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ABSTRACT: A metal-free, simultaneous triple C−C coupling
cyclization reaction between phenacyl bromides and indoles is
discovered in a highly regioselective fashion to furnish 3,5-diary-
lcarbazoles. DMAP is utilized as the only reagent for the unusual and
rapid cyclization reaction to furnish all new carbazole compounds
through installation of a great diversity of substituents. A plausible
radical mechanism for the new reaction is predicted by conducting various control experiments, competitive reactions, furoindole
formation, and ESI-MS analyses of the ongoing cyclization reaction.

The development of a new reactivity of a common
chemical to synthesize a valuable compound, especially

without the involvement of any catalyst and special reagent, is
highly desirable and challenging. Phenacyl bromide is utilized
as a synthon for the alkylation reaction to construct important
heterocycles, natural products, innovative compounds, and key
building blocks for industry and photochemistry.1 We
envisioned a cyclization reaction of phenacyl bromides and
indoles to construct valuable carbazoles, which are well-known
as antioxidant, antibacterial, anti-inflammatory, antitumor,
antipsychotic, anticonvulsant, antidiabetic, and anticancer
agents,2 and important materials for electronic devices.3 The
3-, 5-, and 3,5-substituted carbazoles have found important
applications such as carprofen as a selective COX-2 inhibitor
(i), carvedilol as a nonspecific β-adrengic antagonist (ii),
clausenaline D as a bioactive natural product (iii), and
hyellazole as a valuable alkaloid (iv, Figure 1).4 A considerable

application of carbazoles in our daily life led to an enormous
investigation for their syntheses involving intermolecular
amination followed by direct arylation, dehydrogenative
cyclization of 2-aminobiphenyls, cyclization of biaryl azides
using Rh2(II)-carboxylate catalyst, Pd(II)-catalyzed C−H bond
amination, cyclization using Pd catalyst, tandem iodo-
cyclization with migration and aromatization, metal-catalyzed
coupling−cyclization reactions, and many others.5 However,
most of the reactions involve metal catalysts, costly and
multiple reagents, and/or harsh reaction conditions. Recently,

transition-metal-free sustainable reactions have drawn im-
mense attention to the synthetic organic chemists.6 For
instance, Deng and co-workers recently reported a metal-free
synthesis of carbazoles utilizing indole, ketones, and nitro
alkene promoted by NH4I.

6d Kartika and co-workers reported
the induction of fused aromatic ring on indole substrates via
cascade nucleophilic addition.6e Synthesis of functionalized
carbazoles may be performed through the addition of olefins or
alkynes to indole. In this regard, several investigations were
dedicated to C−H activated olefin−indole coupling using PdII-
catalyst to achieve olefin insertion products.7 Verma and co-
workers reported PdII-assisted triple C−H activated cyclization
with formation of a mixture of products including carbazole in
moderate yield (eq i, Scheme 1).7f On the other hand, AuI/
AgSbF6-mediated cyclization of 2-alkynylindole with alkyne
was realized by Kundu and co-workers under heating
conditions (eq ii, Scheme 1).8a In addition, Deng and co-
workers developed an efficient indole-to-carbazole strategy
under metal-free conditions where NH4I promotes carbazole
formation with high regioselectivity via formal [2 + 2 + 2]
annulation of indoles, ketones, and nitroolefins (eq iii, Scheme
1).8b Herein, we report a metal-free highly selective and rapid
synthesis of valuable 3,5-diarylcarbazoles (3, eq (iv) utilizing
readily available inexpensive indoles (1) and phenacyl
bromides (2). DMAP is used as the sole reagent for the
unusual cyclization.
We have chosen indole (1a) and phenacyl bromide (2a) as

two reacting partners to survey the reaction parameters (Table
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Figure 1. Valuable 3-, 5-, and 3,5-substituted carbazoles.
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1). We envisaged a photochemical cross coupling reaction
between indole (1a) and phenacyl bromide (2a) in a 1:2 ratio,
where both the molecules of phenacyl bromide (2a) may be
incorporated into C2 and C3 sites of indole via radical
mechanism leading to the construction of the desired carbazole
(3a). However, 3a was detected in traces upon use of light and
catalysts9 (entries 1−3, Table 1). We examined the multi C−C
cross-coupling reaction using potential metal catalysts under
heating and oxidative conditions to produce only traces of 3a
(entries 4−9). Gratifyingly, on the removal of catalysts, the
cyclization reaction was rapid (15 min) in acetonitrile, and the
yield was significantly improved (62%) under heating and
aerobic conditions (entry 10). Herein, indole was consumed
within 15 min producing our desired product, but an excess
amount of phenacyl bromide remained in the reaction mixture.
Indole was probably polymerized during the course of
reaction.10 To our delight, a high yield (79%) of 3a was
obtained upon use of organic base DMAP, which was added in
portions (entry 11). Interestingly, the cyclization reaction was
highly regioselective as the other three possible regioisomers
are not detected. Different solvents were examined instead of
CH3CN. However, no improvement was observed (entries
12−18). As part of our continuous effort to study the reaction
inside the nanoreactor built-in aqueous media at ambient
temperature, we also studied the annulation reaction in vain.11

In fact, the yield was not at all encouraging by changing the
organic base and its inorganic varieties (entries 20−26) or
stoichiometric oxidants (entries 9, 27−29). The lower yield
(69%) obtained in the reaction under oxygen balloon may be
explained due to the formation of corresponding oxidized and/
or polymerized products of 1a and/or 3a. The reaction in neat
conditions (entry 30) produced only a dark black residue
having no desired product. In the absence of air (entry 31), the
reaction under developed conditions was very slow and
produced only about 20% of the desired product (3a) after
12 h.
General applicability of the developed reaction conditions

