# SYNTHESIS OF A FULLY PROTECTED DERIVATIVE OF O-(N-ACETYL- $\alpha$ -D-NEURAMINYL)-(2 $\rightarrow$ 3)-O- $\beta$ -D-GALACTOPYRANOSYL-(1 $\rightarrow$ 3)-O-[(N-ACETYL- $\alpha$ -D-NEURAMINYL)-(2 $\rightarrow$ 6)]-O-(2-ACETAMIDO-2-DEOXY- $\alpha$ -D-GALACTOPYRANOSYL)-(1 $\rightarrow$ 3)-L-SERINE\*

### HIROYUKI IIJIMA AND TOMOYA OGAWA<sup>†</sup>

RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 (Japan) (Received May 18th, 1988; accepted for publication, September 19th, 1988)

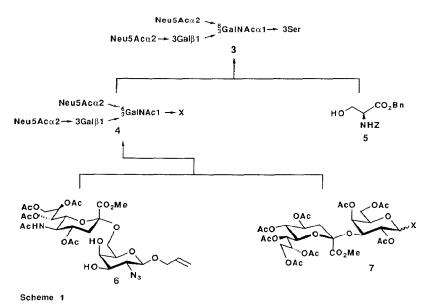
### ABSTRACT

N-(Benzyloxycarbonyl)-O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate}-(2→3)-O-(2,4,6-tri-O-acetyl-β-D-galactopyranosyl)-(1→3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate-(2→6)]-O-(2-acetamido-4-O-acetyl-2-deoxy-α-D-galactopyranosyl)-(1→3)-L-serine benzyl ester was synthesized by using O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate}-(2→3)-O-(2,4,6-tri-O-acetyl-β-D-galactopyranosyl)-(1→3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate}-(2→3)-O-(2,4,6-tri-O-acetyl-β-D-galactopyranosyl)-(1→3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate-(2→6)]-4-O-acetyl-2-azido-2-deoxy-α- and -β-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the α- and β-glycosides in the ratio of 2:5.

# INTRODUCTION

Such sialic acid-containing, mucin-type glycopeptides as 1, 2, and 3 appear in the biosynthetic pathway at the branching points for the extension of oligosaccharide chains glycosidically linked either to L-serine or L-threonine<sup>2</sup>. In 1984, it was proposed that glycotetraosyl-L-serine 3 is one of the sialyl glycopeptides<sup>3</sup> isolated

Neu5Ac
$$\alpha 2 - 6$$
GalNAc $\alpha 1 - 3$ Ser  
1  
Neu5Ac $\alpha 2 - \frac{5}{3}$ GalNAc $\alpha 1 - 3$ Ser  
Gal $\beta 1 - \frac{5}{3}$ GalNAc $\alpha 1 - 3$ Ser  
2


<sup>\*</sup>Part 60 in the series "Synthetic Studies on Cell-Surface Gycans". For Part 59, see ref. 1. 'To whom enquiries should be addressed.

from the urine of a patient suffering from mucolipidosis I. The corresponding tetrasaccharide-alditol  $\alpha$ -NeuAc- $(2\rightarrow 3)$ - $\beta$ -Gal- $(1\rightarrow 3)$ - $[\alpha$ -NeuAc- $(2\rightarrow 6)$ ]-GalNAc-ol was obtained from various sources<sup>4</sup>, and the structure was determined through methylation analysis and <sup>1</sup>H-n.m.r.-spectral study. Synthetic approaches to the glycosylserines 1 (ref. 5) and 2 (ref. 6) have already been reported. We now describe a synthesis of glycotetraosyl-L-serine 3 in the completely blocked structure **19**.

