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Abstract: A simple and green reaction was discovered for iodization-methylsulfoxidation of 

alkynes to access (E)-α-iodo-β-methylsulfonylalkenes. This is the first report for synthesis of 

iodovinyl methylsulfones by employing alkynes to react with molecular iodine (I2), dimethyl 

sulfoxide (DMSO) and H2O. Additionally, this protocol represents a new avenue for utilizing 

DMSO as the source of the –SO2Me group and H2O as the “O” source for the construction of 

–SO2Me group from DMSO, which is a valuable finding.

Direct adjacent difunctionalization of alkynes is considered to be one of the most powerful 

methods to install two functional groups efficiently, in one step, onto a C-C triple bond. The reaction 

has evolved as one of the most straightforward approaches to synthesize structurally diverse and 

complex chemicals from simple starting materials.1 To date, this methodology has been widely used to 

synthesize halovinyl sulfides from alkynes.2 Halovinyl sulfides are a valuable and important class of 

compounds in organic synthesis, and have attracted particular interest3 for their potentially applications 
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as starting materials or synthetic intermediates for synthesis of naturally occurring molecules, organic 

materials, bioactive compounds, pharmaceuticals and industrial chemicals. Thus far, many successful 

methods have been developed to access halovinyl sulfides, such as β-haloalkenylsulfones and 

chloroalkenylthioethers, from alkynes.4 However, the reports for synthesis of iodovinylsulfones 

directly from the reaction of alkynes with molecular iodine (I2) and dimethyl sulfoxide (DMSO) are 

very vare so far. Iodovinylsulfones, as versatile alkenylic intermediates with both a sulfonyl- and an 

iodine-bearing functionality, can be efficiently utilized for selective synthesis of alkenylsulfones, 

iodides and many other polysubstituted alkenes by the further transformations of the iodo and sulfonyl 

moieties. In recent decades, the utilization of DMSO has flourished, as DMSO is not only an effective 

high-boiling polar solvent5 and a gentle oxidant,6 but also frequently employed as a source of –C1,7  

–O,8 –SMe,9 –SOMe10 and –CH2SOMe11 for organic transformations, being directly inserted into the 

target molecules. 

Figure 1. X-ray structure of 1-fluoro-4-((E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (2k).

In this context, and in line with our current research interests,12 herein we report an unprecedented 

reaction,  which could access methylsulfones by employing DMSO as the –SO2Me source (Scheme 1). 

The structure of the product 2 has been confirmed by 1H NMR, 13C NMR {1H} , and HR-MS, and its 

configuration was further verified by NMR-NOE13 and X-ray (Figure 1). However, in a sharp contrast, 

the reports for utilization of DMSO as a source of –SO2Me are extremely rare so far.14
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Scheme 1. Synthesis of iodovinylmethylsulfones.
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At the outset of our studies, phenylacetylene 1a was employed as a model substrate to react with 

I2 in DMSO and H2O to identify the optimal reaction conditions, the results are rendered in Table 1. 

We are pleased to find that this reaction proceeded expeditiously at 120 °C. After screening the 

reaction time, we found that 25 minutes was enough for completing the reaction and resulted the 

expected product 1-(E)-1-iodo-2-(methylsulfinyl)vinyl)benzene 2a in 80% yield (Table 1, entries 1-4). 

No significant improvement in yield was obtained when elevating the reaction temperature to 140 °C 

(Table 1, entry 5). However, a steep decline in yield was observed when the reaction temperature was 

lowered to 100 °C (Table 1, entry 6). The reaction could not proceed at all when it was conducted at 70 

°C or at room temperature (Table 1, entries 7-8). Subsequently, the effect of I2 loading was investigated: 

we found no enhancement in the yield of 2a when increasing the I2 loading to 1.5 equiv. or decreasing 

it to 0.6 equiv. (Table 1, entries 9-10).

Table 1. Optimization studies a

Ph + S
O I2

Ph

I
S

O

O

+ H2O

1a 2a

Entry Iodine(1.0 equiv.) Temperature Time (m) Yield%b

1 I2 120 °C 10 32
2 I2 120 °C 20 73
3 I2 120 °C 25 80
4 I2 120 °C 30 80
5 I2 140 °C 25 80
6 I2 100°C 25 57
7 I2 70 °C 25 --
8 I2 R.T. 25 --
9c I2 120 °C 25 80

10d I2 120 °C 25 80
a Reaction conditions: 1a (0.25 mmol), I2 (1.0 equiv.), DMSO (1.0 mL), H2O (0.5 mL); b GC yield; c I2: 
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0.6 equiv.; d I2: 1.5 equiv..