(entry 11, Table 1) was framed using various substituted
indoles (1) and phenacyl bromides (2) to obtain function-
alized carbazole moieties (3, Scheme 2). Aromatic residue
substituted phenacyl bromide and its fused naphthyl analogues
rapidly (0.5−2 h) produced respective 3,5-disubstituted new
carbazoles (3b, 3c, 3l, and 3t) in high yield (70−78%). The
phenacyl bromide carrying strongly electron-donating 4-Me, 2-
OMe, and 4-OMe groups furnished respective carbazoles such

as 3d, 3e, 3f, 3q, and 3v in moderate yield (68−72%). On the
other hand, slightly better yields (70−76%) and reaction rates
(0.8−2 h) were achieved while dealing with electron-deficient
substituents like 4-Cl (3g, 3o, 3r), 4-Br (3j, 3n, 3u), 4-F (3h),
and 4-NO2 (3i). The sterically hindered phenacyl bromide also
smoothly produced the desired 3f in 68% yield. The
unsubstituted indole delivered the respective carbazoles (3a,
3b, 3d, 3e, 3f, 3g, 3h, 3i, 3j) with good yields (68−79%) and
reaction rates (0.4−2.5 h) depending on the use of various
phenacyl bromides. Herein, not only indoles possessing a
strong electron-donating group like 5-methoxyindole (3c, 3k,
3l, 3n, 3o) were tolerated, but also indoles like labile acidic 5-
hydroxyindole (3m).

Scheme 1. Attempts to Construct Carbazole from Indole Table 1. Screening for Optimized Reaction Conditions

entry
catalyst

(x mol %) reaction conditionsa
3a, yieldb

(%)

1 IrCl3 (10) EY, CH2Cl2, rt, 23 W CFL, air, 12 h trace
29b RB, CH2Cl2, LED (5 W), PhI(OAc)2,

12 h
trace

39c CuBr (10) eosin Y, LED (30 W), PhIO, CH2Cl2,
rt, 9 h

trace

4 AgOTf (10) CH2Cl2, rt, air, 12 h trace
5 ZnI2 (10) CH2Cl2, rt, air, 12 h trace
6 Pd(OAc)2

(10)
CH2Cl2, rt, air, 12 h trace

7 FeCl3 (10) CH2Cl2, rt, air, 12 h trace
8 Cu(OTf)2

(10)
CH2Cl2, rt, air, 3.5 h trace

9 RuCl3 (10) CH2Cl2, rt, air, 3.5 h trace
10 CH3CN, 60 °C, air, 15 min 62
11 DMAP, CH3CN, 60 °C, air, 25 min 79
12 DMAP, DMF, 60 °C, air, 12 h NDc

13 DMAP, DMSO, 60 °C, air, 12 h ND
14 DMAP, THF, rt, 60 °C, 24 h 40
15 DMAP, Dioxane, 60 °C, argon, 3.5 h 45
16 DMAP, EtOAc, 60 °C, air, 25 min 15
17 AcOH, 60 °C, air, 12 h ND
18 DMAP, CH3CN:H2O (10:1), 60 °C,

air, 5 h
ND

19 DMAP, H2O, CTAB, rt, air, 12 h ND
20 DABCO, CH3CN, 60 °C, air, 4 h 35
21 Na2CO3, CH3CN, 60 °C, air, 3.5 h ND
22 pyridine, CH3CN, 60 °C, air, 3.5 h 15
23d Na2HPO4, CH3CN, 60 °C, air, 5 h ND
24 K2CO3, CH3CN, 60 °C, air, 5 h 20
25 Cs2CO3 (1), CH3CN, 60 °C, air,

3.5 h
15

26 NaHCO3, CH3CN, 60 °C, air, 5 h ND
27 DMAP, O2 balloon, CH3CN, 60 °C,

3.5 h
69

28 DDQ, CH3CN, rt, 4 h 15
29 I2, CH3CN, rt, air, 3.5 h 10
30d neat, 60 °C, air, 3.5 h (dark black

mass)
ND

31 DMAP, CH3CN, argon, 60 °C, 12 h 20
aReaction conditions: 1a (1 mmol), 2a (2 mmol), and DMAP (0.5
mmol) in acetonitrile (2 mL) heated at 60 °C (in an oil bath). bYield
of 3a after column chromatography. cND: not detected. dReaction
mixture immediately turned blackish.

The Journal of Organic Chemistry pubs.acs.org/joc Note

https://dx.doi.org/10.1021/acs.joc.0c01670
J. Org. Chem. XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acs.joc.0c01670?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c01670?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c01670?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.0c01670?fig=tbl1&ref=pdf
pubs.acs.org/joc?ref=pdf
https://dx.doi.org/10.1021/acs.joc.0c01670?ref=pdf


The 5-bromoindole (3r, 3t, 3u, 3v), 5-chloroindole (3s),
and 5-methoxycarbonylindoles (3p, 3q) also responded well in
this tandem cyclization reaction. The triple C−C coupled
cyclization reaction allowed installations of a great diversity of
substituents to achieve all new carbazole compounds. The
structure of the new carbazoles was determined by the analyses
of spectroscopic data (Supporting Information), and single
crystal XRD report of compound 3e (Supporting Infornma-
tion).12

From the competitive experiments (eq iv, v, Scheme 3), it is
quite evident that the cascade reaction remains uninfluenced
on the electron-donating or electron-withdrawing nature of the
substituent in indole residue. The scenario is more prominent
when substitution is stationed over the phenyl residue of α-
bromo acetophenone derivative (eq vi, vii). No product was
detected possessing 4-methoxy substituent (3e, 3w, or 3x),
which might be due to the destabilization of 4-methoxy
phenacyl radical intermediate. With 4-fluoro substituent,

difluoro derivative (3h) was obtained as a minor product
(25%), and phenacyl bromide incorporated product appeared
as major one (75%), whereas formation of monofluoro
derivatives (3y or 3z) was not detected.
We envisioned that phenacyl bromide−indole coupling

might occur through a photocatalytic radical mechanism. In
order to ascertain whether the reaction is passing through a
radical mechanism or not, radical scavenger TEMPO was
added to an ongoing reaction. The reaction was completely
arrested due to the formation of adduct 4 (eq viii, Scheme 4),

which was confirmed by ESI-MS analyses (Supporting
Information). Instead of phenacyl bromide (2a) when
phenacyl chloride (2k) was used, the desired carbazole (3a,
eq ix) was not detected. The treatment of N-methylindole (5)
with PhCOCH2Br did not produce the desired N-methyl
carbazole (6, eq x). In another control experiment, N-acylated
indole (7) did not generate carbazole, which is also negating
the formation of N-acylated intermediate (eq xi) during the

