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Abstract: A concise, practical and stereoselective total synthesis of
galantinic acid, constituent of the peptide antibiotic galantin, is re-
ported. The title compound is obtained in six steps via Heathcock–
Claisen condensation, Evans reduction and deprotection in 10%
overall yield from protected serine. The route described herein thus
constitutes the shortest and most efficient procedure for the prepa-
ration of the title compound disclosed so far.
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polyketides

Galantinic acid (1) was first isolated as a degradation
product of the peptide antibiotic galantin I (3), obtained
from fermentation of Bacillus pulvifaciens.1 The original-
ly proposed structure 2 of galantinic acid1 was later shown
to be incorrect by total synthesis and was revised to 1
(Figure 1).2 It is interesting to note that although many b-
hydroxy-g-amino acids are constituents of natural prod-
ucts with potent biological activity such as didemnin3a or
dolastatin 10,3b the corresponding e-amino acids resulting
from an additional insertion of an acetate unit are much
less frequently observed.4 Galantinic acid (1) is consid-
ered an interesting target for synthesis, due to its biologi-
cal activity and the highly functionalized C7 framework.
Moreover, 1 can be considered of interesting biosynthetic
origin, as its bioproduction likely involves non-ribosomal

peptide synthetase and polyketide synthase enzymes.
Therefore, several syntheses of 1 were reported so far.2,5

All these routes, however, display limitations such as
length (12–18 steps),6 impracticability or use of expensive
reagents. We report in this letter a simple, short and effi-
cient route to (–)–galantinic acid (1), which favorably
compares to earlier approaches.

The synthesis started from the b-hydroxy-g-amino acid 5,
which is readily prepared on a 20 g scale starting from
protected serine 4, which is commercially available
(Scheme 1).7 A Claisen condensation using the procedure
of Heathcock8 employing six equivalents of lithiated tert-
butyl acetate gave the hydroxyketoester 6 in 75% yield.9

This transformation is remarkable, as the dianion resulting
from deprotonation of the acidic NH and OH protons is
soluble and reactive towards the enolate. In situ trapping
of the resulting keto ester allowed for a high yielding ac-
cess to this intermediate 6 in only three steps starting from
protected serine 4. As noted earlier by Heathcock,8 we
found that the use of an excess of the enolate lead to sig-
nificantly higher yields. The keto ester 6 is then reduced
by directed hydride delivery following the method of
Evans and coworkers10 to give the anti 3,5-diol 7 in high
stereoselectivity (>95:5).11 The carbamate-protected
amine adjacent to the directing OH group is fully com-
patible with the reaction conditions and deterred neither
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rate nor selectivity. The diol 7 was then deprotected first
by hydrogenolysis, where the addition of acetic acid was
found to be crucial. Without this additive, the OBn group
was found to be unreactive. The conditions for the
cleavage of the tert-butyl ester also needed to be carefully
evaluated, as exposure to mineral acids such as HCl or
prolonged reaction times resulted in significant amounts
of the galantinic acid d-lactone. Short treatment with
trifluoroacetic acid gave, after purification on Dowex®

ion-exchange resin, a sample of (–)-galantinic acid (1), of
which the physical data was found in full agreement with
the published values.2b

In conclusion, we report a short, stereoselective total syn-
thesis of (–)-galantinic acid (1), constituent of the peptide
antibiotic galantin (3). Key features of our synthesis in-
clude (1) a Claisen condensation according to Heathcock,
(2) directed hydride delivery and (3) a short access to a
complex aminohydroxy acid in just six steps starting from
commercially available, protected serine 4. The route dis-
closed in this letter thus favorably associates both the
number of steps (i.e., 6 vs. 12–18) and overall yield to
previously published procedures for the synthesis of
galantinic acid.6,12 This procedure exemplifies that the
homologation–reduction strategy provides a rapid access
to certain polyacetate structures. Moreover, the prepara-
tion of galantin analogues allowing for structure–activity
relationships as well as the use of this interesting building
block (e.g., for protease inhibitors) can now be envi-
sioned.
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Scheme 1 Synthesis of galantinic acid (1)

OH

NH2

OH O

OHHO

BnO

NH
Z

OH

O

BnO

NH
Z

OH

OMe

O

BnO

NH
Z

OH O

O

O

BnO

NH
Z

OH OH

O

O

galantinic acid (1)

O

OLi

THF, 75%

6 equiv

Me4NB(OAc)3H

MeCN, AcOH

81%

1. H2, Pd/C, MeOH, AcOH

2. CH2Cl2, CF3CO2H

50 %

4 5

6 7

1. i. carbonyldiimidazole
    ii. KO2CCH2CO2Me, 
    MgCl2, 74%

2. NaBH4, Et2O, (90%, 
     dr 1.2:1), 42% after 
     recryst.

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f P

itt
sb

ur
gh

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



1582 Y. Bethuel, K. Gademann LETTER

Synlett 2006, No. 10, 1580–1582 © Thieme Stuttgart · New York
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pressure. Purification by flash chromatography (EtOAc–
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were separated and the aqueous phase was extracted three 
times with EtOAc. The combined organic layers were 
washed with brine, dried over Na2SO4, filtered and 
evaporated under reduced pressure.  Flash chromatography 
(hexane–EtOAc, 6:4) gave 7 (111 mg, 0.235 mmol, 81%) as 
a colorless oil. Rf = 0.38 (EtOAc–hexane, 1:1); [a]D

25 +0.35 
(c 0.86, CHCl3). 

1H NMR (300 MHz, CDCl3): 1.46 (s, 9 H), 
1.50–1.60 (m, 1 H), 1.64–1.78 (m, 1 H), 2.39 (d, 2 H, J = 5.6 
Hz), 3.43 (m, 1 H), 3.58 (d, 1 H, J = 3.73 Hz), 3.67 (d, 2 H, 
J = 4.1 Hz), 3.72 (m, 1 H), 4.18–4.30 (m, 2 H), 4.50 (s, 2 H), 
5.10 (s, 2 H), 5.51 (d, 1 H, J = 9.3 Hz), 7.20–7.40 (m, 10 H). 
13C NMR (75 MHz, CDCl3): d = 28.2, 39.7, 42.3, 54.2, 65.4, 
66.8, 68.8, 72.2, 73.6, 81.3, 127.6, 127.8, 127.8, 127.9, 
128.0, 128.4, 136.3, 137.3, 156.4, 172.2. IR: 3636–3117 (w), 
2977 (w), 1715 (s) cm–1. MS: m/z (%) = 496.2 (41) [M + 
Na]+, 440.2 (100) [M – 2H2O + H]+. HRMS (MALDI):
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