Based on the results of the above optimization study (Table 1), we decided to carry out all of the 

following reactions with 0.6 equiv of I2 in DMSO at 120 °C for 25 minutes unless otherwise specified 

(Scheme 2). We first tested a series of different terminal alkynes to evaluate the efficiency and the 

substrate scope of this iodization-methylsulfoxidation to access the desired iodovinyl methylsulfones. 

To our satisfaction, despite the varying electronic natures of the different functional groups and 

substitution patterns on the phenyl ring, all of the tested terminal arynes were tolerated for this 

conversion and all afforded the desired products in moderate yields (Scheme 2, 62%-81%). As shown 

in Scheme 2, we noticed that the influence of the different functional groups and substitution patterns 

on this transformation was unpredictable. For instance, the electro-donating groups (3-Me, 4-Me, 4-Et, 

4-nPr, 4-CH2CN and 4-tBu) on the phenyl ring gave the required products in 67%-81% yield, whereas 

those bearing electro-withdrawing groups (2-Cl, 3-Cl, 4-Cl, 2-F, 3-F, 4-F and 4-CF3) afforded the 

expected product with 62%-76% yields. Additionally, the outcome of the yield for this conversion 

appeared to be almost unaffected by the location of the same substituent at different positions of the 

phenyl ring. For example, when phenylacetylene was substituted by –Cl or –F at the ortho, meta or 

para position, the corresponding positional isomers were afforded with almost identical yields. For this 

reaction, it is puzzling that both the strong electro-withdrawing group –CF3 and the strong 

electro-donating group –OCH3 on the phenyl ring of phenylacetylene were unfavorable. In the former 

case, the substrate 1-ethynyl-4-(trifluoromethyl)benzene led to the expected product 

1-(trifluoromethyl)-4-(E)-1-iodo-2-(methylsulfinyl)vinyl)benzene with only 62% yield. In the latter 

case, the substrates 4-methoxyphenylacetylene and 3,4-dimethoxyphenylacetylene failed to give their 

desired product.

Scheme 2. Scope of the substrates (all the reactions were carried out on 1 0.5 mmol scale, I2 0.6 
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equivalent, DMSO 1.0 mL, H2O 0.5 mL. Isolated yield is given in the Scheme.).

+ H2OR + S
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Next, several terminal alkyl alkynes were evaluated under the optimal conditions. We found that 

although all the tested substrates were compatible for this protocol, the reactivity of these compounds 

was slightly poorer than for the tested terminal arynes. In general, all these terminal alkyl alkynes led to 

their corresponding product with acceptable yield when the reaction time was prolonged to 60 m. To 

further expand the substrate scope, internal alkynes, such as oct-4-yne, hept-3-yne and 

1-(prop-1-ynyl)benzene, were employed to conduct this conversion. These internal alkynes proved to 

be reluctant substrates for this transformation: the symmetrical internal alkyne oct-4-yne resulted in the 

expected product (E)-4-iodo-5-(methylsulfinyl)oct-4-ene with only 53% yield (Scheme 2, 2r) and the 

unsymmetric substrates furnished a complex reaction system. Finally, it is worth noting that the liquid 

iodovinyl methylsulfones (2o-2r) are volatile compounds when pure.
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For the application of the products, a synthetic transformation of 2k was conducted, as showed in 

Scheme 3. A simple workup afforded in the derived product 

1-(4-fluorophenyl)-2-(methylsulfonyl)ethanone with 75% yield.

Scheme 3. Transformation of 1-fluoro-4-((E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (2k) to 

1-(4-fluorophenyl)-2-(methylsulfonyl)ethanone.

I

S O
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NaOAc (2.0 eq), 90 °C
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O

S O
F

O

75%

To shed some light on the mechanism of this iodization-methylsulfoxidation, several control 

experiments were conducted (Scheme 4). Firstly, no obvious influence on the product formation was 

noticed when the reaction was performed under oxygen or nitrogen atmosphere (Scheme 4, eq 1 and eq 

2), which rules out the possibility of the involvement of atmospheric oxygen for the formation of 

–SO2Me group. However, this transformation does not occur at all when the reaction was conducted 

under nitrogen atmospheres in glove box with anhydrous DMSO, thereby confirming that one oxygen 

atom of the –SO2Me group in the product is derived from the H2O in DMSO (Scheme 4, eq 3). As 

expected, radical inhibition with excess 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) entirely 

quenched this conversion (Scheme 4, eq 4), suggesting a radical mechanism was likely to be involved 

for this transformation. To gain further insight into the mechanism, when the reaction of 1a was 

conducted in the presence of 0.5 mL of H2
18O, the 18O-labeled product 2s was obtained in 72% yield 

(Scheme 4, eq 5), which completely confirmed the fact that one oxygen atom of the –SO2Me group in 

the product is derived from H2O.