Scheme 2. Synthesis of Diverse 3,5-Diarylcarbazoles (3) Scheme 3. Competitive Experiments

Scheme 4. Control Experiments
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course of reaction. Formation of desired product (3a) was
negligible (∼10%, eq xii), when the cyclization reaction was
performed in the absence of light.
The reactions between 2-methylindole (8) and phenacyl

bromides were performed to furnish bioactive13 fused-
furoindolo derivatives (9a−c, Scheme 5) in good yield (72−

77%). The construction of the fluroindoles is expected to pass
through a radical mechanism, as displayed in Scheme 5.
Herein, an isomerized oxo-radical (II) of 1-aryl-2-ethanone
may react with 2-methylindole to form the radical intermediate
III, which transformed to putative intermediate IV through
C−C coupling. The presence of methyl group at 2-position
leads to the formation of radical intermediate IV and V,
followed by the release of hydrogen radical leading to the
construction of the final furoindole compound (9).
The exact mechanism of the unusual cyclization process of

the new reaction is unknown to us. A plausible radical
mechanism is depicted (Scheme 6) depending on the results
obtained from the aforementioned competitive, control,
furoindole formation experiments, and ESI-MS analyses of an
ongoing reaction. An isomerized radical of 1-phenyl-2-
ethanone (II) possessing oxygen radical may react with indole
moiety at 3-position to produce radical cation VI, which on
1,2-migration generate radical intermediate VII. The putative
intermediate couples with another 1-phenyl-2-ethanone oxo-
radical to generate intermediate VIII, which on successive
cyclization with release of HBr, indole-nitrogen-assisted
cyclization (IX), deprotonation and dehydration (X), and
aromatization through dehydration (XI) furnish the desired
carbazole (3a). The intermediates VI, VII, X, and XI were
detected in the ESI-MS spectral analyses (Supporting
Information) of an ongoing reaction for synthesis of 3a. The

role of oxygen in this new reaction (entry 31, Table 1) is
expected in the last two dehydration steps.

■ CONCLUSION
In conclusion, the present study offers an unorthodox catalyst-
free method for synthesis of carbazole scaffolds just by
treatment of indoles with phenacyl bromide derivatives
through simultaneous triple C−C coupling with excellent
regioselectivity. Mechanistic studies of the new cyclization
reaction provide evidence in favor of radical reaction along
with ionic mechanism. The broader sense of this novel strategy
is highly advantageous in terms of easily available inexpensive
starting materials, simplicity of execution, rapidity, large
substrate scope, and excellent functional group tolerance and
thus highlights another dimension for building the second
carbocycle of carbazole on indole under metal-free conditions.

■ EXPERIMENTAL SECTION
General Information. All reagents were purchased from

commercial suppliers and used without further purification. Petroleum
ether used in our experiments was in the boiling range of 60−80 °C.
Column chromatography was performed on silica gel (230−400
mesh). Reported melting points are uncorrected. 1H NMR and 13C
NMR spectra were recorded at ambient temperature in CDCl3 or
DMSO-d6 solvent. Chemical shifts are reported in ppm (δ) relative to
internal reference tetramethylsilane. Coupling constants are quoted in
Hz (J). Proton multiplicities are represented as s (singlet), d
(doublet), dd (doublet of doublet), t (triplet), q (quartet), and m
(multiplet). Splitting patterns that could not be interpreted were
designated as multiplet (m). Infrared spectra were recorded on FT-IR
spectrometer in thin film. HR-MS data were acquired by electron
spray ionization technique on a Q-tof-micro quadriple mass
spectrophotometer. X-ray crystallographic data of the single crystal
were taken using an X-ray diffractometer instrument.

General Procedure (GP 1) for Synthesis of Compound 3 (3a
as an Example). To a solution of indole (1 mmol) in acetonitrile (2
mL) was added phenacyl bromide (2 mmol) and the mixture stirred

Scheme 5. Furoindoles Synthesized from 2-Methylindole

Scheme 6. Plausible Mechanism for the Synthesis of 3,5-
Diarylcarbazoles
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at 60 °C in an oil bath under air to complete the reaction. The
progress of the reaction was monitored by TLC. DMAP (0.5 mmol)
was added in portions to complete the reaction. Acetonitrile was
removed from the reaction mixture, and the residue was dissolved in
ethyl acetate (20 mL). The organic phase was washed with brine (2 ×
10 mL), dried on activated Na2SO4, and concentrated in a rotary
evaporator under reduced pressure at ambient temperature. The
residue was purified by silica gel flash column chromatography using
ethyl acetate in petroleum ether as an eluent to afford the desired
product.
General Procedure (GP 2) for Synthesis of Compound 9 (9a

as an Example). To a solution of 2-methylindole (1 mmol) in
acetonitrile (2 mL) was added phenacyl bromide (2 mmol) and the
mixture stirred at 60 °C in an oil bath under air. DMAP (0.5 mmol)
was added in portions to complete the reaction, which was monitored
by TLC. Acetonitrile was removed from the reaction mixture, and
residue was dissolved in ethyl acetate (20 mL). The organic phase was
washed with brine (2 × 10 mL), dried on activated Na2SO4, and
concentrated in a rotary evaporator under reduced pressure at
ambient temperature. The residue was purified by silica gel flash
column chromatography using ethyl acetate in petroleum ether as an
eluent to afford the desired product.
Spectral Data. Characterization Data of Compound 3a−v. 2,4-

