hz, 1H), 2.34 (s, 3H), 1.23 – 1.14 (m, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm= 

197.8, 176.1, 144.0, 134.3, 129.3, 128.2, 60.6, 41.8, 35.1, 21.7, 17.5, 14.2. Spectral 

data are in good agreement with literature values.7

Ethyl 4-(4-acetoxyphenyl)-2-methyl-4-oxobutanoate (3d, new compound). 

Compound 3d was obtained as an oil in 68% yield (95 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 30:1). 1H NMR (400 

MHz, CDCl3) δ/ppm=7.94 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 4.08 (q, J = 

7.1 Hz, 2H), 3.39 (dd, J = 17.6, 8.0 Hz, 1H), 3.10 – 2.97 (m, 1H), 2.91 (dd, J = 17.6, 

5.5 Hz, 1H), 2.25 (s, 3H), 1.23 – 1.15 (m, 6H). 13C NMR (100 MHz, CDCl3) 

δ/ppm=195.9, 174.9, 167.9, 153.3, 133.3, 128.6, 120.8, 59.6, 40.9, 34.0, 20.1, 16.3, 

13.1. HRMS (ESI/Q-TOF) m/z: [M+H]+ Calcd for C15H19O5 279.1232; Found 

279.1228.
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Ethyl 4-([1,1'-biphenyl]-4-yl)-2-methyl-4-oxobutanoate (3e, new compound). 

Compound 3e was obtained as white solid in 62% yield (92 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 60:1). mp= 80-82 ºC. 1H 

NMR (400 MHz, CDCl3) δ/ppm=8.05 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 

7.65 – 7.57 (m, 2H), 7.54 – 7.45 (m, 2H), 7.44 – 7.38 (m, 1H), 4.17 (q, J = 7.1 Hz, 

2H), 3.52 (dd, J = 17.5, 7.8 Hz, 1H), 3.21 – 3.09 (m, 1H), 3.04 (dd, J = 17.4, 5.5 Hz, 

1H), 1.33 – 1.23 (m, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm=196.7, 175.0, 144.8, 

138.8, 134.4, 127.9, 127.6, 127.2, 126.2, 126.2, 59.6, 40.9, 34.1, 16.3, 13.2. HRMS 

(ESI/Q-TOF) m/z: [M+H]+ Calcd for C19H21O3 297.1491; Found 297.1487

Ethyl 4-(4-fluorophenyl)-2-methyl-4-oxobutanoate (3f, known compound, cas: 

1522361-88-1). Compound 3f was obtained as an oil in 81% yield (96 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 60:1). 1H NMR (400 

MHz, CDCl3) δ/ppm= 8.04 – 7.84 (m, 2H), 7.13 – 6.99 (m, 2H), 4.08 (q, J = 7.1 Hz, 

2H), 3.39 (dd, J = 17.6, 8.1 Hz, 1H), 3.12 – 2.96 (m, 1H), 2.90 (dd, J = 17.6, 5.4 Hz, 

1H), 1.24 – 1.14 (m, 6H). 19F NMR (376 MHz, CDCl3) δ= -105.1. 13C NMR (100 

MHz, CDCl3) δ/ppm=195.5, 174.9, 164.7 (d, J = 254.7 Hz), 132.1 (d, J = 3.0 Hz), 

129.6 (d, J = 9.4 Hz), 114.7 (d, J = 21.8 Hz), 59.6, 40.8, 34.0, 16.3, 13.1. Spectral 

data are in good agreement with literature values.7

Ethyl 4-(4-chlorophenyl)-2-methyl-4-oxobutanoate (3g, known compound, cas: 

54029-07-1). Compound 3g was obtained as an oil in 85% yield (108 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 60:1). 1H NMR (400 

MHz, CDCl3) δ/ppm= 7.83 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H), 4.07 (q, J = 
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7.1 Hz, 2H), 3.38 (dd, J = 17.6, 8.1 Hz, 1H), 3.13 – 2.97 (m, 1H), 2.89 (dd, J = 17.6, 