Scheme 4. Control experiments.

Page 6 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



+1a
80%

given conditions
O2

+1a
given conditions

N2

+1a 2a
given conditions

(1) (2)

(3) +1a given conditions

TEMPO
(4)

anhydrous glove box
N2

H2O + H2O +

H2O +

+1a

2s 72%

given conditions (5)

Ph

I
S

O

18O
H2

18O+
0.5 mL

DMSO DMSO

DMSO DMSO

DMSO

2a
80%
2a

0%
2a
0%

Scheme 5. Proposed mechanism.
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The mechanism for this conversion is unclear. However, according to the above control 

experiments and the existing related literature, a possible mechanism is illustrated in Scheme 5, 

exemplified by the formation of 2a. Initially, I2 reacted with DMSO at high temperature to afford an 

iodinated sulphide A, by a similar process was reported by Braga’s group.15 At high temperature, A 

quickly decomposed and converted to a sulfinyl iodide cation B. The subsequent addition of A to the 

carbon-carbon triple bond of phenylacetylene (1a) resulted in the adduct iodovinylsulfoxidecation C 

via the mechanism proposed by Wang’s group.16 The subsequently abstraction of a methyl group from 

C by the weakly nucleo-philic DMSO to afford iodovinylsulfoxide species D.11 In the next step, 

iodovinylsulfoxide species D underwent a similar process as from DMSO to B (Scheme 5) in the 

presence of I2 to furnish another iodovinylsulfoxidecation F, which would be quickly converted to 

another intermediate G by the nucleophilic attack of H2O. Finally, the elimilation of HI from G 

produces the desired product 2a.
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In conclusion, we have disclosed a simple synthetic route to achieve 

(E)-α-iodo-β-methylsulfonylalkenes, which is the first example for synthesis of iodovinyl 

methylsulfones via an iodization-methylsulfoxidation of alkynes with I2 and DMSO. In this reaction, 

DMSO is an efficient reagent for methylsulfoxidation of alkynes at high temperature. Additionally, this 

protocol is a simple yet powerful method for the construction of iodovinyl methylsulfones with a broad 

substrate scope and excellent regio-selectivity. The presented organic transformation represents a new 

avenue for utilizing DMSO as a source of the methylsulfonyl group. Further studies on the mechanism 

and applications are in progress in our laboratory, and we expect many novel methodologies employing 

DMSO as –SOMe and –SO2Me sources to arise in the near future.

EXPERIMENTAL SECTION

General Information. All the reactions were carried out at 120 °C (oil bath) for 25-60 m in a 

round-bottom flask equipped with a magnetic stir bar. Unless otherwise stated, all reagents and 

solvents were purchased from commercial suppliers and used without further purification. 1H NMR 

and 13C NMR {1H}  spectra were recorded on a 400MHz spectrometer in solutions of CDCl3 using 

tetramethyl silane as the internal standard; δ values are given in ppm, and coupling constants (J) in Hz. 

HR-MS were obtained on a Q-TOF micro spectrometer.

Typical procedure: 1-(E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2a).

A mixture of phenylacetylene (1a) (52 mg, 0.5 mmol), I2 (76 mg, 0.3 mmol), DMSO (1.0 mL) and H2O 

(0.5 mL) was added successively in a round-bottom flask, and the resulting solution was stirred for 25 

m at 120°C (oil bath). The mixture was purified by column chromatography on silica gel to afford 

product 2a with PE/EA = 10/1 as the eluent.

Typical procedure: a larger scale experiment to synthesize 2k 
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A mixture of 1-ethynyl-4-fluorobenzene (1k) (1.20 g, 10 mmol), I2 (1.52 g, 6 mmol), DMSO (8.0 mL) 

and H2O (0.5 mL) was added successively in a round-bottom flask, and the resulting solution was 

stirred for 45 m at 120°C (oil bath). The mixture was purified by column chromatography on silica gel 

with PE/EA = 10/1 as the eluent to afford the desired product 2k with 69% yield (2.24 g).

