

pubs.acs.org/JACS

Asymmetric Total Synthesis of Hetidine-Type C₂₀-Diterpenoid Alkaloids: (+)-Talassimidine and (+)-Talassamine

Quanzheng Zhang,[†] Zhao Yang,[†] Qi Wang, Shuangwei Liu, Tao Zhou, Yankun Zhao, and Min Zhang*

diterpenoid alkaloids. A highly regio- and diastereoselective 1,3dipolar cycloaddition of an azomethine ylide yielded a chiral tetracyclic intermediate in high enantiopurity, thus providing the structural basis for asymmetric assembly of the hexacyclic hetidine skeleton. In this key step, the introduction of a single chiral center

induces four new continuous chiral centers. Another key transformation is the dearomative cyclopropanation of the benzene ring and subsequent S_N 2-like ring opening of the resultant cyclopropane ring with water as a nucleophile, which not only establishes the B ring but also precisely installs the difficult-to-achieve equatorial C7-OH group.

■ INTRODUCTION

The C₂₀-diterpenoid alkaloids constitute a large family of natural products, which are mainly isolated from the Aconitum, Consolidum, Delphinium, and Spiraea genera of plants that have a history of use in traditional medicine.¹ Architecturally, the C₂₀-diterpenoid alkaloids can be classified into several subtypes (selected subtypes and representative hetidine-type members are shown in Scheme 1A). Of the biosynthetically related atisine-, hetidine-, and hetisine-type C20-diterpenoid alkaloids, the hexacyclic hetidine core has a characteristic C14-C20 linkage; besides the C14-C20 linkage, the hetisine core has an additional C6-N linkage, forming a complex heptacyclic framework. The unique biological profiles and structural complexity of C20-diterpenoid alkaloids render them highly sought-after synthetic targets.^{2–10} Successful total syntheses of hetisine-type alkaloids have been reported by the groups of Muratake/Natsume, Gin, and Sarpong, as well as our group,⁴ reflecting considerable achievements toward total synthesis of various C_{20} -diterpenoid alkaloids in recent years.^{3-\$} However, there has been limited success in the synthesis of the seemingly less complex hetidine-type alkaloids, despite considerable efforts having been made toward this subtype.^{6,7} Guided by network analysis, Sarpong's group accomplished a unified total synthesis of C₁₈-, C₁₉-, and C₂₀-diterpenoid alkaloids^{2h,5c,8b,9e} and developed an elegant approach of Ga-catalyzed cycloisomerization to synthesize dihydronavirine, a structurally very similar analogue of navirine.^{6a,b} Baran's group applied a twophase synthetic strategy to synthesize the atisine alkaloids and construct the hetidine skeleton from a readily available entkaurane.³ⁱ Qin and Liu developed an efficient biomimetic approach to access the denudatine- and atisine-type alkaloids and the hetidine skeleton from an atisine-type precursor.^{3k} Ma, Liu, and colleagues used a hydrogen atom transfer-based radical cyclization as the key step to build the hetidine scaffold

Scheme 1. Background and Study Synopsis

Published: May 3, 2021

and accomplished an efficient synthesis of the proposed structure of navirine C.³¹ Recently, Li and co-workers reported an elegant synthesis of septedine (2) and 7-deoxyseptedine (3), which represents the first and only route to hetidine-type C_{20} -diterpenoid alkaloids reported to date (Scheme 1B).⁷ Key steps of this synthesis included a Carreira polyene cyclization to construct the core framework and a Sanford Csp³–H functionalization to install the equatorial C7–OH.

The limited success in the synthesis of hetidine-type alkaloids can be attributed to the synthetic challenge associated with the rigid hexacyclic cage-shaped skeleton and more problematically, the different oxygen substitutions at various positions of the core frameworks.^{2,6,7} To develop new synthetic strategies to access diterpenoid alkaloids with complex oxygen substitution patterns, we embarked on a synthetic program toward the synthesis of talassimidine (4) and talassamine (5), two hetidine-type alkaloids initially isolated from *Aconitum talassicum* M. Pop. by Nishanov^{11a} and then reisolated from *Delphinium campylocentrum* Maxim. by Wang^{11b} (Scheme 1A). We report here the first asymmetric total synthesis of (+)-talassimidine and (+)-talassamine through 1,3-dipolar cycloaddition and cyclopropanation/ring opening as the key transformations to build the polycyclic hetidine scaffold and to install the oxygen functionalities (Scheme 1C).

RESULTS AND DISCUSSION

In 2018, our group realized the first racemic total synthesis of hetisine-type alkaloids spirasine IV (21) and XI (22) (Scheme 2).^{4d} Key reactions of the synthesis involve a diastereoselective

Scheme 2. Our Previous Synthesis of the Hetisine-Type C_{20} -Diterpenoid Alkaloids (±)-Spirasine IV and XI

intramolecular 1,3-dipolar cycloaddition of azomethine ylide to access the tetracycle (\pm) -14 with linkages of C14–C20 and C6–N and a SmI₂-mediated, dearomative free radical addition to the arene moiety to construct the B ring. Highly enolizable aldehyde 8 was prepared in a racemic form via a modular coupling of two simple building blocks, 11 and 12, with known compound 10 as the starting material. Condensation of aldehyde (\pm) -8 with the phosphinimine Ph₃P=CH₂CO₂Me and subsequent treatment with AgOAc and DBU provided

tetracycle (\pm) -14 in good yield with a regioselectivity opposite to the intrinsic selectivity observed in the intermolecular reactions. In this key reaction, four continuous chiral carbon centers at C6, C5, C10, and C20 were established in a single step (in addition to the retained C14 chiral center). With (\pm) -14 as the key intermediate, the E ring was constructed by an intramolecular alkylation. Thereafter, a SmI₂-mediated free radical addition to the arene moiety without prior dearomatization was used as the second key reaction to build the B ring (17 to 18). Last, a diastereoselective aldol reaction constructed the remaining D ring of the hetisine core (19 to 20). Finally, installation of requisite functionalities furnished (+)-spirasine IV (21) and (\pm) -spirasine XI (22) in 0.88 and 0.73% total yields from 10 over 22 and 23 total steps, respectively. From a biogenetic perspective, the hetidine scaffold generates a hetisine core via formation of a C6-N bond. Retrosynthetically, breakage of the C6-N bond of the hetisine scaffold would lead to a hetidine core. On basis of these analyses, we envisioned that using tetracycle 14 as the foundational intermediate and breaking the C6-N bond at an appropriate stage would provide a new strategy to access hetidine-type alkaloids. Additionally, if tetracycle 14 could be prepared in high enantiopurity, asymmetric synthesis of both hetisine- and hetidine-type alkaloids could be achieved.