5.4 Hz, 1H), 1.25 – 1.14 (m, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm= 196.9, 175.8, 

139.6, 135.0, 129.5, 128.9, 60.7, 41.9, 35.0, 17.3, 14.2. Spectral data are in good 

agreement with literature values.7

Ethyl 4-(4-bromophenyl)-2-methyl-4-oxobutanoate (3h, known compound, cas: 

1522361-87-0). Compound 3h was obtained as an oil in 77% yield (115 mg) after 

flash chromatography (Silica gel, petroleum ether: ethyl acetate = 60:1). 1H NMR 

(400 MHz, CDCl3) δ/ppm= 7.76 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 4.08 (q, 

J = 7.1 Hz, 2H), 3.38 (dd, J = 17.6, 8.1 Hz,1H), 3.18 – 2.96 (m, 1H), 2.88 (dd, J = 

17.6, 5.3 Hz, 1H), 1.25 – 1.13 (m, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm=196.1, 

174.8, 134.4, 130.9, 128.5, 127.3, 59.7, 40.8, 34.0, 16.3, 13.1. Spectral data are in 

good agreement with literature values.7

Ethyl 4-(3-bromophenyl)-2-methyl-4-oxobutanoate (3i, known compound, cas: 

1522361-89-2). Compound 3i was obtained as an oil in 73% yield (109 mg) after 

flash chromatography (Silica gel, petroleum ether: ethyl acetate = 40:1). 1H NMR 

(400 MHz, CDCl3) δ/ppm= 8.03 (t, J = 1.8 Hz, 1H), 7.82 (dt, J = 7.9, 1.3 Hz, 1H), 

7.62 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.28 (t, J = 7.9 Hz, 1H), 4.08 (q, J = 7.1 Hz, 2H), 

3.39 (dd, J = 17.7, 8.2 Hz, 1H), 3.13 – 2.97 (m, 1H), 2.89 (dd, J = 17.7, 5.3 Hz, 1H), 

1.25 – 1.16 (m, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm=195.8, 174.7, 137.4, 135.0, 

130.1, 129.2, 125.5, 121.9, 59.7, 40.9, 34.0, 16.3, 13.1. Spectral data are in good 

agreement with literature values.7
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Ethyl 2-methyl-4-(naphthalen-2-yl)-4-oxobutanoate (3j, known compound, cas: 

856810-67-8). Compound 3j was obtained as a white solid in 52% yield (70 mg) after 

flash chromatography (Silica gel, petroleum ether: ethyl acetate = 40:1). mp= 56-58 

ºC. 1H NMR (400 MHz, CDCl3) δ/ppm= 8.50 (d, J = 1.7 Hz, 1H), 8.03 (dd, J = 8.6, 

1.8 Hz, 1H), 7.97 (dd, J = 8.0, 1.4 Hz, 1H), 7.94 – 7.82 (m, 2H), 7.63 – 7.54 (m, 2H), 

4.17 (q, J = 7.1 Hz, 2H), 3.85 – 3.50 (m, 1H), 3.33 – 2.99 (m, 2H), 1.37 – 1.24 (m, 

6H). 13C NMR (100 MHz, CDCl3) δ/ppm=197.0, 175.0, 134.6, 133.0, 131.4, 128.7, 

128.5, 127.5, 127.4, 126.7, 125.8, 122.7, 59.6, 41.0, 34.1, 16.4, 13.2. Spectral data are 

in good agreement with literature values.21

Ethyl 2,3-dimethyl-4-oxo-4-phenylbutanoate (3k, known compound). Compound 

3k was obtained as an oil in 69% yield (81 mg) after flash chromatography (Silica gel, 

petroleum ether: ethyl acetate = 20:1). 1H NMR (400 MHz, CDCl3) δ/ppm=7.95 – 

7.89 (m, 2H), 7.59 – 7.45 (m, 1H), 7.46 – 7.39 (m, 2H), 4.12 – 4.05 (m, 1H), 4.03 – 