Diphenyl-9H-carbazole (3a): colorless solid (8% ethyl acetate/
petroleum ether); 79% (252 mg, 0.79 mmol); mp 170−172 °C; 1H
NMR (CDCl3, 300 MHz) δ 6.95−7.00 (m, 1H), 7.26−7.36 (m, 4H),
7.41−7.56 (m, 7H), 7.65−7.70 (m, 4H), 8.13 (brs, 1H); 13C{1H}
NMR (CDCl3,75 MHz) δ 108.0, 110.5, 119.3, 120.1, 120.9, 122.4,
122.8, 125.8, 127.2, 127.5, 127.7, 128.5, 128.8, 129.3, 138.0, 139.0,
140.2, 140.5, 141.2, 141.6; FT-IR (KBr, cm−1) 665, 755, 1047, 1324,
1471, 1611, 2928, 3400; HRMS (ESI) (m/z) [M + H]+ calcd for
C24H18N 320.1439, found 320.1443.
2,4-Dinaphthalen-2-yl-9H-carbazole (3b): brown solid (8% ethyl

acetate/petroleum ether); 75% (315 mg, 0.75 mmol); mp 180−182
°C; 1H NMR (CDCl3, 300 MHz) δ 6.96 (s, 1H), 7.38 (d, 1H, J = 6
Hz), 7.44−7.61 (m, 7H), 7.79 (d, 1H, J = 1.5 Hz), 7.86−8.06 (m,
8H), 8.19 (s, 2H), 8.29 (brs, 1H); 13C{1H} NMR (CDCl3, 75 MHz)
δ 108.3, 110.5, 119.3, 120.3, 121.3, 122.5, 122.8, 125.6, 125.8, 125.9,
125.9, 126.1, 126.3, 127.5, 127.7, 127.8, 127.8, 127.8, 128.0, 128.0,
128.2, 128.4, 132.6, 132.9, 133.6, 133.8, 137.8, 138.7, 138.9, 138.9,
140.3, 140.6; FT-IR (KBr, cm−1) 669, 750, 1045, 1323, 1456, 1599,
2853, 2924, 3020, 3421; HRMS (ESI) (m/z) [M + H]+ calcd for
C32H22N 420.1752, found 420.1749.
2,4-Bis-biphenyl-4-yl-6-methoxy-9H-carbazole (3c): brown solid

(10% ethyl acetate/petroleum ether); 70% (350 mg, 0.70 mmol); mp
186−188 °C; 1H NMR (CDCl3, 300 MHz) δ 3.66 (s, 3H), 7.03−7.06
(m, 1H), 7.11 (d, 1H, J = 2.1 Hz), 7.34 (d, 1H, J = 8.4 Hz), 7.38 (s,
1H), 7.42 (d, 1H, J = 3.3 Hz), 7.44−7.55 (m, 5H), 7.67−7.74 (m,
7H), 7.82 (d, 6H, J = 10.2 Hz), 8.12 (brs, 1H); 13C{1H} NMR
(CDCl3,75 MHz) δ 55.6, 105.5, 108.0, 111.0, 114.9, 120.2, 123.2,
127.0, 127.1, 127.3, 127.4, 127.5, 127.8, 128.8, 128.9, 129.8, 135.1,
137.4, 138.4, 140.0, 140.4, 140.5, 140.7, 140.9, 141.3, 153.4; FT-IR
(KBr, cm−1) 752, 831, 1230, 1323, 1456, 2853, 2924, 2973, 3395,
3416; HRMS (ESI) (m/z) [M + H]+ calcd for C37H28NO 502.2171,
found 502.2169.
2,4-Di-p-tolyl-9H-carbazole (3d): brown solid (6% ethyl acetate/

petroleum ether); 72% (250 mg, 0.72 mmol); mp 152−154 °C; 1H
NMR (CDCl3, 300 MHz) δ 2.43 (s. 3H), 2.52 (s, 3H), 7.00−7.05 (m,
1H), 7.29 (d, 2H, J = 8.7 Hz), 7.34−7.45 (m, 5H), 7.56−7.66 (m,
6H), 8.19 (brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ 21.0, 21.2,
107.4, 110.2, 119.0, 119.8, 120.6, 122.3, 122.8, 125.4, 127.2, 129.0,
129.0, 129.4, 136.8, 137.1, 137.8, 138.2, 138.6, 138.9, 140.0, 140.4;
FT-IR (KBr, cm−1) 736, 1282, 1323, 1455, 1513, 1605, 2852, 2920,
3022, 3050, 3440; HRMS (ESI) (m/z) [M + Na]+ calcd for
C26H21NNa 370.1572, found 370.1574.
2,4-Bis(4-methoxyphenyl)-9H-carbazole (3e): colorless crystalline

solid (10% ethyl acetate/petroleum ether); 68% (258 mg, 0.68
mmol); mp 186−188 °C; 1H NMR (CDCl3, 300 MHz) δ 3.86 (s,
3H), 3.94 (s, 3H), 6.94−7.03 (m, 3H), 7.04−7.11 (m, 2H), 7.32−
7.41 (m, 3H), 7.53−7.66 (m, 6H), 8.14 (brs, 1H); 13C{1H} NMR

