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Abstract
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system

was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused depo-

sition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-

inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on differ-

ent scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was

written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possi-

bilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms

towards an ‘open-source’ regime in the area of chemical synthesis.
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Introduction
The rapid expansion of 3D-printing technologies in recent

decades has been one of the most promising developments in

the fields of science and engineering [1]. This technology, along

with the open-source ethos and large, committed user and

developer base from which it benefits, has driven innovation in

many areas of industrial and technological activity, from distri-

buted manufacturing [2] to practical applications in the areas of

medicine [3,4] and biology [5,6]. The use of 3D printers and

3D-printed objects has expanded rapidly, with this technology

being applied to scientific disciplines as diverse as biomedical

research [7-9], soft robotics [10,11] and materials science [12].

Our group has recently been investigating the use of 3D printing

in the chemical sciences, in particular its potential to create

‘reactionware’ [13], that is, chemical reactors where the control

which 3D printing offers over the topology, geometry and com-

position of a reactor [14] can have a significant influence on the

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Figure 1: Prusa i3 RepRap printer modified for the automated synthesis of ibuprofen. Left: Full view of robotic platform set-up with a 3D-printed reac-
tion vessel. Left inset: Dispensing needle carriage for 3D printing/liquid deposition. Right: Front view of the 3D-printing section of the robotic set-up
with a 3D-printed reaction vessel showing the PP feedstock for reaction-vessel printing.

reaction outcomes. This utility has so far been demonstrated for

a number of applications, from inorganic and organic synthetic

[15,16] chemistry to hydrothermal synthesis [17], flow applica-

tions [18] and analytical chemistry [19]. One area of research

where 3D printers themselves, rather than the products of 3D

printing could have a large impact is in the field of laboratory

automation.

The automation of laboratory processes has been continuing for

as long as the technical abilities and engineering capacities have

existed, with the first examples of such equipment appearing in

the second half of the nineteenth century [20]. The develop-

ment of such automation in industrial settings has been rapid,

with the inherent flexibility of work in research laboratories

leading to much slower adoption of routine automation. One of

the barriers to large-scale adoption of laboratory automation

technologies has been the traditionally high cost of such equip-

ment which is often optimized for very specific routine tasks

[21]. Indeed, one area in which these technologies have been

slow to develop has been in the area of synthetic organic chem-

istry. In this field automation has largely been limited to flow

chemistries for specific synthetic pathways [22]. Recently how-

ever more versatile equipment and synthetic strategies have

been developed to cope with a broader range of target synthe-

ses [23]. Whilst this equipment offers good value for high preci-

sion automation of these tasks the expansion of open-source

technologies [24] such as 3D printing in the last decade dramat-

ically expands the scope for versatile, low-cost robotics to

become a practical reality across a range of modern scientific

disciplines [25]. One of the most common types of user-built

3D printers is the RepRap, which has a large online, open-

source support community for both hardware development of

the printer as well as open-source software development,

making it an ideal base for the production of automated labora-

tory equipment. RepRap 3D printers are often available in kit

form and are inexpensive when compared to other laboratory

equipment. A basic 3D printer capable of being modified to

automate some laboratory functions can cost in the region of

600–700 €.

Herein we present the modification of a RepRap 3D printer to

incorporate liquid handling components such that it can act as a

unitary chemical synthesis robot which is capable of fabri-

cating (3D printing) a reaction vessel and subsequently per-

forming the complete synthesis of the common drug ibuprofen.

Such low-cost, versatile robots could be adapted for use in a

variety of settings, from developing laboratories and use in

educational institutions to eventually expanding into a distribut-

ed manufacturing regime for chemical products.

Results and Discussion
RepRap 3D printer modification
The RepRap model modified for use was a prusa i3 model (see

Figure 1). This is a fused deposition modelling (FDM)-type 3D

printer, meaning it works on the principle of using a movable

heated print head which extrudes molten or semi-molten materi-

al in pre-defined patterns onto a print bed by moving the heated

extruder in the x and y directions. The print head is then incre-

mentally raised in the z direction and the printing process

repeated to produce the final object. Traditionally parts of this
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Scheme 1: Synthetic route chosen for automated synthesis robot.