3.97 (m, 1H), 3.75 – 3.64 (m, 1H), 3.03 – 2.78 (m, 1H), 1.25 – 1.14 (m, 4H), 1.14 – 

1.05 (m, 5H). 13C NMR (100 MHz, CDCl3) δ/ppm=202.5, 201.6, 174.8, 174.6, 135.6, 

135.0, 132.2, 131.9, 127.7, 127.6, 127.34, 127.30, 59.6, 59.5, 42.5, 42.0, 41.73, 40.7, 

15.5, 15.2, 13.5, 13.2, 13.1, 13.0. Spectral data are in good agreement with literature 

values.5c

Methyl 4-(4-(tert-butyl)phenyl)-2-methyl-4-oxobutanoate (4a, new compound). 

Compound 4a was obtained as an oil in 70% yield (92 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 50:1). 1H NMR (400 

MHz, CDCl3) δ/ppm=7.84 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 3.63 (s, 3H), 
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3.39 (dd, J = 17.5, 7.8 Hz, 1H), 3.13 – 3.01 (m, 1H), 2.94 (dd, J = 17.5, 5.6 Hz, 1H), 

1.27 (s, 9H), 1.20 (d, J = 7.2 Hz, 3H).13C NMR (100 MHz, CDCl3) δ/ppm=196.6, 

175.5, 155.9, 133.0, 127.0, 124.5, 50.9, 40.8, 34.1, 33.9, 30.0, 16.3. HRMS 

(ESI/Q-TOF) m/z: [M+H]+ Calcd for C16H23O3 263.1647; Found 263.1643.

tert-Butyl 4-(4-(tert-butyl)phenyl)-2-methyl-4-oxobutanoate (4b, new compound). 

Compound 4b was obtained as an oil in 63% yield (96 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 40:1). 1H NMR (400 

MHz, CDCl3) δ/ppm= 7.84 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 3.33 (dd, J = 

17.1, 7.5 Hz, 1H), 3.01 – 2.89 (m, 1H), 2.86 (dd, J = 17.1, 5.8 Hz, 1H), 1.36 (s, 9H), 

1.27 (s, 9H), 1.16 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ/ppm=196.9, 

174.3, 155.7, 133.3, 127.0, 124.5, 79.2, 40.8, 35.0, 34.1, 30.1, 27.0, 16.4. HRMS 

(ESI/Q-TOF) m/z: [M+Na]+ Calcd for C19H28O3Na 327.1936; Found 327.1934.

Ethyl 4-(4-(tert-butyl)phenyl)-2-isopropyl-4-oxobutanoate  (4c, known 

compound, cas:1522362-04-4). Compound 4c was obtained as an oil in 69% yield 

(105 mg) after flash chromatography (Silica gel, petroleum ether: ethyl acetate = 

40:1). 1H NMR (400 MHz, CDCl3) δ/ppm=7.85 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 8.6 

Hz, 2H), 4.15 – 4.00 (m, 2H), 3.47 – 3.37 (m, 1H), 3.00 – 2.78 (m, 2H), 2.17 – 1.91 

(m, 1H), 1.26 (s, 9H), 1.18 (t, J = 7.1 Hz, 3H), 0.92 (dd, J = 6.9, 1.5 Hz, 6H). 13C 

NMR (100 MHz, CDCl3) δ/ppm=197.4, 173.8, 155.7, 133.2, 127.0, 124.4, 59.3, 45.5, 

36.3, 34.06, 30.1, 29.2, 19.3, 18.9, 13.2. Spectral data are in good agreement with 

literature values.7
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Ethyl 2-(2-(4-(tert-butyl)phenyl)-2-oxoethyl)hexanoate (4d, new compound). 

