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Abstract Bicyclic lactams may be prepared from serine or cysteine
and 2-methylpropanal; the resulting S,N-heterocycles are more stable
than the corresponding O,N-heterocycles but both are synthetic inter-
mediates capable of further elaboration.
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We have shown that L-serine, L-cysteine, L-allothreonine
and L-threonine methyl esters 1a–d may be converted into
their corresponding O,N- or S,N-heterocycles 2a–d by reac-
tion with pivaldehyde, and that these in turn may be con-
verted into tetramates 3a–d by a highly chemo- and enantio-
selective Dieckmann cyclisation using the reported proto-
cols (Scheme 1).1–3 The t-butyl group acts simultaneously
as a protecting and chemoselective directing group, princi-
pally from its bulk. One disadvantage of this process is the
expense and sometimes limited availability of pivaldehyde,
and the question arose whether 2-methylpropanal might
provide an alternative. Although the use of other aldehydes
and especially benzaldehydes has been shown for cysteine,4
where the S,N-heterocycles are more stable,5,6 the possibili-

ty of similar variation for the O,N-heterocycle system was
less certain. The feasibility of preparing and using such te-
tramates has been investigated and is reported here.

Methyl ester hydrochlorides of the amino acids L-serine
and L-cysteine 1a and 1b were treated with 2-methylpro-
panal/triethylamine following Seebach’s protocol (Scheme
2)7 to furnish oxazolidine 4a and thiazolidine 4b as mix-
tures of diastereomers, which were used directly without
purification; the preference of the latter for the cis-2,5 dia-
stereomer results from ring-chain tautomerism giving the
more stable isomer.5,8,9 DCC mediated coupling gave
malonamides 5a,b and subsequent Dieckmann cyclisation
afforded the novel methyl ester tetramates 6a (14%) or 6b
(47%);10 the relative stereochemistry of key intermediates
being established by NOE analysis (Figure 1). It is evident
that the isopropyl group is capable of directing a similar
chemical outcome to that of the t-butyl group,8,11 although
this comes with complication in the NMR spectrum as a re-
sult of the non-symmetrical nature of the isopropyl system.
In the case of the thiazolidine system, bicyclic tetramate 6b
was obtained along with decarboxylated 6c as an insepara-
ble mixture. Tetramates 6a,b were readily converted into
mesylates 7a,b in 14 and 64% yield, respectively;10 the sig-
nificantly better yields in the case of the latter again reflect
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the better stability to acid (and therefore chromatography)
of the S,N-system over the O,N-system. However, for the ox-
azolidine system, difficulties with purification, thought to

arise from the greater acid sensitivity of this system, meant
that crude material needed to be taken forward to form the
mesylate 7a, which could readily be isolated in pure form.
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Figure 1  NOE analysis of selected compounds.
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With mesylates 7a,b in hand, Suzuki coupling with 1.5
equivalent of aryl boronic acid resulted in the formation of
pyrrolinone derivatives 8ai–iii and 8bi–iii (Table 1).10 The
structures of 8aii and 8bii were further confirmed by single
crystal X-ray diffractrometry (Figure 2).12

Treatment of pyrrolinones 8ai–iii with H2/PtO2 fur-
nished acid derivatives 9ai–iii in high yields (Table 1) and,
notably, the isolation of these products by flash column
chromatography was straightforward. Their stereochemis-
try was assigned by NOE analysis, which, in all cases,
showed strong relative enhancements between endo-H4-
H2 and endo-H7-H6 (Figure 1) and this was further con-
firmed by the X-ray crystal structure of 9aii (Figure 2).12

Representative compounds 8aii and 9ai were subjected to
N,O-acetal deprotection using the Corey–Reichard proto-
col13 and gave the pyroglutaminols 10 and 11 in excellent
yields (Scheme 2). The easier deprotection of the isopropyl
system over the t-butyl system is noteworthy, and again re-
flects their increased acid lability.1

This approach could also be extended by N-acylation of
thiazolidine 4b with ethyl -methylmalonyl chloride and
pyridine to furnish cis-2,5 malonamide 5c (Scheme 2),
found as a mixture of C7 epimers with 7R as the major iso-
mer (NOE, Figure 1), and 1D gradient NMR spectroscopy

showed the presence of rotameric exchange. Dieckmann
cyclisation under basic conditions resulted in inseparable
C7-methyl tetramates 6d and 6e.10 The stereochemistry of
the major tetramic acid 6d was determined by NOE analysis
(Figure 1). Treatment of this mixture with MsCl/DIPEA gave
mesylates 7d and 7e in 61% and 13% isolated yield, respec-
tively.10 The stereochemistry of both mesylates 7d and 7e
were confirmed by NOE analysis (Figure 1), and Suzuki cou-
pling with arylboronic acids furnished the desired coupling
adducts 8ci–iii and 12 (Scheme 2 and Table 1).10 However,
the reaction was much slower in this case and probably re-
flects the greater steric bulk in this system.

Broth assay of some of these compounds (8ai–aiii, 8bi–
biii, 8ci–8ciii) against Gram-positive (methicillin-resistant
Staphylococcus aureus) and Gram-negative (Escherichia coli
(EC 34)) bacteria showed no activity, confirming earlier re-
sults seen with related pyroglutamate derivatives.14

In conclusion, we have shown that bicyclic lactams may
be prepared from serine or cysteine and 2-methylpropanal;
the resulting S,N-heterocycles are more stable than the cor-
responding O,N-heterocycles but both are synthetic inter-
mediates capable of further elaboration. This approach
neatly complements earlier work leading to C-6 and C-7
functionalisation in related bicyclic systems.15

Table 1  Suzuki Coupling of 7a,b with Arylboronic Acids and Hydrogenation of 8ai–aiii

Compound Ar Reaction time (h) Product Yield (%) Reaction time (h) Product Yield (%)

7a 4-MeOC6H4  6 8ai 47 6 9ai 82

C6H5  6 8aii 45 5 9aii 75

4-ClC6H4  3 8aiii 40 6 9aiii 85

7b 4-MeOC6H4  3 8bi 72 – – –

C6H5  3 8bii 74 – – –

4-ClC6H4  5 8biii 41 – – –

7c 4-MeOC6H4 24 8ci 13 – – –

C6H5 20 8cii 12 – – –

4-ClC6H4 24 8ciii 11 – – –

Figure 2  Single-crystal X-ray crystal structures of 8aii, 8bii, 9aii.12 Displacement ellipsoids are drawn at 50% probability.

8bii
8aii

9aii
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