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Silica-coated Fe3O4 magnetic nanoparticles-supported sulfonic acid as a highly
active and reusable catalyst in chemoselective deprotection of tert-
butyldimethylsilyl (TBDMS) ethers

Sayed Hossein Javadia, Daryoush Zareyeeb, Azam Monfareda, Khadijeh Didehbana, and Sayed Ahmmad
Mirshokraeea

aChemistry Department, Payam-e-Nour University, Tehran, Iran; bDepartment of Chemistry, Qaemshahr Branch, Islamic Azad University,
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ABSTRACT
Anchored propyl sulfonic acid on the surface of silica-coated magnetic nanoparticles
(Fe3O4@SiO2@PrSO3H) was successfully employed in the deprotection of TBDMS ethers. The pre-
pared magnetically separable nanocatalyst exhibited efficient catalytic activity with high conver-
sion and selectivity in cleavage of TBDMS ethers. TBDMS ethers are efficiently cleaved to the
corresponding hydroxyl compounds in methanol solution containing 2mol% magnetic nano-cata-
lysts. Good to excellent yields of products, simple work-up and product separation, selective cleav-
age of TBDMS ethers in the presence of TBDPS ethers, easy recycling of the catalyst with external
magnet with no loss in its activity (7 reaction cycles) are important features of this new protocol.

GRAPHICAL ABSTRACT

ARTICLE HISTORY
Received 11 December 2018
Accepted 28 January 2019

KEYWORDS
Silyl ether; TBDMS ether;
selective deprotection;
magnetic nanoparticles;
heterogeneous acid catalyst

Introduction

Silyl ether formation is not only a fundamental process in
the synthesis of functional organosilicon compounds but
also an important technique for protection of reactive
hydroxyl groups during multistep organic syntheses.[1–3] The
tert-Butyldimethylsilyl (TBDMS) ethers are among the most
frequently used protective groups for alcohols, because of
ease of introduction, stability to a variety of reagents, and
ease of selective deprotection.[4–6] Although, the major goal
of such a protection is usually to prevent unfavorable reac-
tions of hydroxyl groups, in many cases it is often necessary
to convert selectively the silyl ethers to their corresponding

parent alcohols.[7,8] Many methods have been developed to
remove silyl-protecting groups. Tetrabutylammonium fluor-
ide (TBAF) is the most typical desilylating reagent,[9,10] but
it has no selectivity and has possible side-reactions caused
by the nucleophilicity of fluoride ion. Thus, many alternative
and mild protocols have been reported for the deprotection
of silyl ethers.[11–33] However, while acknowledging the pio-
neering advances in this area, some of these methods suffer
from limitations such as prolonged reaction times,[22,23,31]

troublesome work-up steps,[12,23] and the use of non-recyc-
lable and sensitive catalysts,[12–15,18,21,24,25,28,31,33] so, it is
still of great interest to devise new methods for selective
cleavage of TBDMS ethers.
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To avoid major environmental hazards and to satisfy
growing stringent global environmental regulations, it is
imperative to develop a truly catalytic process with minimal
waste production. Consequently much attention has now
been paid to design of strong heterogeneous acid catalysts
that can replace the conventional hazardous liquid- or trad-
itional waste generating Lewis-acid catalysts.[34–40] However,
to maintain economic viability, a suitable heterogeneous sys-
tem must not only minimize the production of waste, but
should also exhibit high stability, activities, and selectivities
comparable or superior to the existing homogeneous routes.
Toward this aim, many support materials[41–52] are often
used for immobilization of sulfuric acid, which can be sepa-
rated by conventional separation techniques such as centri-
fugation and filtration. However, over recent decades,
magnetic nanoparticles have aroused remarkable interest
and they are a good candidate for consolidation of homoge-
neous catalysts such as sulfuric acid.[53–59]

Considering that magnetic separation is more efficient
and attractive than traditional centrifugation or filtration,
very recently, we reported synthesis and application of het-
erogeneous sulfonated core-shell magnetic nanoparticles
(SMNPs) (Fe3O4@SiO2@PrSO3H) as a renewable and
reusable strong solid acid catalyst in some organic transfor-
mations.[60–61] So in the present study, in our continuing

quest for new applications of Fe3O4@SiO2@PrSO3H, we
wish to report the use of heterogeneous
Fe3O4@SiO2@PrSO3H in selective deprotection of TBDMS
ethers (Scheme 1).