### RESULTS AND DISCUSSION

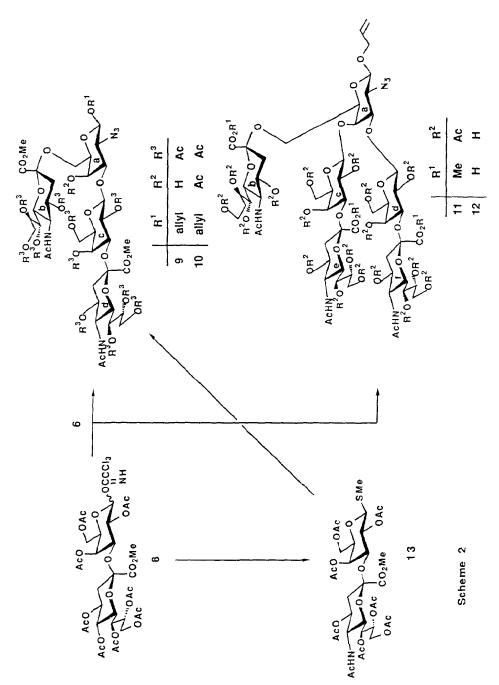
In planning a synthetic route to the glycotetraosyl-L-serine 3, a direct glycosylation of the L-serine derivative 5 with glycotetraosyl donor 4 was chosen, in order to examine the efficiency of this type of coupling (see Scheme 1). The key intermediate 4, in turn, may be obtainable from the condensation of the known glycobiosyl acceptor 6 (ref. 5) and the glycobiosyl donor 7. As the synthetic equivalent of the donor 7, both the known trichloroaccetimidate 8 (ref. 7) and the thioglycoside 13 were employed.

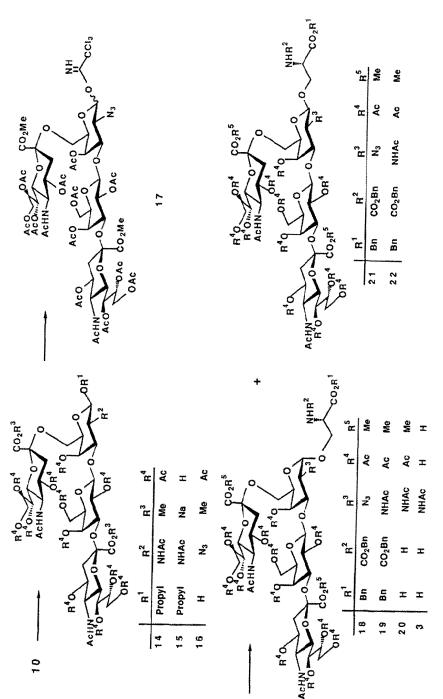
First, boron trifluoride etherate-promoted reaction of 8 with 6 afforded the desired tetrasaccharide 9 and the hexasaccharide 11 in 48 and 8% yield, respectively. The structure of compound 9 was determined by conversion into completely acetylated derivative 10, and inspection of the <sup>1</sup>H-n.m.r. data of 10 revealed a signal for H-1c at  $\delta$  4.918 as a doublet with a  $J_{1,2}$  value of 7.8 Hz, as well as a deshielded signal for H-4a at  $\delta$  5.359 as a doublet with a  $J_{3,4}$  value of 3.0 Hz. The anomeric configuration at C-1c of 9 was further confirmed by the two-step transformation of 10 into deblocked propyl glycoside 15 [by (*i*) palladium-on-carbon and hydrogen in



methanol, (*ii*) sodium hydroxide in methanol], and by observation of a signal for both H-1a and H-1c at  $\delta$  4.480 as a doublet with a  $J_{1,2}$  value of 8.1 Hz. On the other hand, the structure of diglycosylated compound **11** was readily assigned by conversion into deblocked compound **12**, which showed, in its <sup>1</sup>H-n.m.r. spectrum, three signals, for H-1a, H-1c, and H-1d, as three pairs of doublets at  $\delta$  4.497, 4.824, and 4.616 with  $J_{1,2}$  values of 7.8, 7.6, and 7.6 Hz, respectively.

Another glycobiosyl donor, compound 13, was readily prepared in 89% yield by treatment of the imidate 8 with tributyltin methyl sulfide<sup>8</sup> in the presence of boron trifluoride etherate. The  $\beta$ -D-configuration at C-1a of compound 13 was assigned by the presence, in the <sup>1</sup>H-n.m.r. spectrum, of a signal for H-1a at  $\delta$  4.557 with a  $J_{1,2}$  value of 10.0 Hz. However, compared to the imidate procedure, cupric bromide-tetrabutylammonium bromide-silver triflate-promoted<sup>9</sup> glycosylation of 6 by use of the donor 13 gave an inferior result, affording, after acetylation, compound 10 in ~17% yield.