Retrosynthetic Analysis. Our retrosynthetic analysis of hetidine-type alkaloids (+)-talassimidine (4) and (+)-talassamine (5) is illustrated in Scheme 3. Disassembly of the

bicyclo[2.2.2]octane motif in talassimidine and talassamine led back to 23. Instead of the commonly used Diels–Alder cycloaddition strategy,² formation of the C12–C13 bond of 23 would give the bicyclo[2.2.2]octane motif and establish the hetidine core. Inspired by our previous success in constructing the B ring of hetisine through a dearomative free radical addition, we posited that addition of a ketyl radical to the arene moiety would yield the B ring and concurrently install a hydroxyl group. The ketyl radical precursor could be formed by single-electron reduction of an aldehyde, which can be traced back to tetracyclic ester 25.^{12,14} Through the use of tetracyclic 14 as the key intermediate, 25 can be obtained by a sequence of C6–N cleavage and C19–N formation. The fundamental step for our proposed scheme is the asymmetric synthesis of 14. If chiral erosion of the potentially

Scheme 4. Asymmetric Total Synthesis of (+)-Talassimidine and (+)-Talassamine^a

^{*a*}Reagents and conditions: (a) SOCl₂, DMF, CH₂Cl₂, 0 °C to room temperature (rt), 4 h, then (*S*)-4-benzyl-2-oxazolidinone, "BuLi, THF, -78 °C, 1 h, 74%; (b) TiCl₄, DIPEA, (HCHO)₃, 0 to -20 °C, 1 h, 72%; (c) TIPSOTf, 2,6-lutidine, 0 °C to rt, 2 h, 83%, >20/1 dr; (d) NaBH₄, MeOH/ THF, 0 °C to rt, 3 h, 73%; (e) "BuLi, "Bu₃SnCl, THF, -78 °C, 30 min, 65%; (f) **12**, Pd(PPh₃)₄, CuBr, dioxane, 85 °C, 12 h, 77%; (g) TEMPO, KBr, aqueous NaClO, NaHCO₃, CH₂Cl₂/H₂O, 0 °C to rt, 3 min, then NH₂CH₂COOMe-HCl, Et₃N, MgSO₄, CH₂Cl₂, 1 h, then AgOAc, DBU, toluene, rt, 1 h, 60% (gram-scale yield), 6/1 dr; (h) BnBr, K₂CO₃, CH₃CN, 80 °C, 5 h, 99%; (i) Ph₃PCH₂OMe·Cl, "BuLi, THF, -78 to 0 °C, 2 h, 96%; (j) SmI₂, HMPA, HCl, MeOH/THF, 0 °C, 6 h, 87%; (k) TiCl₄, H₂O, CH₂Cl₂, 0 °C, 1 h, then MeI, 'BuONa, THF, 0 °C to rt, 10 h, 78%, >20/1 dr; (l) NaBH₄, MeOH, 0 °C, 30 min, then MsCl, Et₃N, CH₂Cl₂, 0 °C to rt, 30 min, 73%; (m) NaOMe, MeOH, 90 °C (microwave), 2 h, 98%; (n) I₂, NaHCO₃, THF/H₂O, rt, 1 h, then DIBAL-H, CH₂Cl₂, -78 °C, 10 min, 87%; (o) TsNHNH₂, THF, rt, 1 h, then Rh₂(Oct)₄, K₂CO₃, dioxane, 130 °C, 1.5 h, 85%; (p) DIBAL-H, toluene, 0 °C to rt, 2 h, 75%; (q) HBF₄, THF/H₂O, 60 °C, 1 h, 61%; (r) Ac₂O, DMAP, Et₃N, CH₂Cl₂, rt, 90%, >20/1 dr; (s) H₂, Pd(OH)₂, MeOH, rt, 8 h, then Boc₂O, Et₃N, CH₂Cl₂, reflux, 24 h, 80%; (t) HF, H₂O/THF, rt, 4 h, then Dess–Martin periodinane, CH₂Cl₂, rt, 1 h, 95%; (u) pyrrolidine, AcOH, CH₂Cl₂, rt, 5 h, then MsCl, DMAP, Et₃N, CH₂Cl₂, 0 °C to rt, 30 min, 93%, >20/1 dr; (y) ZnBr₂, CH₂Cl₂, rt, 3 h, then MnO₂, CH₂Cl₂, rt, 4 h, 74% for 15-*epi*-talassamine (62), 62% for talassimidine (4), 64% for talassamine (5); (z) SeO₂, dioxane, 80 °C, 6 h, 71%; (aa) NaBH₄, CeCl₃·7H₂O, MeOH, 0 °C, 30 min, 99%, >20/1 dr; (ab) Ac₂O, DMAP, Et₃N, CH₂Cl₂, -30 °C, 30 min, 73%.