Results and discussion

We started to study the desilyaltion of various types of
TBDMS ethers catalyzed by Fe3O4@SiO2@PrSO3H catalyst
by examining the condition for cleavage of benzyloxy(tert-
butyl)dimethyl silane. A summary of the optimization
experiments is provided in Table 1. Results of the reaction
pointed to an optimized performance of 2mol% of
Fe3O4@SiO2@PrSO3H, which furnish the corresponding
benzyl alcohol in methanol as solvent in 98% yield at room
temperature after 2 h. As can be seen, the reaction did not
proceed within 120min in the absence of a catalyst (Table 1,
entry 8), indicating a catalyst must be needed for the depro-
tection reaction. Additionally, though 2mol% of catalyst is
enough to allow the cleavage of benzyloxy(tert-butyl)di-
methyl silane in a short reaction time, increasing the
amount of SMNPs to more than 2mol% resulted in only a
slightly decreased reaction time (Table 1, entry 10).

Under the optimized synthetic conditions, we next
studied the scope of this reaction (Table 2). We have found
that a series of TBDMS ethers such as primary (Table 2,
entries 1–7, 11), secondary (entries 8–10, 12–14) and allylic
(entry 13) TBDMS ethers were converted into the corre-
sponding alcohols in high yields following the above proced-
ure. As indicated in Table 2, the use of either aromatic or
aliphatic TBDMS ethers in this reaction could generate the
hydroxyl groups and because of the mildness of reaction
conditions, different functionalities such as halogens, alkyl,
nitro and C¼C double bond remained intact (entries 2–5,
13). These results demonstrate the high performance and
activity of the designed catalyst for the cleavage of different
TBDMS ethers bearing different functional groups. In order
to assess its generality, the same reaction was investigated
for deprotection of more sterically demanding TBDMS-pro-
tected tertiary alcohols under the standardized conditions
(entry 15). Although the procedure is very dependent on
steric factors, interestingly, we found that a modest yield of
the corresponding tertiary alcohol was also obtained with
longer reaction times.

Scheme 1. Deprotection of TBDMS ethers using Fe3O4@SiO2@PrSO3H in metha-
nol at ambient temperature.

Table 1. Fe3O4@SiO2@PrSO3H catalyzed cleavage of benzyloxy (tert-butyl)dimethyl silane under different reaction conditions.

OTBDMS
Fe3O4@SiO2@PrSO3H (mol%)

Solvent, rt
OH

Entry Fe3O4@SiO2@PrSO3H (mol%) solvent Time (min) Yield[a] (%)

1 2 H2O 120 28
2 2 CH3CN 120 25
3 2 Toluene 120 trace
4 2 CH2Cl2 120 trace
5 2 THF 120 20
6 2 EtOH 120 45
7 2 CH3OH 120 98
8 0 CH3OH 120 trace
9 1 CH3OH 120 58
10 3 CH3OH 100 98
[a]Isolated yields.
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It is noteworthy that the reaction seems to be unsuitable
for deprotection of phenolic TBDMS ethers and tert-butyldi-
phenylsilyl (TBDPS) ethers (entries 16, 17) even with
increasing the time of reaction. Under the reaction condi-
tions, phenolic TBDMS ethers and TBDPS ethers remained
unreacted and were recovered unchanged, indicating that
the reaction could be selective for the deprotection of

alcoholic TBDMS ethers in the presence of either TBDPS-
protected alcohols or phenolic TBDMS ethers in competitive
experiments (Scheme 2).

The prepared magnetic nanocatalyst was easily recovered
by separation with an external magnet after the reaction and
was subsequently recycled under the same reaction condi-
tions. Therefore, finally, we checked the reusability of the

Table 2. Deprotection of TBDMS ethers to the corresponding alcohols using 2mol% Fe3O4@SiO2@PrSO3H in methanol at room temperature.

Entry Substrate Product Time (min/h) Yield [a,b,c] (%)[ref.]

1
OTBDMS OH

120 98[26]

2
OTBDMS

Cl

OH

Cl
140 95[33]

3
OTBDMS

Cl

Cl

OH
Cl

Cl

150 90[33]

4

OTBDMS OH

120 92[30]

5
OTBDMS

O2N

OH

O2N
150 90[20]

6
OTBDMS OH

100 94[26]

7
OTBDMS OH

100 95[12]

8 CH3

OTBDMS

CH3

OH

180 89[12]

9 CH3

OTBDMS

MeO

CH3

OH

MeO

180 91[16]

10

OTBDMS OH

200 93[30]

11 OTBDMS OH 120 100[30]

12 OTBDMS OH 240 88[30]

13 OTBDMS OH 220 85[30]

14
OTBDMS OH

300 89[26]