Compound 4d was obtained as an oil in 77% yield (123 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 70:1). 1H NMR (400 

MHz, CDCl3) δ/ppm=7.84 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 4.08 (qd, J = 

7.1, 2.4 Hz, 2H), 3.36 (dd, J = 18.6, 10.0 Hz, 1H), 3.06 – 2.86 (m, 2H), 1.69 – 1.51 

(m, 2H), 1.30 – 1.21 (m, 13H), 1.18 (t, J = 7.1 Hz, 3H), 0.83 (t, J = 12.3 Hz, 3H). 13C 

NMR (100 MHz, CDCl3) δ/ppm=197.0, 174.7, 155.8, 133.1, 127.0, 124.5, 59.4, 39.4, 

39.3, 34.1, 30.9, 30.1, 28.3, 21.5, 13.2, 12.9. HRMS (ESI/Q-TOF) m/z: [M+H]+ Calcd 

for C20H31O3 319.2273; Found 319.2269.

Isopropyl 4-(4-(tert-butyl)phenyl)-2,2-dimethyl-4-oxobutanoate (4e, new 

compound). Compound 4e was obtained as an oil in 90% yield (137 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 60:1). 1H NMR (400 

MHz, CDCl3) δ/ppm=7.81 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 4.94 (p, J = 

6.2 Hz, 1H), 3.18 (s, 2H), 1.27 (s, 9H), 1.23 (s, 6H), 1.11 (d, J = 6.2 Hz, 6H). 13C 

NMR (100 MHz, CDCl3) δ/ppm=196.2, 175.8, 155.6, 133.6, 126.8, 124.4, 66.4, 47.3, 

39.0, 34.1, 30.1, 24.7, 20.6. HRMS (ESI/Q-TOF) m/z: [M+H]+ Calcd for C19H29O3 

305.2117; Found 305.2113.

Methyl 4-(4-(tert-butyl)phenyl)-2,2-dimethyl-4-oxobutanoate (4f, new compound). 

Compound 4f was obtained as an oil in 87% yield (120 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 60:1). 1H NMR (400 

MHz, CDCl3) δ/ppm=7.81 (d, J = 8.6 Hz, 2H), 7.39 (d, J = 8.6 Hz, 2H), 3.59 (s, 3H), 

3.21 (s, 2H), 1.26 (s, 9H), 1.24 (s, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm=196.2, 
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176.9, 155.8, 133.4, 126.9, 124.5, 50.9, 47.5, 39.0, 34.1, 30.0, 24.7. HRMS 

(ESI/Q-TOF) m/z: [M+H]+ Calcd for C17H25O3 277.1804; Found 277.1802.

Ethyl 4-(4-(tert-butyl)phenyl)-4-oxobutanoate (4g, known compound, cas: 

75237-09-1). Compound 4g was obtained as an oil in 55% yield (72 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 70:1). 1H NMR (400 

MHz, CDCl3) δ/ppm= 7.93 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 4.16 (q, J = 

7.2 Hz, 2H), 3.30 (t, J = 6.7 Hz, 2H), 2.75 (t, J = 6.7 Hz, 2H), 1.39 – 1.26 (m, 12H). 

13C NMR (100 MHz, CDCl3) δ/ppm= 196.8, 172.0, 155.9, 133.0, 127.0, 124.5, 59.6, 

34.1, 32.3, 30.1, 27.3, 13.2. Spectral data are in good agreement with literature 

values.22

Benzyl 4-(4-(tert-butyl)phenyl)-4-oxobutanoate (4h, new compound). Compound 

4h was obtained as an oil in 61% yield (101 mg) after flash chromatography (Silica 

gel, petroleum ether: ethyl acetate = 40:1). 1H NMR (400 MHz, CDCl3) δ/ppm= 7.85 

(d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 7.35 – 7.22 (m, 5H), 5.08 (s, 2H), 3.25 

(t, J = 6.7 Hz, 2H), 2.75 (t, J = 6.7 Hz, 2H), 1.27 (s, 9H). 13C NMR (100 MHz, 

CDCl3) δ/ppm=196.7, 171.8, 155.9, 134.9, 132.9, 127.5, 127.2, 127.0, 124.5, 65.5, 

34.1, 32.2, 30.1, 27.3. HRMS (ESI/Q-TOF) m/z: [M+H]+ Calcd for C21H25O3 

325.1804; Found 325.1796.