Table 1. Optimization of the Asymmetric 1,3-Dipolar Cycloaddition

^{*a*}[DMP] oxidation: **30** (0.1 mmol), Dess–Martin periodinane (0.15 mmol), CH_2Cl_2 (3 mL), rt, 0.5 h, chromatography on silica gel. ^{*b*}[TEMPO] oxidation: **30** (0.10 mmol), TEMPO (0.01 mmol), KBr (0.20 mmol), NaClO (10% in H₂O, 0.20 mmol), NaHCO₃ (saturated aqueous solution, 2 mL), CH_2Cl_2 (3 mL), 0 °C to rt, 3 min, aqueous workup. ^{*c*}**8**, N₃CH₂COOMe/PPh₃ (0.11 mmol), CH₂Cl₂ (2 mL), 0 °C, 1 h. ^{*d*}**8**, NH₂CH₂COOMe·HCl (0.20 mmol), Et₃N (0.22 mmol), MgSO₄ (0.60 mmol), CH₂Cl₂ (2 mL), 0 °C, 1 h. ^{*e*}Crude **31**, AgOAc (0.01 mmol), base (0.11 mmol), toluene (2 mL), rt, 1 h. ^{*f*}Isolated yield of the major diastereoisomer from **30**. ^{*g*}Ratio of yields of the two isolated diastereoisomers. ^{*h*}Of the major diastereoisomer; determined by chiral HPLC analysis. ^{*i*}Crude **8** was used for the next step without chromatography purification.

racemization-prone azamethine ylide **13** or its precursors could be avoided, then chiral **14** could be obtained through a regioand diastereo-selective intramolecular 1,3-dipolar cycloaddition of a chiral imino ester. Chiral aldehyde **8** for preparation of the imino ester could be synthesized from chiral stannane **11** and commercially available bromide **12** through a Stille coupling.

Construction of the A/F/C Ring System. As depicted in Scheme 4A, our synthetic efforts commenced with the preparation of chiral precursor **30** from commercially available acid (*S*)-4-benzyl-2-oxazolidinone. A sequence involving amidation, Evans asymmetric aldol reaction,¹⁵ and silylation of the resultant free hydroxyl group afforded chiral amide **28** in good yield with a >20:1 diastereomeric ratio (dr). The absolute configuration of the newly generated stereogenic carbon center was determined by X-ray crystallographic analysis.^{16,17} Reduction of amide **28** with NaBH₄ provided alcohol **29**, which was transformed to **11** by treatment with "Bu₃SnCl after a Br–Li exchange. A Stille coupling of **11** and **12** with Pd(PPh₃)₄ as the catalyst and CuBr as the cocatalyst yielded **30** in 77% yield with >99% enantiopurity (ee).

With decagram quantities of chiral **30** in hand, we next explored the feasibility of an asymmetric synthesis of tetracyclic **14** via 1,3-dipolar cycloaddition (Table 1). Aldehyde **8**, imino ester **31**, and ylide **13** (structures are shown in Scheme 3) are potentially prone to racemization; therefore, the protocols for oxidation of alcohol **30**, formation of imine ester **31**, and Lewis acid catalyzed 1,3-dipolar cycloaddition are key to successfully preparing chiral **14**. Initially, a sequence of oxidation of **30** with Dess–Martin periodinane, imino ester formation with an aza-Wittig reagent, and 1,3-dipolar cycloaddition with AgOAc/ DBU following our previous work produced **14** with low and inconsistent ee values (entry 1). We posited that the basic aza-Wittig reagent (i.e., Ph₃P=NCH₂CO₂Me)¹⁸ and DBU may induce racemization and alternatively tested the less basic methyl glycinate and Et₃N. However, the reaction outcome did not improve (entries 2 and 3). Monitoring of the ee values of all precursors and reacting intermediates throughout the process indicated that silica gel chromatography of crude 8 resulted in its racemization. Hence, crude 8 was then used directly in the next step without silica gel chromatography; however, the cycloaddition was inhibited (entry 4). Thus, the oxidation protocol for this step must directly provide 8 in the required chemical purity without the need for silica gel chromatography. After screening, we were delighted to find that crude 8 prepared via a TEMPO-catalyzed oxidation afforded 14 in good yield with >99% ee (entry 5).¹⁹ After further investigation of various amino ester sources and bases (entries 6-11), methyl glycinate and DBU were determined to be the best options (entry 8). Through this protocol, we smoothly prepared batches of chiral 14 on a gram scale.

Construction of the E Ring. Having successfully obtained the fundamental framework of hetidine skeleton, we next focused on construction of the E ring (Scheme 4B). After benzyl protection and Wittig olefination, a SmI₂-promoted domino reductive elimination/lactamization afforded formal skeleton-rearranged product 33 with breakage of the C6–N bond.²⁰ A sequence of enol ether hydrolysis and diastereoselective methylation gave aldehyde 34 in 78% yield. Reduction of the aldehyde group and subsequent mesylation of the resulting hydroxyl group gave 35, which underwent a cascade of lactam opening and intramolecular alkylation in the presence of NaOMe to afford 25 with formation of the E ring.

Construction of the B Ring and Installment of the C7–OH Group. Inspired by our experience with constructing the B ring of hetisine-type alkaloids by a SmI_2 -mediated, dearomative free radical addition to arene moiety, we initially envisioned that a ketyl radical generated from an aldehyde could undergo a dearomative addition to the phenyl ring, thus constructing the B ring likewise and installing the C7–OH group concurrently (Scheme SA). However, our early attempts

^aReagents and conditions: (a) I_{2} , NaHCO₃, THF/H₂O, rt, 1 h, 97%; (b) DIBAL-H, CH₂Cl₂, -78 °C, 10 min, 90%; (c) DIBAL-H, CH₂Cl₂, -30 °C, 10 min, 94%; (d) NBS, Ph₃P, rt, 1 h, 86%; (e) Na, liquid NH₃, 'BuOH, THF, -78 °C, 2 h, 85%; (f) PhOCSCl, DMAP, CH₂Cl₂, rt, 2 h, 95%; (g) SmI₂, HMPA, THF, rt, 2 h, 73%; (h) Na, liquid NH₃, 'BuOH, THF, -78 °C, 2 h, 78%.