Having the tetrasaccharide intermediate 10 at our disposal, the glycotetraosyl imidate 17 was designed as a synthetic equivalent of the glycosyl donor 4 in Scheme 1. Deallylation<sup>10</sup> of compound 10 with palladium(II) chloride-sodium acetate in aq. acetic acid gave compound 16, which was treated with trichloroacetonitrile and DBU to afford crude trichloroacetimidate 17 in 49% overall yield.


Crucial glycosylation of the L-serine derivative **5** with the glycosyl donor **17** was performed in the presence of boron trifluoride etherate, to give the desired product **18** and the undesired stereoisomer **21** in 12 and 32% yield, respectively. The newly introduced configuration at C-1a of compound **18** was assigned from <sup>1</sup>H-n.m.r.-spectral data, which contained a signal for H-1a as a doublet at  $\delta$  4.851 with a  $J_{1,2}$  value of 3.4 Hz, along with a signal for H-2a as a double doublet at  $\delta$  3.671 with  $J_{1,2}$  and  $J_{2,3}$  values of 3.4 and 11.2 Hz, respectively. On the other hand, for compound **21**, signals for H-1a and H-2a were observed as a doublet and a double doublet at  $\delta$  4.237 with  $J_{1,2}$  value of 7.8 Hz, and at  $\delta$  3.487 with  $J_{1,2}$  and  $J_{2,3}$  values of 8.1 and 10.3 Hz, respectively. Azido functions of both compounds **18** and **21** were now transformed into acetamido groups in two steps [(*i*) sodium borohydride–nickel chloride<sup>11</sup> and (*ii*) acetic anhydride–pyridine], to give compounds **19** and **22**. The attempted deblocking of compound **3** for it to be well characterized by <sup>1</sup>H-n.m.r. spectroscopy.

In conclusion, the completely protected glycotetraosyl-L-serine derivative **19** has been synthesized by employing glycotetraosyl trichloroacetimidate **17** as a key intermediate. The low stereoselectivity observed for the coupling between compounds **17** and **5** gravely detracts from the utility of this synthetic approach.

## EXPERIMENTAL

General. — Melting points were determined with a Yanagimoto micro melting-point apparatus and are uncorrected. Optical rotations were determined with a





Scheme 3

Perkin–Elmer Model 241 MC polarimeter, for solutions in CHCl<sub>3</sub> at 25°, unless noted otherwise. Column chromatography was performed on Silica Gel Merck (70– 230 mesh). Flash chromatography was performed on columns of Wako gel C-300 (200–300 mesh). T.l.c. and high-performance (h.p.) t.l.c. were performed on Silica Gel 60 F<sub>254</sub> (Merck). Molecular sieves were purchased from Nakarai Chemicals. N.m.r. spectra were recorded with either a JEOL GX400 [<sup>1</sup>H (400 MHz)] or an FX90Q [<sup>13</sup>C (22.50 MHz)] spectrometer. The values of  $\delta_{\rm H}$  and  $\delta_{\rm C}$  are expressed in p.p.m. downward from the signal for internal Me<sub>4</sub>Si, for solutions in CDCl<sub>3</sub>, unless noted otherwise. Values of  $\delta_{\rm H}$  (D<sub>2</sub>O) and  $\delta_{\rm C}$  (D<sub>2</sub>O) are expressed in p.p.m. downward from the signal for Me<sub>4</sub>Si, by reference to internal Me<sub>2</sub>CO (2.225) or Me<sub>3</sub>COH (1.230), and 1,4-dioxane (67.4) or MeOH (49.8), respectively.