1-(E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2a)

I

SO O

Yield: 72% (110 mg); a colorless solid; m.p. 99–101 °C; 1H NMR (CDCl3, 400 Hz) δ 7.46 (m, 2H), 

7.41 (m, 3H), 7.31 (s, 1H), 2.67 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 140.3, 139.4, 130.4, 128.3, 

127.8, 114.9, 43.0; HRMS (ESI): calcd for C9H9INaO2S: [M+Na+] 330.9260, found 330.9265.

1-(E)-1-iodo-2-(methylsulfonyl)vinyl)-3-methylbenzene (Scheme 2, 2b)

I

SO O

Yield: 75% (120 mg); a colorless solid; m.p. 105–107 °C; 1H NMR (CDCl3, 400 Hz) δ 7.29 (s, 1H), 

7.28 (br, 3H),7.19 (m, 1H), 2.67 (s, 3H), 2.39 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 140.1, 139.3, 

138.2, 131.2, 128.3, 128.2, 124.9, 115.2, 43.5, 21.3; HRMS (ESI): calcd for C10H11INaO2S: [M+Na+] 

344.9416, found 344.9422.

1-(E)-1-iodo-2-(methylsulfonyl)vinyl)-4-methylbenzene (Scheme 2, 2c)17

I

SO O

Yield: 70% (112 mg); a colorless solid; m.p. 108–110 °C; 1H NMR (CDCl3, 400 Hz) δ 7.38 (d, J = 8.4 

Hz, 2H), 7.28 (s, 1H), 7.20 (d, J = 8.4 Hz, 2H), 2.67 (s, 3H), 2.37 (s, 3H); 13C NMR {1H} (CDCl3, 100 

Page 9 of 19

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Hz) δ 140.9, 139.8, 136.5, 129.0, 128.0, 115.5, 43.0, 21.4; HRMS (ESI): calcd for C10H11INaO2S: 

[M+Na+] 344.9416, found 344.9418.

1-ethyl-4-(E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2d)

I

SO O

Yield: 72% (120 mg); a colorless solid; m.p. 114–116 °C; 1H NMR (CDCl3, 400 Hz) δ 7.41 (d, J = 8.4 

Hz, 2H), 7.28 (s, 1H), 7.22 (d, J = 8.4 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 2.66 (s, 3H), 1.25 (t, J = 7.6 

Hz, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 147.1, 139.9, 136.7, 128.1, 127.8, 115.5, 42.9, 28.7, 15.0; 

HRMS (ESI): calcd for C11H13INaO2S: [M+Na+] 358.9573, found 358.9565.

1-(E)-1-iodo-2-(methylsulfonyl)vinyl)-4-propylbenzene (Scheme 2, 2e)

I

SO O

Yield: 67% (117 mg); a colorless solid; m.p. 123–124 °C; 1H NMR (CDCl3, 400 Hz) δ 7.40 (d, J = 8.4 

Hz, 2H),7.28 (s, 1H), 7.20 (d, J = 8.4 Hz, 2H),2.64 (s, 3H), 2.60(q, J = 7.6 Hz, 2H), 1.64 (m, 2H), 0.95 

(t, J = 7.6 Hz, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 145.7, 139.9, 136.7, 128.4, 128.0, 115.4, 42.9, 

37.8, 24.1, 13.8; HRMS (ESI): calcd for C12H15INaO2S: [M+Na+] 372.9729, found 372.9740.

1-tert-butyl-4-(E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2f)

I

SO O

Yield: 73% (132 mg); a colorless solid; m.p. 102–104 °C; 1H NMR (CDCl3, 400 Hz) δ 7.42 (m, 4H), 

7.29 (s, 1H), 2.64 (s, 3H), 1.33 (s, 9H); 13C NMR {1H} (CDCl3, 100 Hz) δ 154.0, 139.9, 136.3, 127.9, 

125.3, 115.4, 42.9, 34.9, 31.1; HRMS (ESI): calcd for C13H18IO2S: [M+H+] 365.0066, found 365.0074.
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2-(4-(E)-1-iodo-2-(methylsulfonyl)vinyl)phenyl)acetonitrile (Scheme 2, 2g)

I

SO ONC

Yield: 81% (1140 mg); a pale yellow solid; m.p. 108–110 °C; 1H NMR (CDCl3, 400 Hz) δ 7.48 (d, J = 

8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.33 (s, 1H), 3.79 (s, 2H), 2.76 (s, 3H); 13C NMR {1H} (CDCl3, 

100 Hz) δ 140.2, 139.4, 132.1, 128.6, 127.8, 43.2, 29.6, 23.5; HRMS (ESI): calcd for C11H10INNaO2S: 

[M+Na+] 369.9369, found 369.9371.