to prepare aldehyde 36 from ester 25 were unfruitful, and only the suspected quaternary ammonium byproducts were observed. This can be attributed to tendency toward quaternization of the basic tertiary amine moiety of 25. Accordingly, amine 25 was oxidized to amide 38 by treatment with I₂ (Scheme 5B). DIBAL-H reduction of the ester afford aldehyde 39 in high yield. However, treatment of 39 with SmI₂ under various conditions resulted in complex reaction mixtures (Scheme 5B). To explore the feasibility of constructing the B ring via dearomative addition with a primary free radical intermediate, as we did previously, primary bromide 42 was prepared from 38 by a sequential reduction and bromination and was tested with SmI2 or Bu3SnH. However, only unidentified products were generated (Scheme 5C). After several unsuccessful dearomative additions, we then turned to free radical addition to the alkene group after an arene dearomatization. Thus, precursor 44 was prepared by a sequence of Birch reduction and esterification and was then subjected to SmI₂. Notably, only 45 was isolated in a high yield with formation of a five-membered ring (Scheme 5D). Interestingly, Birch reduction of ester 38 led to compound 46 with a similar five-membered ring (Scheme 5E). We hypothesized that formation of a five-membered ring is favored over the six-membered ring without the tethering C6-N bond, which is present in our hetisine-type alkaloid synthesis.

After unsuccessful attempts to construct the B ring via free radical addition, we were ultimately drawn to a dearomative cyclopropanation strategy. As indicated in Scheme 4B, the diazo precursor was generated by condensation of aldehyde **39** with TsNHNH₂, which was then treated with a base and Rh₂(Oct)₄ to give 47 in 85% yield along with 10% yield of a 1,2-H shift alkene byproduct. Using copper salts as the catalyst in substitute for Rh₂(Oct)₄, only the alkene product was observed.¹⁷ Amide reduction of 47 with DIBAL-H gave 48 in good yield. We envisioned that opening the cyclopropane ring with a hydroxyl nucleophile would not only establish the B ring but also introduce a hydroxyl group at C7. As shown in Scheme 6, a cascade of hydrolysis of the enol ether and S_N2-

Scheme 6. Nucleophilic Ring Opening of the Cyclopropane $\!\!\!\!\!^a$

^aReagents and conditions: **47** or **48**, acid (5 equiv), THF, 60 °C, 1 h. **49a** (48% HBF₄ in H₂O, 80% yield, >20/1 dr); **49b** (37% HCl in H₂O, 86% yield, >20/1 dr); **49c** (57% HI in H₂O, 83% yield, >20/1 dr); **50** (48% HBF₄ in H₂O, 61% yield, >20/1 dr).

like ring opening of cyclopropane moiety by treating 47 or 48 with an aqueous solution of HBF₄ formed the B ring and stereospecifically installed the problematic equatorial C7–OH. Although attempts to introduce fluoro, benzenesulfonyl, or phenylthio groups at C7 were unfruitful, treatment of 47 with an aqueous solution of HCl or HI generated **49b** or **49c** with a halogen atom introduced, which would facilitate preparation of natural product analogues with unnatural functionalities at C7.¹³ The stereochemistry of the newly formed C7–OH of **49a** was determined by X-ray crystallographic analysis, and the same configuration was assigned to other products by analogy.^{16,17}

Construction of the D Ring. With the B ring established, the next task was to construct the D ring. As shown in Scheme 7, our initial plan to construct the B ring was an intramolecular alkylation. Mesylate 52 was prepared by a sequence of desilylation, mesylation, cyclopropane ring opening, and hydrogenation. To our surprise, attempts to construct the bicyclo [2.2.2] octane motif by treatment of 52 with a base (e.g., LDA, ^tBuOK, NaH, and K₂CO₃) only resulted in generation of 54 with a four-membered ring. The structure of 54 was confirmed by X-ray analysis of a single crystal of its derivative 56, which was prepared by sequential olefination and allylic oxidation.^{16,17} Generally, formation of a six-membered ring is favored over a four-membered ring. A possible rationale for this unusual selectivity is the specific and rigid architecture of compound 52. We next resorted to a reversible aldol reaction with the expectation of generating the thermodynamically favored six-membered ring product. As shown in Scheme 4C, sequential reactions of acetylation, one-step alkene hydrogenation/Bn-hydrogenolysis, and Boc-protection delivered 57, which was then elaborated to aldehyde 58 via desilylation and oxidation. Exposure of 58 to the classic aldol reaction

Scheme 7. Failed Attempts to Construct the D Ring by Alkylation^a

^aReagents and conditions: (a) TBAF, THF, 70 °C, 4 h, then MsCl, DMAP, Et₃N, CH_2Cl_2 , rt, 3 h, 90%; (b) HBF₄, THF/H₂O, 60 °C, 1 h, 80%; (c) Pd(OH)₂, H₂, MeOH, rt, 2 h, 82%; (d) K₂CO₃, MeOH, 75 °C, 3 h, 95%; (e) Tebbe reagent, THF, rt, 2 h, 81%; (f) SeO₂, 'BuOOH, CH_2Cl_2 , 0 °C to rt, 30 min, 96%.

conditions of pyrrolidine/AcOH and subsequent treatment with MsCl provided mesylate **59** with the D ring successfully constructed, thus completing the hetidine core.