3D printer are constructed using components which are them-

selves 3D printed. These components would often be made

from polylactic acid (PLA), a widely used 3D printing material.

It was found, however, that it was better to construct certain

components of the printer from 3D-printed polypropylene (PP)

as PLA components degraded quickly if exposed to the chemi-

cal environment of a fume hood. The robot was required to have

the capacity to both 3D print (for the reaction vessel) and

dispense liquids, so the 3D-printing carriage was modified to in-

corporate both a heated extruder for 3D printing as well as a

holder for the polytetrafluoroethylene (PTFE)-lined dispensing

needles required for the liquid handling part (see Supporting

Information File 1 for further details). These needles were

connected by PTFE tubing (internal diameter 0.8 mm) to a

number of automatable syringe pumps which have been de-

veloped by our group. These pumps were controlled individu-

ally by dedicated Arduino control boards and were coordinated

via the process-control software developed for the robot. It was

determined that the minimum number of pumps necessary to

effect the synthesis of ibuprofen by our chosen route was five,

to accommodate the starting materials and reagents required.

Synthetic strategy
The synthesis modified for use with our automated synthetic

platform is a three-step synthesis of the popular nonsteroidal

anti-inflammatory drug ibuprofen ((R,S)-2-(4-(2-methyl-

propyl)phenyl)propanoic acid) starting from isobutylbenzene

and propanoic acid (see Scheme 1). These starting materials

undergo a Friedel–Crafts acylation using trifluoromethane-

sulfonic (triflic) acid (CF3SO3H) as the Lewis acid catalyst to

yield 4-isobutylpropiophenone (2). Once this is complete a

solution of di(acetoxy)phenyl iodide (PhI(OAc)2) and trimethyl

orthoformate (TMOF) in methanol (MeOH) is added to the

reaction mixture in order to induce a 1,2-aryl migration to

produce the ibuprofen methyl ester (3). The latter is then hydro-

lysed in the final step by a potassium hydroxide solution to

produce the desired product 4 which can be retrieved after

acidic work-up and column chromatography. This synthetic ap-

proach was developed by McQuade and co-workers [26] for the

puposes of a continuous-flow synthesis of ibuprofen. The reac-

tion was designed specifically such that the byproducts and

excess reagents of each step were compatible with the subse-

quent transformations, eliminating the need for isolation and

purification of intermediate products. This approach suited the

development of our synthesis robot as the reaction could be per-

formed in a one-pot manner, minimising the liquid handling

necessary during the reaction sequence.

The synthetic route was modified to suit the capabilities of the

automated robotic platform. For example it was not possible to

completely seal the reaction vessel for the duration of the reac-

tion, so it was not feasible to perform the reactions under inert

gas atmosphere or to completely exclude atmospheric moisture

from the reactions. The reaction vessels were designed to have a

small aperture wide enough for only the insertion of the

dispensing needle for each chemical to minimise as much as

possible the interaction between the reaction and the outside at-

mosphere (see Figure 2). There were three reaction vessels used

for the synthesis, with different capacities depending on the

scale of the reaction performed. All vessels were printed using

PP, a 3D-printable material which we have found to be compat-

ible with a wide range of chemistries, including those used in

this synthesis. The vessels were outwardly similar, but varied in

internal volume with capacities with R1, R2 and R3 having total

internal volumes of 5.96, 9.68 and 14.99 cm3, respectively. In

order to effectively print the PP reaction vessels it was neces-

sary to replace the standard carbon fibre or glass-printing bed of

the RepRap with a PP plate leading to better adhesion of the PP

during printing. The print settings were adjusted such that the

reaction vessels could be readily removed after the completion

of the synthesis ready to repeat the process (see Supporting

Information File 1 for more details).
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Figure 2: Top: The three reaction vessels printed for ibuprofen synthe-
sis on different scales; bottom left: isometric representation of a reac-
tion vessel; bottom right: reaction vessel in situ during the synthesis of
ibuprofen, showing the insertion of the PTFE-lined dispensing needle
into the vessel.