(CDCl3, 75 MHz) δ 55.4, 107.1, 110.3, 113.9, 114.2, 119.1, 119.8,
120.6, 122.3, 123.0, 125.5, 128.5, 130.3, 133.7, 134.2, 137.6, 138.7,
140.1, 140.6, 159.1, 159.2; FT-IR (KBr, cm−1) 829, 1029, 1247, 1513,
1603, 2834, 2930, 2956, 3033, 3408; HRMS (ESI) (m/z) [M + H]+

calcd for C26H22NO2 380.1651, found 380.1655.
2,4-Bis(2-methoxyphenyl)-9H-carbazole (3f): yellow solid (10%

ethyl acetate/petroleum ether); 68% (259 mg, 0.68 mmol); mp 120−
122 °C; 1H NMR (CDCl3, 300 MHz) δ 3.65 (s, 3H), 3.82 (s, 3H),
6.96−7.17 (m, 7H), 7.24−7.35 (m, 3H), 7.38−7.44 (m, 3H), 7.48−
7.52 (m, 1H), 7.89 (brs, 1H); 13C{1H} NMR (CDCl3, 75 MHz) δ
55.3, 55.5, 110.2, 110.6, 110.8, 111.2, 118.8, 120.4, 120.6, 120.7,
121.8, 123.1, 123.2, 125.1, 128.2, 128.9, 130.1, 131.1, 131.3, 132.8,
135.7, 139.4, 139.9, 156.5, 157.1; FT-IR (KBr, cm−1) 1023, 1475,
1458, 1579, 1601, 2853, 2924, 3027, 3050, 3377; HRMS (ESI) (m/z)
[M + H]+ calcd for C26H22NO2 380.1651, found 380.1654.

2,4-Bis(4-chlorophenyl)-9H-carbazole (3g): yellow solid (8% ethyl
acetate/petroleum ether); 70% (272 mg, 0.70 mmol); mp 140−142
°C; 1H NMR (CDCl3, 300 MHz) δ 6.95−7.01 (m, 1H), 7.20−7.27
(m, 1H), 7.30−7.36 (m, 4H), 7.38−7.48 (m, 3H), 7.51−7.59 (m,
5H), 8.16 (brs, 1H); 13C{1H} NMR (CDCl3, 75 MHz) δ 108.1,
110.6, 119.5, 120.2, 120.4, 122.2, 122.4, 126.1, 128.7, 128.7, 129.0,
130.5, 133.4, 133.7, 136.7, 137.8, 139.4, 139.8, 140.2, 140.5; FT-IR
(KBr, cm−1): 821, 1014, 1086, 1322, 1491, 2852, 2924, 2972, 3056,
3412; HRMS (ESI) (m/z) [M + H]+ calcd for C24H16Cl2N 388.0660,
found 388.0657, 390.0636 and 392.0640.

2,4-Bis(4-fluorophenyl)-9H-carbazole (3h): yellowish color solid
(8% ethyl acetate/petroleum ether); 72% (255 mg, 0.72 mmol); mp
164−166 °C; 1H NMR (CDCl3, 300 MHz) δ 7.02−7.07 (m, 1H),
7.14−7.22 (m, 2H), 7.25−7.29 (m, 3H), 7.36−7.41 (m, 2H), 7.46 (d,
1H, J = 8.7 Hz), 7.50 (s, 1H), 7.55−7.69 (m, 4H), 8.21 (brs, 1H);
13C{1H} NMR (CDCl3, 75 MHz) δ 107.8, 110.4, 115.1, 115.4, 115.7,
119.2, 120.0, 120.5, 122.0, 122.4, 125.8, 128.8, 128.9, 130.2, 130.6,
130.7, 136.7, 136.9, 137.0, 137.4, 137.4, 137.9, 140.0, 140.3; FT-IR
(KBr, cm−1) 832, 1156, 1217, 1384, 1456, 2853, 2924, 2991, 3387,
3452; HRMS (ESI) (m/z) [M + H]+ calcd for C24H16F2N 356.1251,
found 356.1246.

2,4-Bis(4-nitrophenyl)-9H-carbazole (3i): reddish color solid (20%
ethyl acetate/petroleum ether); 70% (285 mg, 0.70 mmol); mp 270−
272 °C; 1H NMR (DMSO-d6,300 MHz) δ 6.91−6.99 (m, 1H), 7.33−
7.43 (m, 3H), 7.51−7.57 (m, 1H), 7.88−7.94 (m, 3H), 8.02−8.10
(m, 2H), 8.23−8.26 (m, 2H), 8.36−8.40 (m, 2H), 11.73 (brs, 1H);
13C{1H} NMR (DMSO-d6,75 MHz) δ 109.3, 111.0, 118.3, 118.9,
119.1, 120.2, 121.0, 123.2, 123.5, 125.8, 127.6, 129.0, 129.8, 134.5,
134.6, 140.2, 140.4, 145.9, 146.4, 146.6; FT-IR (KBr, cm−1) 819,
1125, 1208, 1345, 1519, 1627, 2856, 2985, 3210, 3434; HRMS (ESI)
(m/z) [M + H]+ calcd for C24H16N3O4410.1141, found 410.1145.

2,4-Bis(4-bromophenyl)-9H-carbazole (3j): yellow solid (8% ethyl
acetate/petroleum ether); 70% (336 mg, 0.70 mmol); mp 144−146
°C; 1H NMR (CDCl3,300 MHz) δ 7.04 (t, 1H, J = 6 Hz), 7.26 (d,
1H, J = 1.2 Hz), 7.40 (d, 2H, J = 6.3 Hz), 7.50−7.60 (m, 8H), 7.68
(d, 2H, J = 8.4 Hz), 8.20 (brs, 1H); 13C{1H} NMR (CDCl3, 75 MHz)
δ 107.9, 110.5, 119.4, 120.0, 120.2, 121.4, 121.8, 122.1, 122.3, 126.0,
128.9, 130.8, 131.6, 131.8, 136.6, 137.6, 139.8, 140.1, 140.2, 140.3;
FT-IR (KBr, cm−1) 749, 818, 1010, 1072, 1323, 1455, 2852, 2923,
3046, 3413; HRMS (ESI) (m/z) [M + H]+ calcd for C24H16Br2N
475.9649, found 475.9653, 477.9604 and 479.9590.