Total Synthesis of (+)-Talassimidine and (+)-Talass**amine.** With the hetidine core constructed, the remaining task for completion of the synthesis of (+)-talassimidine and (+)-talassamine was the installation of the requisite functionalities (Scheme 4C). Mesylate 59 was transformed to 61 by sequential deacetylation, olefination, and sulfonate reduction. Using 61 as the branch point, we prepared 15-epi-talassamine 62, a natural product analogue, by a sequence of diastereoselective allylic oxidation with $SeO_2/{}^tBuOOH$ at 0 °C, Boc deprotection, and amine oxidation; the total synthesis of (+)-talassamine 5 was achieved by reactions including allylic oxidation with SeO₂ at 80 °C, diastereoselective Luche reduction of the resultant ketone, Boc deprotection, and amine oxidation. The total synthesis of (+)-talassimidine 4 was achieved by a similar reaction sequence except with an additional acetylation of C15-OH. The structure of our synthetic talassamine 5 and 15-epi-talassamine 62 were unambiguously confirmed by X-ray crystallographic analysis.^{16,17} Notably, the ee values of the final products, as measured by chiral HPLC analysis, indicated that our synthetic approach provided (+)-talassimidine 4 and (+)-talassamine 5 with 99% ee.

CONCLUSION

We have accomplished the first asymmetric total synthesis of (+)-talassamine and (+)-talassimidine in 0.28 and 0.20% total yields from known compound **26** over 26 and 27 total steps, respectively. A regio- and diastereo-selective 1,3-dipolar cycloaddition of azomethine ylide generated the fundamental tetracyclic skeleton with five continuous stereogenic carbon centers in high enantiopurity (>99% ee). Besides the hetidine-type alkaloids, this chiral tetracyclic intermediate should also enable asymmetric access to the hetisine-type alkaloids. An efficient sequence of dearomative cyclopropanation of the benzene ring and subsequent S_N 2-like ring opening of the cyclopropane moiety with a water nucleophile was developed to stereospecifically install the challenging equatorial C7–OH group and to concurrently construct the B ring. This

cyclopropanation strategy also allowed preparation of natural product analogues with unnatural functionalities at C7.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c01865.

Experimental procedures and compound characterization (PDF)

Accession Codes

CCDC 2059195, 2059198, 2059200, 2059202, 2070613, 2070620, and 2070622 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

 Min Zhang – Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China;
 orcid.org/0000-0002-3851-7836; Email: minzhang@ cqu.edu.cn

Authors

- **Quanzheng Zhang** Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- **Zhao Yang** Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Qi Wang Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Shuangwei Liu Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Tao Zhou Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Yankun Zhao Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c01865

Author Contributions

[†]These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (21672029, 21871033, and 21922102) and the Fundamental Research Funds for the Central Universities (2020CQJQY-Z002). We are grateful to Xiangnan Gong (CQU) for X-ray crystallographic analysis.

Journal of the American Chemical Society

ABBREVIATIONS

DIPEA, *N*,*N*-diisopropylethylamine; TIPS, triisopropylsilyl; TEMPO, 2,2,6,6-tetramethylpiperidine 1-oxide; Tebbe reagent, bis(cyclopentadienyl)- μ -chloro(dimethylaluminum)- μ -methylenetitanium

REFERENCES

(1) Reviews on the diterpenoid alkaloids: (a) Wang, F.-P.; Liang, X.-T. C₂₀-diterpenoid alkaloids. *The Alkaloids: Chemistry and Biology* **2002**, 59, 1–280. (b) Wang, F.-P.; Chen, Q.-H.; Liang, X.-T. The C₁₈-Diterpenoid Alkaloids. *The Alkaloids: Chemistry and Biology* **2009**, 67, 1–78. (c) Wang, F.-P.; Chen, Q.-H. The C₁₉-Diterpenoid Alkaloids. *The Alkaloids: Chemistry and Biology* **2010**, 69, 1–577. (d) Wang, F.-P.; Chen, Q.-H.; Liu, X.-Y. Diterpenoid Alkaloids. *Nat. Prod. Rep.* **2010**, 27, 529–570. (e) Shen, Y.; Liang, W.-J.; Shi, Y.-N.; Kennelly, E. J.; Zhao, D.-K. Structural Diversity, Bioactivities, and Biosynthesis of Natural Diterpenoid Alkaloids. *Nat. Prod. Rep.* **2020**, 37, 763–796.

(2) Reviews on syntheses of the diterpenoid alkaloids: (a) Cherney, E. C.; Baran, P. S. Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis. Isr. J. Chem. 2011, 51, 391-405. (b) Hamlin, A. M.; Kisunzu, J. K.; Sarpong, R. Synthetic Strategies Toward Hetidine and Hetisine-Type Diterpenoid Alkaloids. Org. Biomol. Chem. 2014, 12, 1846-1860. (c) Liu, X.-Y.; Qin, Y. Ongoing Pursuit of Diterpenoid Alkaloids: A Synthetic View. Asian J. Org. Chem. 2015, 4, 1010-1019. (d) Zhu, G.-L.; Liu, R.; Liu, B. Total Synthesis of Atisane-Type Diterpenoids and Related Diterpenoid Alkaloids. Synthesis 2015, 47, 2691-2708. (e) Zhu, G.-L.; Wadavrao, S. B.; Liu, B. Divergent Total Synthesis of Atisane-type Diterpenoids. Chem. Rec. 2017, 17, 584-596. (f) Liu, X.-Y.; Qin, Y. Enabling Syntheses of Diterpenoid Alkaloids and Related Diterpenes by an Oxidative Dearomatization/Diels-Alder Cycloaddition Strategy. Nat. Prod. Rep. 2017, 34, 1044-1050. (g) Dank, C.; Sanichar, R.; Choo, K.-L.; Olsen, M.; Lautens, M. Recent Advances Towards Syntheses of Diterpenoid Alkaloids. Synthesis 2019, 51, 3915-3946. (h) Doering, N. A.; Sarpong, R.; Hoffmann, R. W. A Case for Bond-Network Analysis in the Synthesis of Bridged Polycyclic Complex Molecules: Hetidine and Hetisine Diterpenoid Alkaloids. Angew. Chem., Int. Ed. 2020, 59, 10722-10731; Angew. Chem. 2020, 132, 10810-10820. (i) Liu, X.-Y.; Wang, F.-P.; Qin, Y. Synthesis of Three-Dimensionally Fascinating Diterpenoid Alkaloids and Related Diterpenes. Acc. Chem. Res. 2021, 54, 22-34.