One of the drawbacks of using a PP-printing bed for the reactor

fabrication was that, due to the poor thermal conductivity of PP,

we were unable to use the RepRap’s standard heated print bed

to effectively heat the reaction mixture. This meant that the

reactions of the sequence would have to be carried out at room

temperature, leading to longer reaction times to achieve signifi-

cant conversions for each of the reactions. Similarly, as it was

desired that as much as possible of the equipment required for

carrying out the reaction be contained entirely within the auto-

mated robotic platform it was decided not to include magnetic

stirring of the reaction mixture. This would have involved the

introduction of a magnetic stirring bar which could not be 3D

printed and would have had to be supplied externally. In order

to ensure an efficient mixing of the materials, therefore, the x–y

carriage of the 3D-printing platform was programmed to oscil-

late rapidly in the y axis. The speed and amplitude of this oscil-

lation could be adjusted as parameters in the control software,

and were optimised at amplitude of oscillation of 30 mm at a

speed of 50 mm s−1 for the automated reaction sequence. This

proved to be sufficient for the effective mixing of the reaction

media on the scales of the reaction vessels printed.

Taking all of these considerations into account the control soft-

ware for the synthesis robot was designed to coordinate the

movements of the 3D printer and liquid handling components in

order to achieve the reaction vessel fabrication and chemical

processing required for the synthesis of ibuprofen.

Process control software
The software control of the RepRap is also open source

allowing the printer to be easily interfaced with user-developed

modifications, allowing us to produce our own software for

coordinating the 3D printing, liquid handling and reaction

timing (see Scheme 2). The software to control our robotic plat-

form was written in Python and the full source code is available

from the authors. The control software was designed to be hard-

coded for the specific actions required to synthesise Ibuprofen

in the three-step synthesis described above, although it would

be possible to build on the structure of the software to develop

generic modules for liquid handling associated with the modi-

fied 3D-printer design, which could then be used to control the

robot for a variety of synthetic applications. In this case the

focus was on producing a single piece of software which could

achieve the fabrication of a reaction vessel, and complete the

synthesis of ibuprofen without human intervention other than to

ensure the robot was supplied with the necessary reagents and

materials (chemical starting materials and thermoplastic stock

for the printing of the reaction vessel). This code could then act

as a fully self-contained set of synthesis procedures which could

be shared with other users as a pre-validated synthesis program

to be used with similar robotic systems to achieve the same syn-

thesis.

The control software was designed to first print the reaction

vessel used for the ibuprofen synthesis. The software uses the

API of an open source 3D-printer control software called Octo-

Print (run from source code, available at http://octoprint.org/),

which is used to send the gcode (i.e., the 3D-printing instruc-

tions) to the printer and perform the 3D printing of the reaction

vessel. This process takes about two hours. After this the Octo-

Print connection to the printer is terminated and the program

connects directly to the firmware of the printer through a serial

connection. This connection is used to send the movement

commands the printer. The control software has a set definition

of the position of each of the dispensing needles for the indi-

vidual chemicals and the reaction vessel is designed in such a

way that the opening for the vessel is positioned at the centre

point of the print bed to ease the programming of the dispensing

positions. Parameters such as the volume of each chemical to be

dispensed into the robot, the amount by which the robot should

overdraw each chemical (i.e., the dispensing volume plus an

arbitrary amount to ensure that the full volume can be dispensed

during the synthesis) are collected together in the source code as

user definable variables which can be set depending on the scale

of the synthesis required.

For debugging and optimisation purposes all of the programmed

routines contain various debug levels where the program inter-

cepts at predefined points (or in the highest level at every step)

http://octoprint.org/
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Scheme 2: The digitisation of the synthesis of ibuprofen. This flow diagram shows the individual steps of the process control software written to
control the chemical synthesis robot.

and waits for the user to acknowledge to go ahead or skip the

current step. This is particularly useful when only a small part

of the program needs to be tested in the bigger context of the

rest of the source code. All working steps can simply be skipped

without actually deactivating the responsible code.