4-Bromobenzyl 4-(4-(tert-butyl)phenyl)-2-methyl-4-oxobutanoate (4i, new 

compound). Compound 4i was obtained as an oil in 80% yield (167 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 40:1). 1H NMR (400 
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MHz, CDCl3) δ/ppm=7.82 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 6.0 Hz, 2H), 7.38 (d, J = 

6.0 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 5.05 – 4.96 (m, 2H), 3.39 (dd, J = 17.6, 8.0 Hz, 

1H), 3.17 – 3.04 (m, 1H), 2.95 (dd, J = 17.6, 5.4 Hz, 1H), 1.30 – 1.17 (m, 12H). 13C 

NMR (100 MHz, CDCl3) δ/ppm=196.5, 174.7, 156.0, 134.1, 133.0, 130.6, 128.7, 

127.0, 124.5, 121.0, 64.5, 40.7, 34.1, 34.0, 30.1, 16.2. HRMS (ESI/Q-TOF) m/z: 

[M+Na]+ Calcd for C22H25BrO3Na 439.0885; Found 439.0877.

3-(2-(4-(tert-Butyl)phenyl)-2-oxoethyl)dihydrofuran-2(3H)-one (4j, known 

compound, cas: 1522362-11-3). Compound 4j was obtained as a white solid in 73% 

yield (95 mg) after flash chromatography (Silica gel, petroleum ether: ethyl acetate = 

30:1). mp= 112-114 ºC. 1H NMR (400 MHz, CDCl3) δ/ppm=7.85 (d, J = 8.5 Hz, 2H), 

7.43 (d, J = 8.5 Hz, 2H), 4.38 (td, J = 8.9, 2.0 Hz, 1H), 4.22 (ddd, J = 10.4, 9.1, 6.6 

Hz, 1H), 3.66 – 3.52 (m, 1H), 3.20 – 3.03 (m, 2H), 2.63 – 2.55 (m, 1H), 1.89 (dtd, J = 

12.8, 10.4, 8.7 Hz, 1H), 1.28 (s, 9H). 13C NMR (100 MHz, CDCl3) δ/ppm=195.6, 

178.3, 156.4, 132.5, 127.0, 124.7, 65.9, 38.3, 34.3, 34.2, 30.0, 28.2. Spectral data are 

in good agreement with literature values.7

(E)-3,7-Dimethylocta-2,6-dien-1-yl 

4-(4-(tert-butyl)phenyl)-2-methyl-4-oxobutanoate (4k, new compound). Compound 

4k was obtained as an oil in 67% yield (129 mg) after flash chromatography (Silica 

gel, petroleum ether: ethyl acetate = 30:1). 1H NMR (400 MHz, CDCl3) δ/ppm= 7.84 

(d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 5.25 (tt, J = 5.7, 1.3 Hz, 1H), 5.00 (ddt, J 

= 6.9, 5.4, 1.7 Hz, 1H), 4.68 – 4.43 (m, 2H), 3.38 (dd, J = 17.4, 7.6 Hz, 1H), 3.13 – 

2.98 (m, 1H), 2.92 (dd, J = 17.4, 5.9 Hz, 1H), 2.06 – 1.92 (m, 4H), 1.63 – 1.59 (m, 
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6H), 1.52 (s, 3H), 1.26 (s, 9H), 1.19 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) 

δ/ppm=196.7, 175.0, 155.8, 141.0, 133.2, 130.7, 127.0, 124.5, 122.8, 117.3, 60.5, 

40.8, 38.5, 34.1, 30.0, 25.3, 24.7, 16.7, 16.3, 15.4. HRMS (ESI/Q-TOF) m/z: 

[M+Na]+ Calcd for C25H36O3Na 407.2562; Found 407.2554.