(3) Syntheses of the atisine-type alkaloids: (a) Nagata, W.; Sugasawa, T.; Narisada, M.; Wakabayashi, T.; Hayase, Y. Stereospecific Total Synthesis of dl-Atisine. J. Am. Chem. Soc. 1963, 85, 2342-2343. (b) Pelletier, S. W.; Parthasarathy, P. C. The Diterpene Alkaloids: A Partial Synthesis of Atisine. Tetrahedron Lett. 1963, 4, 205-208. (c) Masamune, S. Total Syntheses of Diterpenes and Diterpene Alkaloids. V.1 Atisine. J. Am. Chem. Soc. 1964, 86, 291-292. (d) Guthrie, R. W.; Valenta, Z.; Wiesner, K. Synthesis in the Series of Diterpene Alkaloids VI. A Simple Synthesis of Atisine. Tetrahedron Lett. 1966, 7, 4645-4654. (e) Nagata, W.; Sugasawa, T.; Narisada, M.; Wakabayashi, T.; Hayase, Y. Total Synthesis of dl-Atisine. J. Am. Chem. Soc. 1967, 89, 1483-1499. (f) Ihara, M.; Suzuki, M.; Fukumoto, K.; Kametani, T.; Kabuto, C. Stereoselective Total Synthesis of (±)-Atisine via Intramolecular Double Michael Reaction. J. Am. Chem. Soc. 1988, 110, 1963-1964. (g) Ihara, M.; Suzuki, M.; Fukumoto, K.; Kabuto, C. Asymmetric Total Synthesis of Atisine via Intramolecular Double Michael Reaction. J. Am. Chem. Soc. 1990, 112, 1164-1171. (h) Liu, X.-Y.; Cheng, H.; Li, X.-H.; Chen, Q.-H.; Xu, L.; Wang, F.-P. Oxidative Dearomatization/Intramolecular Diels-Alder Cycloaddition Cascade for the Syntheses of (±)-Atisine and (±)-Isoazitine. Org. Biomol. Chem. 2012, 10, 1411-1417. (i) Cherney, E. C.; Lopchuk, J. M.; Green, J. C.; Baran, P. S. A Unified Approach to ent-Atisane Diterpenes and Related Alkaloids: Synthesis of (-)-Methyl Atisenoate, (-)-Isoatisine, and the Hetidine Skeleton. J. Am. Chem. Soc. 2014, 136, 12592-12595. (j) Cheng, H.; Zeng, F.-H.; Yang, X.; Meng, Y.-J.; Xu, L.; Wang, F.-P. Collective Total Syntheses of Atisane-Type Diterpenes and Atisine-Type Diterpenoid Alkaloids: (±)-Spiramilactone B, (\pm) -Spiraminol, (\pm) -Dihydroajaconine, and (\pm) -Spiramines C and D. Angew. Chem., Int. Ed. **2016**, 55, 392–396; Angew. Chem. **2016**, 128, 400–404. (k) Li, X.-H.; Zhu, M.; Wang, Z.-X.; Liu, X.-Y.; Song, H.; Zhang, D.; Wang, F.-P.; Qin, Y. Synthesis of Atisine, Ajaconine, Denudatine, and Hetidine Diterpenoid Alkaloids by a Bioinspired Approach. Angew. Chem., Int. Ed. **2016**, 55, 15667–15671; Angew. Chem. **2016**, 128, 15896–15900. (l) Liu, J.; Ma, D.-W. A Unified Approach for the Assembly of Atisine- and Hetidine-type Diterpenoid Alkaloids: Total Syntheses of Azitine and the Proposed Structure of Navirine C. Angew. Chem., Int. Ed. **2018**, 57, 6676–6680; Angew. Chem. **2018**, 130, 6786–6790.

(4) Syntheses of the hetisine-type alkaloids: (a) Muratake, H.; Natsume, M. Total Synthesis of (±)-Nominine, a Heptacyclic Hetisine-Type Aconite Alkaloid. Angew. Chem., Int. Ed. 2004, 43, 4646-4649; Angew. Chem. 2004, 116, 4746-4749. (b) Peese, K. M.; Gin, D. Y. Efficient Synthetic Access to the Hetisine C₂₀-Diterpenoid Alkaloids. A Concise Synthesis of Nominine via Oxidoisoquinolinium-1,3-Dipolar and Dienamine-Diels-Alder Cycloadditions. J. Am. Chem. Soc. 2006, 128, 8734-8735. (c) Peese, K. M.; Gin, D. Y. Asymmetric Synthetic Access to the Hetisine Alkaloids: Total Synthesis of (+)-Nominine. Chem. - Eur. J. 2008, 14, 1654-1665. (d) Zhang, Q.; Zhang, Z.; Huang, Z.; Zhang, C.; Xi, S.; Zhang, M. Stereoselective Total Synthesis of Hetisine-type C₂₀-Diterpenoid Alkaloids: Spirasine IV and XI. Angew. Chem., Int. Ed. 2018, 57, 937-941; Angew. Chem. 2018, 130, 949-953. (e) Kou, K. G. M.; Pflueger, J. J.; Kiho, T.; Morrill, L. C.; Fisher, E. L.; Clagg, K.; Lebold, T. P.; Kisunzu, J. K.; Sarpong, R. A Benzyne Insertion Approach to Hetisine-Type Diterpenoid Alkaloids: Synthesis of Cossonidine (Davisine). J. Am. Chem. Soc. 2018, 140, 8105-8109.

