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Novel stereoselective synthesis of a-methylene-b-substituted pyroglutamates, and a-alkylidene-pyrog-
lutamates has been achieved via substrate controlled asymmetric alkylation of L-threonine derived oxa-
zole with Baylis–Hillman reaction based allyl bromides and acetates, respectively. The synthesized
compounds were evaluated for their proteasome inhibition and cytotoxicity on multiple myeloma cells.
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Figure 1. Pyroglutamate based natural products.
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Scheme 1. Preparation of a-methylene-b-substituted pyroglutamates.
1. Introduction

Five-membered nitrogen containing heterocyclic structural
units such as pyroglutamates (c-carboxy-c-lactams) are important
structural motifs that serve as valuable synthons in the preparation
of several types of complex natural products and heterocycles.1 Re-
cently, several pyroglutamate containing natural products such as
lactacystin 1, omuralide 2, salinosporamides 3, cinnabaramides A–
G 4, etc. (Fig. 1) have been isolated from terrestrial strain of Strep-
tomyces sp. and marine actinomycete Salinispora tropica.2 Several
of these molecules were found to exhibit potent anti-cancer,
anti-microbial, and other important medicinal properties.2 Owing
to the importance of pyroglutamates in medicinal and materials
chemistry, a general methodology for facile synthesis of highly
substituted chiral pyroglutamates is highly desirable. Recently,
we reported a diastereoselective methodology for the synthesis
of pyroglutamates starting from chlorobenzaldehyde imines of
racemic a-amino acids.3 In this Letter, we report the enantioselec-
tive synthesis of functionalized pyroglutamates starting from L-
threonine derived oxazole.

2. Results and discussion

We envisaged that the alkylation4 of threonine oxazole 7 with
ester containing allylic bromides or acetates obtained via Baylis–
ll rights reserved.

dy).
Hillman (BH) alcohols should provide functionalized pyrogluta-
mates in one step. The required oxazole 7 was synthesized by
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Table 1
Alkylation of oxazole 7 with BH bromides/acetates8

N

O

O

OBn
(a) LDA

HN

O

O
Ph

O

O OBn

R1BH-Bromide 8a-c
or

BH-Acetate 12a-b
R2

11 or 15

7
R1, R2 = H, Me, or Ph(b) HCl

# Bromide/acetate Product Yield

1

OMe

O

Br
8a

HN

O

O
Ph

O

O OBn
R1 = R2 = H, 11a

65

2

OMe

O

Br
8b

HN

O

O
Ph

O

O OBn
R1 = H, R2 = Me, 11b

67

3

OMe

O

Ph

Br
8c

HN

O

O
Ph

O

O OBn
Ph

R1 = H, R2 = Ph, 11c

69

4

OAc

OMe

O

12a

HN

O

O
Ph

O

O OBn
R1 = Me, R2 = H, 15a

72a

5

OAc

OMe

O

Ph

12b

HN

O

O
Ph

O

O OBn

Ph

 R1 = Ph, R2 = H, 15b

78

a The (Z)-diastereomer was also obtained as the minor isomer (�10%) for pyro-
glutamate 15a.

Figure 2. X-ray crysta
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Scheme 2. Preparation of a-alkylidene pyroglutamates.
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the reaction of threonine benzyl ester 5 with methyl benzimidate 6
in refluxing CH2Cl2. We chose bromides and acetates derived from
BH alcohols obtained via the reaction of formaldehyde, acetalde-
hyde, and benzaldehyde with methyl acrylate.5 Alkylation of oxa-
zole 7 with methyl bromomethylacrylate 8a followed by acidic
work up provided pyroglutamate 11a in good yield (Scheme 1).
The proton NMR analysis of the crude material revealed the forma-
tion of predominantly one diastereomer. The reaction took place in
highly stereoselective fashion and the alkylation proceeded from
the less hindered face of the enolate to provide pyroglutamate
11a as the major diastereomer (>90% de). Similarly, the alkylation
of 7 with BH bromides 8b–c obtained from acetaldehyde and benz-
aldehyde, respectively, proceeded in highly selective manner and
b-methyl/phenyl pyroglutamates 11b–c were obtained as the ma-
jor isomers (Table 1). The relative stereochemistry was ascertained
via single crystal X-ray analysis of the b-phenylpyroglutamate 11c
(Fig. 2).

We then extended the methodology towards the synthesis of a-
alkylidine/arylidene pyroglutamates via the alkylation of 7 with
allylic acetates 12a–b. The reaction took place smoothly in SN20

fashion, and the products 15a–b were obtained in good yield and
diastereoselectivity (Scheme 2 and Table 1).

All of the pyroglutamate natural products described in Figure 1
are potent proteasome inhibiting anti-cancer agents. Since the syn-
thesized molecules described in Schemes 1 and 2 have the core
pyroglutamate moiety, we evaluated the biological efficacy of
l structure of 11c.
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these analogs as potential proteasome inhibitors. Unfortunately,
none of these molecules showed any significant enzyme inhibition
activity6 or cytotoxicity against multiple myeloma (RPMI-8226)
cancer cell lines7 even at 50 lM concentration.

3. Conclusions

In conclusion, we have carried out a highly diastereoselective
alkylation of threonine based oxazoline with Baylis–Hillman-de-
rived allyl bromides. Upon acidic hydrolysis, a-methylene-b-al-
kyl/aryl-c-carboxy-c-lactams with a-hydroxyethyl side chain
were obtained in enantiomerically pure form. The oxazoline upon
alkylation with Baylis–Hillman reaction derived allylic acetates
proceeded smoothly with allylic rearrangement to provide a-
alkylidine/arylidene-c-carboxy-c-lactams in highly stereoselective
fashion. Owing to the importance of pyroglutamates in various
fields and the scarcity of synthetic procedures coupled with the
versatility of BH chemistry make the current methodologies highly
important.
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