 (2S,5R)-2-Isopropyl-5-methylcyclohexyl 

4-(4-(tert-butyl)phenyl)-2-methyl-4-oxobutanoate (4l, new compound). Compound 

4l was obtained as an oil in 63% yield (122 mg) after flash chromatography (Silica 

gel, petroleum ether: ethyl acetate = 50:1).1H NMR (400 MHz, CDCl3) δ/ppm= 7.84 

(dd, J = 8.5, 1.8 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 4.59 (tt, J = 10.9, 4.4 Hz, 1H), 3.38 

(ddd, J = 17.4, 9.7, 7.8 Hz, 1H), 3.16 – 2.97 (m, 1H), 2.96 – 2.75 (m, 1H), 2.00 – 1.84 

(m, 1H), 1.80– 1.74 (m, 1H), 1.61 – 1.55 (m, 2H), 1.45 – 1.34 (m, 1H), 1.26 (s, 9H), 

1.19 (dd, J = 7.1, 3.9 Hz, 4H), 1.03 – 0.88 (m, 2H), 0.86 – 0.79 (m, 6H), 0.77 (d, J = 

7.1 Hz, 2H), 0.67 (dd, J = 9.9, 7.1 Hz, 6H). 13C NMR (100 MHz, CDCl3) 

δ/ppm=196.7, 196.6, 174.5, 174.5, 155.6, 155.7, 133.3, 133.2, 127.0, 126.9, 124.4, 

73.2, 73.2, 45.94, 40.8, 40.6, 39.7, 39.6, 34.4, 34.3, 34.1, 33.3, 30.4, 30.3, 30.1, 25.1, 

25.0, 22.3, 22.2, 21.0, 21.0, 19.8, 19.7, 16.74, 15.2, 15.0. HRMS (ESI/Q-TOF) m/z: 

[M+H]+ Calcd for C25H39O3 387.2899; Found 387.2889.

4-(4-(tert-Butyl)phenyl)-4-oxobutanenitrile (5a, known compound, 

cas:1154885-60-5). Compound 5a was obtained as a white solid in 53% yield (57 mg) 

after flash chromatography (Silica gel, petroleum ether: ethyl acetate = 30:1). mp= 

66-68 ºC. 1H NMR (400 MHz, CDCl3) δ/ppm=7.83 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 

8.6 Hz, 2H), 3.30 (t, J = 14.6 Hz, 2H), 2.71 (t, J = 14.6 Hz, 2H), 1.28 (s, 9H). 13C 
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NMR (100 MHz, CDCl3) δ/ppm=193.9, 156.78, 132.0, 127.0, 124.8, 118.3, 34.2, 

33.1, 30.0, 10.8. Spectral data are in good agreement with literature values.12a

1-(4-(tert-Butyl)phenyl)-4,4,4-trifluorobutan-1-one (5b, known compound, cas: 

1468771-50-7). Compound 5b was obtained as a white solid in 74% yield (96 mg) 

after flash chromatography (Silica gel, petroleum ether: ethyl acetate = 40:1). mp= 

53-55 ºC. 1H NMR (400 MHz, CDCl3) δ/ppm=7.84 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 

8.6 Hz, 2H), 3.16 (t, J = 7.8 Hz, 2 H), 2.60 – 2.42 (m, 2H), 1.28 (s, 9H). 19F NMR 

(376 MHz, CDCl3) δ/ppm=-66.4. 13C NMR (100 MHz, CDCl3) δ/ppm=195.0, 156.4, 

132.5, 127.0, 124.7, 34.1, 30.0, 27.3 (q, J = 29.7 Hz). Spectral data are in good 

agreement with literature values.13d

1-(4-(tert-Butyl)phenyl)-3-methyl-3-nitrobutan-1-one (5c, new compound). 