1-chloro-4-((Z)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2h)

I

SO O
Cl

Yield: 70% (119 mg); a colorless solid; m.p. 116–117 °C; 1H NMR (CDCl3, 400 Hz) δ 7.38 (m, 4H), 

7.31 (s, 1H), 2.75 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 140.3, 137.7, 136.5, 129.3, 128.6, 113.4, 

43.1; HRMS (ESI): calcd for C9H9ClIO2S: [M+H+] 342.9051, found 342.9067.

1-chloro-3-((Z)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2i)

I

SO O

Cl

Yield: 75% (127 mg); a colorless solid; m.p. 100–102 °C; 1H NMR (CDCl3, 400 Hz) δ 7.41 (s, 1H), 

7.35 (br, 3H), 7.32 (s, 1H), 2.76 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 140.9, 140.6, 134.2, 130.4, 

129.5, 127.7, 125.9, 112.6, 43.2; HRMS (ESI): calcd for C9H9ClIO2S: [M+H+] 342.9051, found 

342.9071.

1-chloro-2-(E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2j)
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I

SO O

Cl

Yield: 72% (119mg); a colorless solid; m.p. 91–93 °C; 1H NMR (CDCl3, 400 Hz) δ 7.42 (m, 1H), 7.36 

(s, 1H), 7.32 (m, 3H), 2.80 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 141.2, 137.7, 130.9, 130.3, 

129.9, 128.8, 126.8, 110.9, 42.7; HRMS (ESI): calcd for C9H9ClIO2S: [M+H+] 342.9051, found 

342.9066.

1-fluoro-4-((Z)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2k)

I

SO O
F

Yield: 74% (120 mg); a colorless solid; m.p. 112–114 °C; 1H NMR (CDCl3, 400 Hz) δ 7.47 (m, 2H), 

7.31 (s, 1H), 7.08 (m, 2H), 2.73 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ161.6 (d, 1JC-F = 251.0 

Hz),140.2, 135.4 (d, 4JC-F = 3.5 Hz), 130.2 (d, 3JC-F = 8.7 Hz), 115.5 (d, 2JC-F = 22.0 Hz), 113.7, 43.1; 

HRMS (ESI): calcd for C9H9FIO2S: [M+H+] 326.9346, found 326.9349.

1-fluoro-3-((Z)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2l)

I

SO O

F

Yield: 76% (123 mg); a colorless solid; m.p. 103–105 °C; 1H NMR (CDCl3, 400 Hz) δ 7.38 (m, 1H), 

7.32 (s, 1H), 7.23 (m, 1H), 7.14 (m, 1H), 7.08 (m, 1H), 2.75 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) 

δ 163.0 (d, 1JC-F = 245.0 Hz), 145.1 (d, 4JC-F = 6.7 Hz), 140.6, 130.0 (d, 3JC-F = 8.0 Hz), 123.5 (d, 3JC-F 

= 8.0 Hz), 117.4 (d, 2JC-F = 21.0 Hz), 112.6 (d, 2JC-F = 21.9 Hz), 43.2; HRMS (ESI): calcd for 

C9H9FIO2S: [M+H+] 326.9346, found 326.9370.

1-fluoro-2-(E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2m) 
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I

SO O

F

Yield: 76% (124 mg); a colorless solid; m.p. 97–99 °C; 1H NMR (CDCl3, 400 Hz) δ 7.40 (s, 1H), 7.35 

(m, 2H),7.20 (m, 1H), 7.09 (m, 1H) 2.84 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 158.5 (d, 1JC-F = 

248.0 Hz), 141.4, 132.0 (d, 3JC-F = 8.3 Hz), 129.5 (d, 4JC-F = 3.2 Hz), 127.3 (d, 2JC-F = 21.9 Hz), 124.1 

(d, 3JC-F = 3.6 Hz), 115.8 (d, 2JC-F = 20.8 Hz), 106.7, 42.7; HRMS (ESI): calcd for C9H9FIO2S: [M+H+] 

326.9346, found 326.9362.

1-(trifluoromethyl)-4-((Z)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 2, 2n)

I

SO O
F3C

Yield: 62% (117 mg); a colorless solid; m.p. 113–114 °C; 1H NMR (CDCl3, 400 Hz) δ 7.66 (d, J = 7.6 

Hz, 2H), 7.55 (d, J = 7.6 Hz, 2H),7.37 (s, 1H), 2.79 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 142.8, 

140.7, 131.1, 128.1, 126.9 (q, 1JC-F = 269.5 Hz), 125.3, 112.6, 43.3; HRMS (ESI): calcd for 

C10H9F3IO2S: [M+H+] 376.9314, found 376.9321.