6-Methoxy-2,4-diphenyl-9H-carbazole (3k): brown solid (10%
ethyl acetate/petroleum ether); 78% (272 mg, 0.78 mmol); mp 140−
142 °C; 1H NMR (CDCl3,300 MHz) δ 3.55 (s, 3H), 6.88−6.94 (m,
2H), 7.18 (d, 1H, J = 0.3 Hz), 7.25 (d, 1H, J = 8.7 Hz), 7.30 (d, 2H, J
= 7.2 Hz,), 7.37−7.49 (m, 5H), 7.54 (s, 1H), 7.60−7.66 (m, 3H),
8.03 (brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ 55.5, 105.2, 108.0,
110.9, 114.8, 120.3, 123.1, 127.1, 127.4, 127.6, 128.2, 128.7, 129.2,
130.8, 135.0, 137.7, 138.9, 140.9, 141.2, 141.5, 153.3; FT-IR (KBr,
cm−1) 798, 849, 1079, 1513, 1609, 2844, 2951, 2996, 3099, 3422;
HRMS (ESI) (m/z) [M + H]+ calcd for C25H20NO 350.1545, found
350.1550.

6-Methoxy-2,4-dinaphthalen-2-yl-9H-carbazole (3l): brown solid
(10% ethyl acetate/petroleum ether); 78% (350 mg, 0.78 mmol); mp
158−160 °C; 1H NMR (CDCl3,300 MHz) δ 3.43 (s, 3H), 6.94 (d,
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1H, J = 8.1 Hz), 7.27 (d, 1H, J = 8.1 Hz), 7.25−7.41 (m, 5H), 7.68 (s,
1H), 7.80−7.98 (m, 9H), 8.10−8.13 (m, 3H); 13C{1H} NMR
(CDCl3, 75 MHz) δ 55.6, 105.5, 108.4, 111.0, 115.0, 120.2, 120.9,
123.2, 125.9, 125.9, 126.0, 126.3, 126.3, 127.6, 127.8, 127.8, 127.9,
128.1, 128.2, 128.4, 128.8, 130.9, 132.6, 132.9, 133.5, 133.7, 135.2,
137.8, 138.5, 138.9, 141.4, 153.4; FT-IR (KBr, cm−1) 809, 999, 1241,
1498, 1588, 2831, 2931, 2966, 3013, 3409; HRMS (ESI) (m/z) [M +
H]+ calcd for C33H24NO 450.1858, found 450.1855.
5,7-Diphenyl-9H-carbazol-3-ol (3m): magenta solid (20% ethyl

acetate/petroleum ether); 75% (214 mg, 0.75 mmol); mp 196−198
°C; 1H NMR (CDCl3,300 MHz) δ 6.91−6.94 (m, 1H), 7.26−7.38
(m, 3H), 7.43−7.55 (m, 7H), 7.58−7.72 (m, 4H), 7.95−8.03 (m,
2H), 8.15 (brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ107.8, 108.1,
111.0, 114.8, 120.5, 123.3, 127.2, 127.5, 127.6, 128.6, 128.8, 129.2,
130.1, 133.2, 135.0, 135.2, 139.1, 141.1, 141.4, 141.6, 148.9; FT-IR
(KBr, cm−1) 832, 1165, 1127, 1394, 1466, 2853, 2924, 3322, 3422,
3599; HRMS (ESI) (m/z) [M + H]+ calcd for C24H18NO 336.1388,
found 336.1392.
2,4-Bis(4-bromophenyl)-6-methoxy-9H-carbazole (3n): yellow

solid (10% ethyl acetate/petroleum ether); 76% (384 mg, 0.76
mmol); mp 170−172 °C; 1H NMR (CDCl3, 300 MHz) δ 3.62 (s,
3H), 6.89 (d, 1H, J = 2.4 Hz), 6.97 (q, 1H, J = 9 Hz), 7.17−7.19 (m,
2H), 7.26 (d, 1H, J = 8.7 Hz), 7.46−7.53 (m, 6H), 7.60 (d, J = 8.4
Hz, 2H), 8.02 (brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ 55.6,
105.4, 108.1, 111.0, 114.9, 119.8, 119.9, 121.4, 121.8, 122.8, 128.9,
130.4, 131.4, 131.8, 135.0, 136.5, 137.6, 139.6, 140.2, 141.1, 153.4;
FT-IR (KBr, cm−1) 1010, 1210, 1474, 2925, 2832, 2861, 3002, 3417;
HRMS (ESI) (m/z) [M + H]+ calcd for C25H18Br2NO 505.9755,
found 505.9752 (one of the major peaks).
2,4-Bis(4-chlorophenyl)-6-methoxy-9H-carbazole (3o): brownish

yellow solid (12% ethyl acetate/petroleum ether); 76% (314 mg, 0.76
mmol); mp 158−160 °C; 1H NMR (CDCl3,300 MHz) δ 3.68 (s,
3H), 6.96 (d, 1H, J = 2.4 Hz), 7.01−7.05 (m, 1H), 7.25 (d, 1H, J =
3.6 Hz,), 7.34 (d, J = 9 Hz, 1H), 7.43 (d, 2H, J = 8.4 Hz), 7.51−7.64
(m, 7H), 8.13 (brs, 1H); 13C{1H} NMR (CDCl3, 75 MHz) δ 55.8,
105.5, 108.2, 111.2, 115.0, 120.1, 122.9, 128.6, 128.7, 128.9, 129.0,
129.4, 133.4, 133.8, 135.2, 136.6, 137.7, 139.3, 139.9, 141.3, 153.5;
FT-IR (KBr, cm−1) 1044, 1423, 1323, 1476, 2857, 2927, 2976, 3020,
3433; HRMS (ESI) (m/z) [M + H]+ calcd for C25H18Cl2NO
418.0765, found 418.0767 (one of the major peaks).
5,7-Diphenyl-9H-carbazole-3-carboxylic acid methyl ester (3p):