Allyl O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate}- $(2\rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- $\beta$ -D-galactopyra-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycnosyl)- $(1 \rightarrow 3)$ -O-[methyl]ero- $\alpha$ -D-galacto-2-nonulopyranosyl)onate-(2 $\rightarrow$ 6)]-2-azido-2-deoxy- $\beta$ -D-galactopyranoside 9 and allyl O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-Dglycero- $\alpha$ -D-galacto-2-nonulopyranosyl)onate}-(2 $\rightarrow$ 3)-O-(2,4,6-tri-O-acetyl- $\beta$ -Dgalactopyranosyl)- $(1 \rightarrow 3)$ -O-[methyl] (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonulopyranosyl)onate-(2 $\rightarrow$ 3)-O-(2,4,6-tri-O-acetyl- $\beta$ -D-galactopyranosyl)-(1 $\rightarrow$ 4)]-O-[methyl (5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonulopyranosyl)onate-(2 $\rightarrow$ 6)]-2-azido-2-deoxy- $\beta$ -D-galactopyranoside (11). — To a stirred mixture of compound 6 (368 mg, 511  $\mu$ mol) and powdered molecular sieves AW-300 (1.2 g) in Cl(CH<sub>2</sub>)<sub>2</sub>Cl (2.5 mL) was added a solution of compound 8 ( $\alpha$ : $\beta$  = 1:6; 394 mg, 426  $\mu$ mol) in Cl(CH<sub>2</sub>)<sub>2</sub>Cl (2.5 mL), and then BF<sub>3</sub>·Et<sub>2</sub>O (64  $\mu$ L, 511  $\mu$ mol) at -15° under Ar. After stirring for 30 min at  $-15^{\circ}$ , the mixture was diluted with EtOAc and filtered through Celite. The filtrate was successively washed with aq. NaHCO<sub>3</sub> and aq. NaCl, dried  $(MgSO_4)$ , and evaporated *in vacuo*. The residue was chromatographed over SiO<sub>2</sub> in 15:5:2 EtOAc-toluene-MeOH, to give 9 (300 mg, 48%) and 11 (67 mg, 8%).

Compound **9** had  $[\alpha]_D -5.0^\circ$  (*c* 0.3);  $R_F 0.29$  in 8:8:1 EtOAc-toluene-MeOH; n.m.r. data:  $\delta_H 5.932$  (m, 1 H,  $CH=CH_2$ ), 4.609 (dd, 1 H, *J* 3.4 and 10.0 Hz, H-3c), 3.862 and 3.806 (2 s, 6 H, 2 OCH<sub>3</sub>), 2.590 (m, 2 H, H-3beq and H-3deq), 2.245, 2.195, 2.136, 2.129, 2.115, 2.079, 2.074, 2.049, 2.037, 2.028, 2.017, 1.881, and 1.864 (13 s, 39 H, 11 OCOCH<sub>3</sub> and 2 NCOCH<sub>3</sub>).

Anal. Calc. for C<sub>61</sub>H<sub>89</sub>N<sub>5</sub>O<sub>39</sub>: C, 48.32; H, 5.91; N, 4.62. Found: C, 48.33; H, 5.53; N, 4.49.

Compound **11** had  $[\alpha]_D -9.0^\circ$  (c 1.4);  $R_F 0.07$  in 8:8:1 EtOAc-toluene-MeOH; n.m.r. data:  $\delta_H 5.930$  (m, 1 H,  $CH=CH_2$ ), 4.684 (dd, 1 H, J 3.7 and 9.8 Hz, H-3c<sup>\*</sup>), 4.617 (dd, 1 H, J 3.7 and 9.8 Hz, H-3d<sup>\*</sup>), 3.847 (s, 6 H, 2 OCH<sub>3</sub>), 3.824 (s, 3 H, OCH<sub>3</sub>), 2.61–2.51 (m, 3 H, H-3beq, 3eeq, and 3feq), 2.194, 2.186, 2.166, 2.151, 2.129, 2.123, 2.117, (6 H), 2.074, 2.070, 2.062, 2.059, 2.055, 2.027, 2.019, 2.014, (9 H), 1.884, 1.866, and 1.857 (18 s, total 63 H, 21 COCH<sub>3</sub>), and 1.769 and 1.693 (2 t, 2 H, J 12.7 Hz, two of H-3bax, 3eax, and 3fax).

<sup>\*</sup>Assignments marked with an asterisk may have to be interchanged.

Anal. Calc. for  $C_{77}H_{104}N_6O_{49}$ : C, 48.74; H, 5.52; N, 4.43. Found: C, 48.93; H, 5.46; N, 3.57.