(E)-2-iodo-1-(methylsulfonyl)hex-1-ene (Scheme 2, 2o)

I

S
O

O

Yield: 69% (99 mg); a colorless oil; 1H NMR (CDCl3, 400 Hz) δ 6.54 (s, 1H), 2.45 (t, J = 7.6 Hz, 2H), 

2.30 (s, 3H), 1.48 (m, 2H), 1.36 (m, 2H), 0.92 (t, J = 7.6 Hz, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 

133.2, 96.9, 39.5, 30.8, 21.4, 17.4, 13.9; HRMS (ESI): calcd for C7H14IO2S: [M+H+] 288.9753, found 

288.9750.

(E)-2-iodo-1-(methylsulfonyl)hept-1-ene (Scheme 2, 2p)
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I

S
O

O

Yield: 71% (106mg); a colorless oil;1H NMR (CDCl3, 400 Hz) δ 6.54 (s, 1H), 2.43 (t, J = 7.6 Hz, 2H), 

2.31 (s, 3H), 1.50 (m, 2H), 1.33 (m, 4H), 0.91 (t, J = 7.6 Hz, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 

133.2, 97.0, 39.7, 30.4, 28.3, 22.4, 17.4, 13.9; HRMS (ESI): calcd for C8H16IO2S: [M+H+] 302.9910, 

found 302.9914.

1-(E)-4-iodo-5-(methylsulfonyl)pent-4-enyl)benzene (Scheme 2, 2q)

I

S
O

OPh

Yield: 70% (123 mg); a pale yellow oil; 1H NMR (CDCl3, 400 Hz) δ 7.29 (t, J = 7.6 Hz, 2H), 7.21 (m, 

3H), 7.06 (s, 1H), 3.08 (t, J = 7.6 Hz, 2H), 2.91 (s, 3H), 2.70 (t, J = 7.6 Hz, 2H), 1.96 (m, 2H); 13C 

NMR {1H} (CDCl3, 100 Hz) δ 141.0, 138.0, 128.45, 128.41, 126.5, 126.1, 43.6, 39.6, 34.5, 31.7; 

HRMS (ESI): calcd for C12H16IO2S: [M+H+] 350.9910, found 350.9928.

(E)-4-iodo-5-(methylsulfonyl)oct-4-ene (Scheme 2, 2r)

I

S
O

O

Yield: 53% (84 mg); a colorless oil; 1H NMR (CDCl3, 400 Hz) δ 2.85 (t, J = 7.6 Hz, 2H), 2.52 (t, J = 

7.6 Hz, 2H), 2.22 (s, 3H), 1.57 (m, 4H), 0.97 (t, J = 7.6 Hz, 3H), 0.92 (t, J = 7.6 Hz, 3H); 13C NMR 

{1H} (CDCl3, 100 Hz) δ 137.2, 106.7, 44.7, 42.5, 22.5, 21.2, 16.6, 13.5, 12.8; HRMS (ESI): calcd for 

C9H18IO2S: [M+H+] 317.0066, found 317.0061.

1-(4-fluorophenyl)-2-(methylsulfonyl)ethanone (Scheme 3) 18
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O

S O
F

O

A colorless solid; 1H NMR (CDCl3, 400 Hz) δ 8.06 (m, 2H), 7.22 (m, 2H), 4.57 (s, 2H), 3.15 (s, 3H).

1-(E)-1-iodo-2-(methylsulfonyl)vinyl)benzene (Scheme 4, eq 5, 2s)

I

SO O18

Yield: 72% (110 mg); a colorless solid; m.p. 99–101 °C; 1H NMR (CDCl3, 400 Hz) δ 7.46 (m, 2H), 

7.40 (m, 3H), 7.31 (s, 1H), 2.66 (s, 3H); 13C NMR {1H} (CDCl3, 100 Hz) δ 140.2, 139.4, 130.4, 128.3, 

127.8, 114.9, 43.0; HRMS (ESI): calcd for C9H9IO18OS: [M+H+] 310.9483, found 310.9494.

Supporting Information Available: Copies of 1H and 13C NMR {1H} of all the new compounds. This 

material is available free of charge via the Internet at http://pubs.acs.org.
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