(5) Syntheses of the denudatine-type alkaloids: (a) Nishiyama, Y.; Han-ya, Y.; Yokoshima, S.; Fukuyama, T. Total Synthesis of (-)-Lepenine. J. Am. Chem. Soc. **2014**, 136, 6598–6601. (b) Kou, K. G. M.; Li, B. X.; Lee, J. C.; Gallego, G. M.; Lebold, T. P.; DiPasquale, A. G.; Sarpong, R. Syntheses of Denudatine Diterpenoid Alkaloids: Cochlearenine, N-Ethyl-1 α -hydroxy-17-veratroyldictyzine, and Paniculamine. J. Am. Chem. Soc. **2016**, 138, 10830–10833. (c) Kou, K. G. M.; Kulyk, S.; Marth, C. J.; Lee, J. C.; Doering, N. A.; Li, B. X.; Gallego, G. M.; Lebold, T. P.; Sarpong, R. A Unifying Synthesis Approach to the C₁₈-, C₁₉-, and C₂₀-Diterpenoid Alkaloids. J. Am. Chem. Soc. **2017**, 139, 13882–13896. and ref 3k.

(6) Synthetic studies on the hetidine-type alkaloids: (a) Hamlin, A. M.; de Jesus Cortez, F.; Lapointe, D.; Sarpong, R. Gallium(III)-Catalyzed Cycloisomerization Approach to the Diterpenoid Alkaloids: Construction of the Core Structure for the Hetidines and Hetisines. Angew. Chem., Int. Ed. 2013, 52, 4854–4857; Angew. Chem. 2013, 125, 4954–4957. (b) Hamlin, A. M.; Lapointe, D.; Owens, K.; Sarpong, R. Studies on C₂₀-Diterpenoid Alkaloids: Synthesis of the Hetidine Framework and Its Application to the Synthesis of Dihydronavirine and the Atisine Skeleton. J. Org. Chem. 2014, 79, 6783–6800. and refs 3i, 3k, and 3l.

(7) Total syntheses of the hetidine-type alkaloids: Zhou, S.; Guo, R.; Yang, P.; Li, A. Total Synthesis of Septedine and 7-Deoxyseptedine. *J. Am. Chem. Soc.* **2018**, *140*, 9025–9029.

(8) Selected total syntheses of other subtypes of C₂₀-diterpenoid alkaloids: (a) Nie, W.; Gong, J.; Chen, Z.; Liu, J.; Tian, D.; Song, H.; Liu, X.-Y.; Qin, Y. Enantioselective Total Synthesis of (-)-Arcutinine. *J. Am. Chem. Soc.* **2019**, *141*, 9712–9718. (b) Owens, K. R.; McCowen, S. V.; Blackford, K. A.; Ueno, S.; Hirooka, Y.; Weber, M.; Sarpong, R. Total Synthesis of the Diterpenoid Alkaloid Arcutinidine Using a Strategy Inspired by Chemical Network Analysis. *J. Am. Chem. Soc.* **2019**, *141*, 13713–13717. (c) Zhou, S.; Xia, K.; Leng, X.; Li, A. Asymmetric Total Synthesis of Arcutinidine, Arcutinine, and Arcutine. *J. Am. Chem. Soc.* **2019**, *141*, 13718–13723. (d) Huang, H.-X.; Mi, F.; Li, C.; He, H.; Wang, F.-P.; Liu, X.-Y.; Qin, Y. Total Synthesis of Liangshanone. Angew. Chem., Int. Ed. **2020**, *59*, 23609–23614; Angew. Chem. **2020**, *132*, 23815–23820.

(9) Selected total syntheses of the C_{18} - and C_{19} -diterpenoid alkaloids: (a) Wiesner, K.; Tsai, T. Y. R.; Huber, K.; Bolton, S. E.; Vlahov, R. Total Synthesis of Talatisamine, a Delphinine Type

Journal of the American Chemical Society

Alkaloid. J. Am. Chem. Soc. 1974, 96, 4990-4992. (b) Wiesner, K.; Tsai, T. Y. R.; Nambiar, K. P. A New Stereospecific Total Synthesis of Chasmanine and 13-Desoxydelphonine. Can. J. Chem. 1978, 56, 1451-1454. (c) Wiesner, K. Total Synthesis of Delphinine-type Alkaloids by Simple, Fourth Generation Methods. Pure Appl. Chem. 1979, 51, 689-703. (d) Shi, Y.; Wilmot, J. T.; Nordstrøm, L. U.; Tan, D. S.; Gin, D. Y. Total Synthesis, Relay Synthesis, and Structural Confirmation of the C18-Norditerpenoid Alkaloid Neofinaconitine. J. Am. Chem. Soc. 2013, 135, 14313-14320. (e) Marth, C. J.; Gallego, G. M.; Lee, J. C.; Lebold, T. P.; Kulyk, S.; Kou, K. G. M.; Qin, J.; Lilien, R.; Sarpong, R. Network-Analysis-Guided Synthesis of Weisaconitine D and Liljestrandinine. Nature 2015, 528, 493-498. (f) Nishiyama, Y.; Yokoshima, S.; Fukuyama, T. Total Synthesis of (-)-Cardiopetaline. Org. Lett. 2016, 18, 2359-2362. (g) Kamakura, D.; Todoroki, H.; Urabe, D.; Hagiwara, K.; Inoue, M. Total Synthesis of Talatisamine. Angew. Chem., Int. Ed. 2020, 59, 479-486; Angew. Chem. 2020, 132, 487-494.