Automated ibuprofen synthesis
The automated synthesis of ibuprofen is initiated with the

running of the control software which then proceeds to print the

specified reaction vessel. Once this was complete the appro-

priate pumps were charged with the starting materials solutions

(see Table 1) and the control software continued with the auto-

mated reaction scheme until the final product solution was

ready to be collected. The total time for the completed synthe-

sis was approximately 24 hours, during which time the synthe-

sis robot required little to no interaction from human operators.

For the first reaction, chloroform solutions of isobutylbenzene

(1.0 M) and propanoic acid (1.0 M) were deposited into the

reaction vessel, followed by the dropwise addition of triflic acid

over the course of 10 min to minimise the exotherm produced.

Once this process was completed the dispensing needle is raised

from the aperture and the reaction is agitated. After 18 h of

agitation the needle corresponding to the PhI(OAc)2/TMOF

Table 1: Contents of the automated syringe pumps controlled by the
automated synthesis robot.

Pump no. Contents

1 isobutylbenzenea

2 propanoic acida

3 triflic acidb

4 PhI(OAc)2/MeOH/TMOFc

5 KOHd

a1.05 M in CHCl3; bneat; cPhI(OAc)2 was prepared as a 1.4 M solution
in a mixture of MeOH/TMOF (1:0.8 v/v); d5 M in MeOH/H2O 4:1.

solution is lowered into the aperture of the vessel and this solu-

tion is once again dispensed dropwise over the course of

10 min. This is followed by further agitation for 3 h, after which

the final solution of KOH (5 M in MeOH/H2O 4:1 v/v) is

added, again dropwise over the course of 10 min, followed by

agitation for 1 h. After this step the robot returns to its home po-

sition and the reaction mixture can be retrieved yielding, after

acidic work-up and column chromatography, ibuprofen in

yields of up to 34% over three steps (average of 6 automated

runs). The PP reactors showed no evidence of degradation due

to the reaction sequence performed, and could be effectively

cleaned for reuse as a reaction vessel, all yields, however, were
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calculated from fully automated runs of the control software in-

cluding the reaction vessel printing stage. During the testing

phase of the robot, the progress of each of the reactions was

monitored by using the debug feature of the process control

software. For this progression was paused after each stage and

aliquots taken from the reaction mixture to be analysed by

NMR to ensure the synthesis was proceeding as planned (giving

approximate yields by 1H NMR of 71% for the initial acylation

step and 64% for the subsequent rearrangement, see Supporting

Information File 1). Thus using the automation of the robot

enables a ‘debugging’ of the chemical processes as well as the

control software. However, once the synthetic procedure and

parameters were defined the robot was capable of performing

the reaction in an autonomous fashion (for a demonstration of

the liquid handling steps of the automated reaction sequence,

see Supporting Information File 3). Due to the automated nature

of the process, the scale of the synthesis could be modified

simply by adjusting the parameters in the process control

program and ensuring that the reaction vessel design is appro-

priate for the reaction scale desired. To this end the synthesis of

ibuprofen was completed on three different scales by fabri-

cating different reaction vessels (R1–R3) and varying the soft-

ware parameters controlling the volumes of each of the reaction

solutions deposited. These could be easily tuned in the control

software and the volumes required for each of these scales are

summarised in Table 2. The yields from each of the scales of

reaction described were similar (see Supporting Information

File 1), however, it was found that further scale-up by increas-

ing the reaction vessel volume (a fourth reaction vessel, R4, was

also produced with an internal volume of 28.12 mL, see Sup-

porting Information File 2 for dimensions) lead to reduced

yields and longer reaction times. The maximum yield obtained

using larger volume reactor vessels was approximately 12% iso-

lated yield of ibuprofen. However the larger vessels also

suffered from repeatability problems with less reliability in the

yields obtained. These effects are presumably due to a less effi-

cient mixing of the reaction media by agitation in the larger

volume of the reaction vessel. This could be remedied by

‘numbering up’ the reaction vessels that the robotic platform

prints in the initial stage and adjusting the control software such

that several reactions could be run in parallel to increase the

yield of ibuprofen.