Compound 5c was obtained as a white solid in 72% yield (95 mg) after flash 

chromatography (Silica gel, petroleum ether: ethyl acetate = 30:1). mp= 113-135 ºC. 

1H NMR (400 MHz, CDCl3) δ/ppm= 7.80 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 

2H), 3.59 (s, 2H), 1.68 (s, 6H), 1.26 (s, 9H). 13C NMR (100 MHz, CDCl3) 

δ/ppm=194.7, 157.5, 133.8, 128.0, 125.7, 84.9, 47.0, 35.2, 31.1, 26.7. HRMS 

(ESI/Q-TOF) m/z: [M+H]+ Calcd for C15H22NO3 264.1600; Found 264.1596.

Gram-scale reaction for the synthesis of γ-ketoester 3a: fac-Ir(ppy)3 (32.75 mg, 

0.050 mmol, 0.010 equiv.) and Na2CO3 (1.01g, 10.00 mmol, 2.00 equiv.) were added 

to a flame-dried Schlenk flask containing a stirring bar and purged by evacuating the 

flask and backfilling with argon three times. Then anhydrous DMSO (25 mL), 
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4-tert-butylstyrene 1a (0.80 g, 5.00 mmol, 1.00 equiv.) and ethyl 2-bromopropanoate 

2a (1.81 g, 10.00 mmol, 2.00 equiv.) were added. The reaction mixture was degassed 

by the freeze-pumpthaw method and then irradiated with a 24W household 

fluorescent lamp from a distance of 2 cm for 20 h. After completion of the reaction, 

the mixture was added with 20 mL of H2O and extracted with ethyl acetate (30 mL) 

for three times. The combined organic layer was dried (Na2SO4) and concentrated to 

give crude residue which was purified by flash column chromatography (Silica gel, 

petroleum ether: ethyl acetate = 50:1) to give 3a in 71% yield (0.98 g).

Control experiments (Scheme 7. eq. 3). fac-Ir(ppy)3 (3 mg, 5.00 μmol, 0.010 equiv.) 

and Na2CO3 (106 mg, 1.00 mmol, 2.00 equiv.) were added to a flame-dried Schlenk 

flask containing a stirring bar and purged by evacuating the flask and backfilling with 

argon three times. Then anhydrous DMSO (2 mL), 4-tert-butylstyrene 1a (80 mg, 

0.50 mmol, 1.00 equiv.), ethyl 2-bromopropanoate 2a (181 mg, 1.00 mmol, 2.00 

equiv.) and 1,1-diphenylethylene (180 mg, 1.00 mmol, 2.00 equiv.) were added. The 

reaction mixture was degassed by the freeze-pumpthaw method and then irradiated 

with a 24W household fluorescent lamp from a distance of 2 cm for 20 h. After 

completion of the reaction, the mixture was added with 10 mL of H2O and extracted 

with ethyl acetate (10 mL) for three times. The combined organic layer was dried 

(Na2SO4) and concentrated to give crude residue which was purified by flash column 

chromatography (Silica gel, petroleum ether: dichloromethane = 4:1) to give 6 as an 

oil in 83% yield (60 mg).1H NMR (400 MHz, CDCl3) δ/ppm= 7.39 – 7.24 (m, 3H), 

7.24 – 7.10 (m, 7H), 6.05 (d, J = 10.3 Hz, 1H), 4.06 (q, J = 7.1 Hz, 2H), 3.19 (dq, J = 
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10.3, 7.0 Hz, 1H), 1.24 – 1.14 (m, 6H). 13C NMR (100 MHz, CDCl3) δ/ppm=173.9, 

141.9, 140.8, 138.3, 128.7, 127.3, 127.1, 126.8, 126.3, 126.2, 59.6, 39.4, 17.5, 13.2. 

Spectral data are in good agreement with literature values.8d
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