(10) Selected syntheses of related diterpenoids: (a) Gong, J.; Chen, H.; Liu, X.-Y.; Wang, Z.-X.; Nie, W.; Oin, Y. Total Synthesis of Atropurpuran. Nat. Commun. 2016, 7, 12183. (b) He, C.; Hu, J.-L.; Wu, Y.-B.; Ding, H.-F. Total Syntheses of Highly Oxidized ent-Kaurenoids Pharicin A, Pharicinin B, 7-O-Acetylpseurata C, and Pseurata C: A [5 + 2] Cascade Approach. J. Am. Chem. Soc. 2017, 139, 6098-6101. (c) Su, F.; Lu, Y.; Kong, L.; Liu, J.; Luo, T. Total Synthesis of Maoecrystal P: Application of a Strained Bicyclic Synthon. Angew. Chem., Int. Ed. 2018, 57, 760-764; Angew. Chem. 2018, 130, 768-772. (d) Xie, S.; Chen, G.; Yan, H.; Hou, J.; He, Y.; Zhao, T.; Xu, J. 13-Step Total Synthesis of Atropurpuran. J. Am. Chem. Soc. 2019, 141, 3435-3439. (e) Wang, J.; Hong, B.; Hu, D.; Kadonaga, Y.; Tang, R.; Lei, X. Protecting-Group-Free Syntheses of ent-Kaurane Diterpenoids: [3 + 2+1] Cycloaddition/Cycloalkenylation Approach. J. Am. Chem. Soc. 2020, 142, 2238-2243. (f) Zhang, X.; King-Smith, E.; Dong, L.-B.; Yang, L.-C.; Rudolf, J. D.; Shen, B.; Renata, H. Divergent Synthesis of Complex Diterpenes through a Hybrid Oxidative Approach. Science 2020, 369, 799-806.

(11) (a) Nishanov, A. A.; Sultankhodzhaev, M. N.; Yunosov, M. S.; Yusupova, I. M.; Tashkhozhaev, B. Alkaloids of Aconitum Talassicum. The Structure of Talassamine, Talassimidine, and Talassimine. *Chem. Nat. Compd.* **1991**, *27*, 82–86. (b) Yan, L.-P.; Chen, D.-L.; Wang, F.-P. Structure Elucidation of Diterpenoid Alkaloids from *Delphinium Campylocentrum. Chin. J. Org. Chem.* **2007**, *27*, 976–980.

(12) Selected reviews on cyclopropanation in natural product synthesis: (a) Reissig, H.-U.; Zimmer, R. Donor-Acceptor-Substituted Cyclopropane Derivatives and Their Application in Organic Synthesis. Chem. Rev. 2003, 103, 1151-1196. (b) Zhang, D.; Song, H.; Qin, Y. Total Synthesis of Indoline Alkaloids: A Cyclopropanation Strategy. Acc. Chem. Res. 2011, 44, 447-457. (c) Reisman, S. E.; Nani, R. R.; Levin, S. Buchner and Beyond: Arene Cyclopropanation as Applied to Natural Product Total Synthesis. Synlett 2011, 2011, 2437-2442. (d) Tang, P.; Qin, Y. Recent Applications of Cyclopropane-Based Strategies to Natural Product Synthesis. Synthesis 2012, 44, 2969–2984. (e) Ma, X.; Cooper, S. M.; Yang, F.; Hu, W.; Sintim, H. O. Alkaloid Synthesis via Carbenoid Intermediates. Curr. Org. Chem. 2016, 20, 82-101. (f) Ebner, C.; Carreira, E. M. Cyclopropanation Strategies in Recent Total Syntheses. Chem. Rev. 2017, 117, 11651-11679. (g) Li, Y.-P.; Li, Z.-Q.; Zhu, S.-F. Recent Advances in Transition-Metal-Catalyzed Asymmetric Reactions of Diazo Compounds with Electron-Rich (Hetero-) Arenes. Tetrahedron Lett. 2018, 59, 2307-2316.

(13) Selected reviews on natural products and their analogues in drug discovery: (a) Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on Natural Products for Drug Design. *Nat. Chem.* **2016**, *8*, 531–541. (b) Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. **2016**, *79*, 629–661. (c) DeCorte, B. L. Underexplored Opportunities for Natural Products in Drug Discovery. J. Med. Chem. **2016**, *59*, 9295–9304.

(14) Selected reviews on arene dearomatization strategies in natural product synthesis: (a) Mander, L. N. Exploitation of Aryl Synthons in

pubs.acs.org/JACS

the Synthesis of Polycyclic Natural Products. Synlett 1991, 1991, 134–144. (b) Roche, S. P.; Porco, J. A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem., Int. Ed. 2011, 50, 4068–4093; Angew. Chem. 2011, 123, 4154–4179. (c) Huck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem 2020, 6, 1589–1603.

(15) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. New Procedure for the Direct Generation of Titanium Enolates. Diastereoselective Bond Constructions with Representative Electrophiles. J. Am. Chem. Soc. **1990**, 112, 8215–8216.

(16) Crystals of 5, 45, 52, 56, and 62 for the X-ray crystallographic analysis were prepared from racemic samples; those for 28 and 49a were prepared from chiral samples.

(17) See the Supporting Information for details.

(18) Selected reviews on the aza-Wittig reagents: (a) Shah, S.; Protasiewicz, J. D. 'Phospha-Variations' on the Themes of Staudinger and Wittig: Phosphorus Analogs of Wittig Reagents. *Coord. Chem. Rev.* 2000, 210, 181–201. (b) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. The aza-Wittig Reaction: An Efficient Tool for the Construction of Carbon–Nitrogen Double Bonds. *Tetrahedron* 2007, 63, 523–575.

(19) de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. On the Use of Stable Organic Nitroxyl Radicals for the Oxidation of Primary and Secondary Alcohols. *Synthesis* **1996**, 1153–1174.

(20) Selected reviews on SmI₂ in natural product synthesis:
(a) Edmonds, D. J.; Johnston, D.; Procter, D. J. Samarium(II)-Iodide-Mediated Cyclizations in Natural Product Synthesis. Chem. Rev. 2004, 104, 3371-3403. (b) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Samarium Diiodide Mediated Reactions in Total Synthesis. Angew. Chem., Int. Ed. 2009, 48, 7140-7165; Angew. Chem. 2009, 121, 7276-7301. (c) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Cross-Coupling Reactions Using Samarium(II) Iodide. Chem. Rev. 2014, 114, 5959-6039. (d) Just-Baringo, X.; Procter, D. J. Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades. Acc. Chem. Res. 2015, 48, 1263-1275. (e) Shi, S.; Szostak, M. Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide. Molecules 2017, 22, 2018.