Once the reaction sequence had been completed the final reac-

tion mixture was removed from the reaction vessel by syringe

and diluted with water. After acidic work-up the residue was

purified by reversed-phase column chromatography on C18

(60% MeCN/H2O) to give ibuprofen (4) as a white powder. The

isolated and averaged yields obtained from six independent

automated runs of the system at different scales are given in

Table 3 below. There appears to be little depreciation of effi-

Table 2: Pump contents and reaction volumes.

Pump
number

Withdrawn
volume (mL)

Deposited
volume (mL)

Reaction
vessel

1 1.5 0.2 R1
0.4 R2
0.8 R3

2 1.5 0.2 R1
0.4 R2
0.8 R3

3 3.0 0.35 R1
0.7 R2
1.4 R3

4 10.0 1.5 R1
3.0 R2
6.0 R3

5 10.0 2.0 R1
4.0 R2
8.0 R3

Table 3: Isolated ibuprofen yields for automated synthesis.

Reaction
vessel

Automated
run

Ibuprofen yield,
mg (%)

Average
yield (%)

R1 1 15.9 (36) 32.1
2 12.8 (29)
3 17.0 (39)
4 10.2 (24)
5 15.3 (35)
6 13.1 (30)

R2 1 28.5 (33) 34.2
2 26.7 (31)
3 33.2 (38)
4 31.0 (36)
5 27.5 (32)
6 29.9 (35)

R3 1 60.1 (34) 33.7
2 57.0 (33)
3 61.6 (36)
4 58.2 (34)
5 60.5 (35)
6 51.7 (30)

ciency of the reaction sequence on the reaction scales with iso-

lated yields varying from 24% to 38%.

Conclusion
By modifying a relatively inexpensive 3D-printing platform we

were able to construct a unitary ‘synthesis robot’ which is

capable of autonomously fabricating a reaction vessel and per-

forming the liquid handling steps necessary to effect the synthe-

sis of the common painkiller ibuprofen. This example demon-
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strates the unique versatility of the current generation of open-

source consumer robotic equipment to be modified for use in

laboratory automation. Using this synthesis robot we were able

to synthesise the popular drug ibuprofen on three different reac-

tion scales using a piece of custom software to control the pa-

rameters of the synthesis. Future developments in this field

could include the development of further open source solutions

to allow robotic platforms to perform more of the routine func-

tions of chemical synthesis such as work-up and purification

routines. The widespread use of such low-cost automation of

chemical synthesis could allow the development of an ‘open

source’ approach to chemical synthesis itself where synthetic

routines can be downloaded and tested by any laboratory with

the necessary robotic platform, advances in the chemical

automation equipment could then run in parallel with advances

in the synthetic strategies used. Finally, this work shows how

chemical synthesis can be fully digitized into a standalone code

and autonomously run on a robotic system. Not only could this

potentially overcoming reproducibility issues that can limit the

exchange of synthetic chemistry, but allow users to share their

code thereby allowing more complex molecules to be designed

and made within autonomous chemical robots.

Supporting Information
Supporting information is available containing full

experimental details, the source code of the process control

software, along with information on the 3D printing

settings for the reactor vessel fabrication. Also available are

a video demonstrating the liquid handling for the automated

reaction sequence and the .STL digital model files of the

reactor vessels fabricated by the robotic platform.

Supporting Information File 1
Full experimental details, the source code of the process

control software, along with information on the 3D printing

settings for the reactor vessel fabrication.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-12-276-S1.pdf]

Supporting Information File 2
Digital 3D model files archive for the reaction vessels used.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-12-276-S2.zip]

Supporting Information File 3
Demonstration video of the liquid handling of the

automated reaction sequence.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-12-276-S3.mp4]
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