colorless solid (10% ethyl acetate/petroleum ether); 70% (316 mg,
0.70 mmol); mp 206−208 °C; 1H NMR (CDCl3,300 MHz) δ 3.78 (s,
3H), 7.28−7.56 (m, 9H), 7.61−7.65 (m, 4H), 8.00 (dd, 1H, J1 = 1.5
Hz, J2 = 1.5 Hz), 8.23 (s, 1H), 8.41 (brs, 1H); 13C{1H} NMR
(CDCl3, 75 MHz) δ 51.7, 108.1, 109.9, 120.0, 121.2, 121.5, 122.5,
124.8, 127.2, 127.3, 127.4, 127.9, 128.5, 128.8, 129.0, 138.2, 139.8,
140.4, 140.9, 141.2, 142.9, 167.6; FT-IR (KBr, cm−1) 763, 1099,
1231, 1299, 1435, 1608, 1688, 2849, 2925, 3318, 3420; HRMS (ESI)
(m/z) [M + H]+ calcd for C26H19NO2Na 400.1313, found 400.1309.
5,7-Bis(4-methoxyphenyl)-9H-carbazole-3-carboxylic acid meth-

yl ester (3q): yellow solid (15% ethyl acetate/petroleum ether); 70%
(302 mg, 0.70 mmol); mp 220−222 °C; 1H NMR (CDCl3,300 MHz)
δ 3.78 (s, 3H), 3.79 (s, 3H), 3.82 (s, 3H), 6.90 (d, 2H, J = 8.7 Hz),
7.02 (d, 2H, J = 8.7 Hz), 7.28−7.31 (m, 2H), 7.44 (d, 1H, J = 1.2
Hz), 7.51−7.56 (m, 4H), 8.32 (d, 1H, J = 1.2 Hz), 8.50 (brs, 1H);
13C{1H} NMR (CDCl3,75 MHz) δ 51.8, 55.3, 55.3, 107.3, 109.9,
114.0, 114.2, 119.5, 121.0, 121.2, 122.6, 124.7, 127.0, 128.4, 130.1,
132.9, 133.7, 137.8, 139.3, 141.1, 142.9, 159.1, 159.4, 167.8; FT-IR
(KBr, cm−1) 892, 1049, 1274, 1502, 1599, 1689, 2835, 2971, 2965,
3053, 3406; HRMS (ESI) (m/z) [M + Na]+ calcd for C28H23NO4Na
460.1525, found 460.1530.
6-Bromo-2,4-bis(4-chlorophenyl)-9H-carbazole (3r): black solid

(7% ethyl acetate/petroleum ether); 72% (337 mg, 0.72 mmol); mp
180−182 °C; 1H NMR (CDCl3,300 MHz) δ 7.18−7.22 (m, 1H),
7.25 (s, 1H), 7.34−7.40 (m, 3H), 7.44−7.49 (m,6H), 7.53 (d, J = 8.4
Hz, 2H), 8.25 (brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ 108.2,
112.0, 112.3, 119.2, 121.0, 124.2, 124.8, 128.7, 128.8, 128.9, 129.0,
130.4, 133.6, 134.1, 136.9, 138.6, 138.8, 138.9, 139.6, 140.9; FT-IR
(KBr, cm−1) 618, 822, 1088, 1290, 1384, 1445, 2853, 2924, 3074,

3419; HRMS (ESI) (m/z) [M + H]+ calcd for C24H15BrCl2N
465.9765, found 465.9770 (one of the major peaks).

6-Chloro-2,4-diphenyl-9H-carbazole (3s): yellow crystalline solid
(6% ethyl acetate/petroleum ether); 70% (247 mg, 0.70 mmol); mp
226−228 °C; 1H NMR (CDCl3,300 MHz) δ 7.27 (s, 1H), 7.30−7.33
(m, 2H), 7.36−7.41 (m, 2H), 7.46−7.53 (m, 3H), 7.54−7.56 (m,
1H), 7.58 (s, 1H), 7.60−7.62 (m, 1H), 7.66−7.69 (m, 2H), 7.72 (d,
2H, J = 7.2 Hz), 8.25 (brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ
108.1, 111.3, 119.3, 121.2, 122.0, 124.0, 124.6, 125.8, 127.4, 127.5,
128.0, 128.6, 128.9, 129.0, 138.2, 138.4, 139.8, 140.6, 141.0, 141.3;
FT-IR (KBr, cm−1) 1072, 1269, 1402, 1570, 1612, 2853, 2923, 3024,
3061, 3381; HRMS (ESI) (m/z) [M + H]+ calcd for C24H17ClN
354.1049, found 354.1052 and 356.1007.

6-Bromo-2,4-dinaphthalen-2-yl-9H-carbazole (3t): black solid
(6% ethyl acetate/petroleum ether); 72% (359 mg, 0.72 mmol);
mp 212−214 °C; 1H NMR (CDCl3, 300 MHz) δ 7.20 (d, 1H, J = 0.9
Hz), 7.26 (d, 1H, J = 8.7 Hz), 7.38−7.56 (m, 7H), 7.63−7.70 (m,
2H), 7.77−8.01 (m, 6H), 8.11 (d, 2H, J = 6.6 Hz), 8.25 (brs, 1H);
13C{1H} NMR (CDCl3,75 MHz) δ 108.3, 111.8, 112.0, 119.2, 121.8,
124.5, 125.0, 125.8, 126.0, 126.1, 126.1, 126.3, 126.4, 126.7, 127.3,
127.6, 127.7, 127.9, 128.1, 128.1, 128.4, 128.8, 130.8, 132.6, 133.0,
133.6, 133.7, 138.0, 138.5, 138.8, 139.7, 141.0; FT-IR (KBr, cm−1)
1215, 1046, 1289, 1446, 1599, 2853, 2924, 3020, 3421; HRMS (ESI)
(m/z) [M + H]+ calcd for C32H21BrN 498.0857, found 498.0860
(one of the major peaks).