15 Me OTBDMS Me OH 300 55[31]

16
OTBDMS OH

10h NR[26]

17
OTBDPS OH

10h NR[26]

[a]Reaction condition: TBDMS ether (1mmol), Fe3O4@SiO2@PrSO3H (2mol%), solvent: CH3OH, room temperature.
[b]Isolated yields.
[c]Some products were characterized from spectral (1H NMR) data and by direct comparison with the parent alcohols.
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Fe3O4@SiO2@PrSO3H catalyst in the cleavage of benzyloxy(-
tert-butyl)dimethylsilane in methanol under the optimized
conditions. After the completion of the reaction, insoluble
catalyst was separated from the reaction mixture by an
external magnet and was washed with methanol several
times and then directly reused for further reaction. The
results of seven runs showed that the recovered catalyst
retains its activity in terms of yields of 98%, 96%, 98%, 95%,
94%, 90% and 88%, respectively (Figure S 1
Supplemental Materials).

The suggested mechanism of the Fe3O4@SiO2@PrSO3H
catalyzed deprotection of TBDMS ethers (Scheme 3) involve
complexation of the silyl ether oxygen with acidic proton of
catalyst weakens the silyl ether bond precipitating the forma-
tion of a methoxy silyl ether and a proton, and then the
catalytic species is regenerated.

To compare the performance of Fe3O4@SiO2@PrSO3H
with some reported protocols, the desilylation of tert-butyl-
dimethyl(phenethoxy)silane in the presence of Sc(OTf)3,

[12]

Fe(OTs)3.6H2O,
[13] [tetraEG(mim)2][OMs]2

[28] and NIS[31]

with respect to the reusability, reaction times and yields of
the products is shown (Table 3). Entry 2 shows deprotection
using Fe(OTs)3.6H2O in methanol proceeded very sluggish
and provided only 77% of the corresponding 2-phenyl etha-
nol after 105min. In addition, some protocols used non-
recoverable catalyst,[12,13,28,31] or had a long reac-
tion time.[31]

Experimental section

Procedure for deprotection of TBDMS ethers

Catalyst (0.03 g, 2mol %) was added to TBDMS ethers
(1mmol) in methanol (5mL) at ambient temperature and
the mixture was stirred for appropriate time indicated in
Table 2 until the reaction was completed as monitored by

Table 3. Comparison of the efficiency of catalysts in cleavage of tert-
butyldimethyl(phenethoxy)silane.

catalyst (x mol%)

Solvent, rt.

OTBDMS OH

Entry Catalyst (mol%) Solvent T (�C)
Time

(min/[h]) Yield (%)

1 Fe3O4@SiO2@PrSO3H (2) Methanol rt 100 94a

2 Fe(OTs)3.6H2O (2) Methanol rt 105 77 [13],b,c

3 Sc(OTf)3 (0.1) CH3CN/H2O rt 60 98 [12],b

4 [tetraEG(mim)2][OMs]2
(0.2 eq.)

Methanol rt 80 91 [28],b

5 NIS (5) Methanol rt [18] 92 [31],b,d

aPresent work.
bNon-recoverable catalyst.
cLow yield of product.
dLong reaction time.

Scheme 2. Selective cleavage of benzylic TBDMS ethers in the presence of a, c) phenolic TBDMS ethers and b) tert-butyldiphenylsilyl (TBDPS) ethers.

Fe3O4
SO3H

SiO 2

R O TBDMS

R O TBDMS
[cat]

MeOHMe O TBDMS

R O [cat]

R OH

H

Scheme 3. The plausible reaction mechanism for the deprotection of
TBDMS ethers.
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gas chromatography and thin-layer chromatography. After
the completion of reaction, the catalyst was separated by an
external magnet and after the evaporation of methanol, the
product was isolated by rapid filtration through a short pad
of silica gel.

Conclusions

In conclusion, we have demonstrated a mild and convenient
route for the deprotection of a variety of TBDMS ethers.
The catalyst showed outstanding results with a number of
advantages including excellent yields and short reaction
times, low catalyst loading, reusability of the catalyst and
ease of operation and workup, making it a potentially useful
and attractive approach to industrial production. The results
revealed that the reaction is selective for deprotection of
alcoholic TBDMS ethers in the presence of either TBDMS
ethers of phenols or TBDPS-protected alcohols.
Furthermore, the catalyst can be collected easily by a magnet
and reused seven times with only a very slight loss of cata-
lytic activity.
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