6-Bromo-2,4-bis(4-bromophenyl)-9H-carbazole (3u): brown solid
(5% ethyl acetate/petroleum ether); 70% (390 mg, 0.70 mmol); mp
210−212 °C; 1H NMR (CDCl3,300 MHz) δ 7.19 (s, 1H), 7.24 (d,
1H, J = 8.4 Hz), 7.38−7.56 (m, 9H), 7.62 (d, 2H, J = 6.9 Hz), 8.23
(brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ 108.1, 111.9, 112.1,
119.0, 120.7, 121.6, 122.2, 124.1, 124.6, 128.7, 128.9, 130.5, 131.3,
131.7, 131.8, 136.8, 138.4, 138.7, 139.2, 139.9, 140.7; FT-IR (KBr,
cm−1) 751, 1215, 1291, 1446, 1457, 2853, 2924, 2956, 3020, 3422;
HRMS (ESI) (m/z) [M + H]+ calcd for C24H15Br3N 553.8755, found
553.8759 (one of the major peaks).

6-Bromo-2,4-di-p-tolyl-9H-carbazole (3v): brown solid (5% ethyl
acetate/petroleum ether); 72% (304 mg, 0.72 mmol); mp 200−202
°C; 1H NMR (CDCl3,300 MHz) δ 7.05−7.08 (m, 3H), 7.14−7.24
(m, 4H), 7.32−7.40 (m, 5H), 7.48 (d, J = 1.8 Hz, 1H), 7.99 (brs,
1H); 13C{1H} NMR (CDCl3,75 MHz) δ 21.0, 21.3, 107.5, 111.6,
111.9, 118.9, 121.1, 124.7, 124.8, 127.2, 128.2, 128.8, 129.2, 129.5,
130.7, 137.1, 137.6, 138.1, 138.4, 138.6, 139.7, 140.8; FT-IR (KBr,
cm−1) 699, 814, 1109, 1290, 1384, 2853, 2923, 2969, 3379, 3426;
HRMS (ESI) (m/z) [M + Na]+ calcd for C26H20BrNNa 448.0677,
found 448.0681 (one of the major peaks).

Characterization Data of Compounds 9a−c. 3a-Methyl-2-
phenyl-4,8b-dihydro-3aH-furo[3,2-b]indole (9a):13 colorless solid
(7% ethyl acetate/petroleum ether); 72% (180 mg, 0.72 mmol); mp
110−112 °C; 1H NMR (CDCl3,300 MHz) δ 2.89 (s, 3H), 5.36 (d,
1H, J = 1.8 Hz), 5.76 (d, 1H, J = 1.8 Hz), 7.02 (t, 1H, J = 7.5 Hz),
7.11−7.17 (m, 2H), 7.23−7.35 (m, 4H), 7.41−7.44 (m, 2H), 7.95
(brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ 12.8, 110.1, 110.3,
114.9, 119.7, 121.2, 127.1, 127.3, 127.5, 128.2, 128.5, 135.1, 141.9;
FT-IR (KBr, cm−1) 680, 759, 1025, 1363, 1476, 1589, 2913, 2954,
3050, 3471; HRMS (ESI) (m/z) [M + H]+ calcd for C17H16NO
250.1232, found 250.1228.

3a-Methyl-2-(naphthalen-2-yl)-4,8b-dihydro-3aH-furo[3,2-b]-
indole (9b): light brown solid (5% ethyl acetate/petroleum ether);
77% (230 mg, 0.77 mmol); mp 130−132 °C; 1H NMR (CDCl3,300
MHz) δ 2.27 (s, 3H), 5.45 (d, 1H, J = 1.2 Hz), 5.88 (d, 1H, J = 1.2
Hz), 6.96−6.99 (m, 1H), 7.01−7.16 (m, 1H), 7.24−7.33 (m, 2H),
7.43−7.48 (m, 2H), 7.59 (dd, 1H, J1 = 0.9 Hz, J2 = 1.2 Hz), 7.40−
7.85 (m, 4H), 7.93 (brs, 1H); 13C{1H} NMR (CDCl3,75 MHz) δ
12.9, 110.2, 114.1, 115.6, 119.7, 119.8, 121.3, 125.7, 125.8, 126.0,
126.2, 127.6, 127.7, 128.3, 128.5, 133.0, 133.2, 133.5, 135.2, 139.4,
142.5; IR (KBr, cm−1) 670, 771, 1055, 1383, 1436, 1601, 2873, 2898,
3048, 3433; HRMS (ESI) (m/z) [M + H]+ calcd for C21H18NO
300.1388, found 300.1393.

2-(4-Methoxyphenyl)-3a-methyl-4,8b-dihydro-3aH-furo[3,2-b]-
indole (9c): black solid (10% ethyl acetate/petroleum ether); 74%
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(206 mg, 0.74 mmol); mp 148−150 °C; 1H NMR (CDCl3,300 MHz)
δ 2.30 (s, 3H), 3.81 (s, 3H), 5.23 (d, 1H, J = 1.8 Hz), 5.66 (d, 1H, J =
1.8 Hz), 6.78−6.86 (m, 2H), 6.93−7.02 (m, 1H), 7.08−7.14 (m, 1H),
7.21−7.28 (m, 1H), 7.31−7.94 (m, 3H), 7.97 (brs, 1H); 13C NMR
(CDCl3,75 MHz) δ 12.8, 55.2, 110.0, 113.2, 113.5, 113.7, 114.2,
119.6, 119.7, 121.1, 128.4, 130.6, 133.0, 134.4, 135.1, 141.8, 159.2;
FT-IR (KBr, cm−1) 1025, 1477, 1596, 1620, 2855, 3057, 3081, 3364;
HRMS (ESI) (m/z) [M + H]+ calcd for C18H18NO2 280.1338, found
280.1342.
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