Allyl O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate}- $(2\rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- $\beta$ -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-g]ycero- $\alpha$ -D-galacto-2-nonulopyranosyl)onate-(2 $\rightarrow$ 6)]-4-O-acetyl-2-azido-2-deoxy- $\beta$ -D-ga*lactopyranoside* (10). — [A] A solution of compound 9 (160 mg, 108  $\mu$ mol) in Ac<sub>2</sub>O (2 mL) and pyridine (3 mL) was stirred for 24 h at 20°, and evaporated in vacuo. The residue was chromatographed over SiO<sub>2</sub> in 30:1 CHCl<sub>3</sub>-MeOH, to give 10  $(163 \text{ mg}, 98\%); [\alpha]_D - 4.1^\circ (c \ 0.3); R_F \ 0.36 \text{ in } 20:1 \text{ CHCl}_3-\text{MeOH}; \text{ n.m.r. data: } \delta_H$ 5.960 (m, 1 H, CH=CH<sub>2</sub>), 5.569 (ddd, m, 1 H, J 3.0, 5.5, and 9.5 Hz, H-8d), 5.359 (d, 1 H, J 3.0 Hz, H-4a), 5.097 (d, 1 H, J 10.3 Hz, NH), 4.986 (dd, 1 H, J 7.8 and 10.0 Hz, H-2c), 4.913 (d, 1 H, J 7.8 Hz, H-1c), 4.891 (d, 1 H, J 2.0 Hz, H-4c), 4.91-4.81 (m, 2 H, H-4b,4d), 4.546 (dd, 1 H, J 3.4 and 10.0 Hz, H-3c), 4.321 (d, 1 H, J 7.8 Hz, H-1a), 3.853 (s, 3 H, OCH<sub>3</sub>), 3.789 (s, 3 H, OCH<sub>3</sub>), 3.582 (dd, 1 H, J 7.8 and 10.3 Hz, H-2a), 3.324 (dd, 1 H, J 5.6 and 10.0 Hz, H-6a), 2.588 (dd, 1 H, J 4.6 and 12.7 Hz, H-3deq), 2.568 (dd, 1 H, J 4.4 and 12.9 Hz, H-3beq), 2.233, 2.186, 2.134, 2.112, 2.100, 2.096, 2.076, 2.068, 2.048, 2.035, 2.020, 2.012, 1.875, and 1.857 (14 s, 42 H, 12 OCOCH<sub>3</sub> and 2 NCOCH<sub>3</sub>), 1.921 (t, 1 H, J 12.5 Hz, H-3bax), and 1.716 (t, 1 H, J 12.5 Hz, H-3dax);  $\delta_{\rm C}$  100.5 (C-1a,1c), 98.6 (C-2b), and 96.8 (C-2d).

*Anal.* Calc. for C<sub>63</sub>H<sub>91</sub>N<sub>5</sub>O<sub>40</sub>: C, 48.55; H, 5.88; N, 4.49. Found: C, 48.62; H, 5.60; N, 4.76.

[B] To a stirred mixture of CuBr<sub>2</sub> (30 mg, 135  $\mu$ mol), powdered molecular sieves 4A (230 mg), Bu<sub>4</sub>NBr (9 mg, 27 µmol), AgOSO<sub>2</sub>CF<sub>3</sub> (35 mg, 135 µmol), and compound 6 (65 mg, 90  $\mu$ mol) in Cl(CH<sub>2</sub>)<sub>2</sub>Cl (1.0 mL) was added dropwise a solution of compound 13 (73 mg, 90  $\mu$ mol) in Cl(CH<sub>2</sub>)<sub>2</sub>Cl (1.0 mL) at 20° under Ar. After stirring for 2 h at 20°, the mixture was diluted with EtOAc and filtered through Celite. The filtrate was successively washed with aq. NaHCO<sub>3</sub> and aq. NaCl, dried (MgSO<sub>4</sub>), and evaporated *in vacuo*. The residue was chromatographed on SiO<sub>2</sub> in 8:8:1 EtOAc-toluene-MeOH, to give an inseparable mixture (50 mg) of compound 9 and an unknown by-product;  $R_{\rm F}$  0.17 in 10:10:1 EtOAc-toluene-MeOH. This mixture (50 mg) was dissolved in 1:1 pyridine-Ac<sub>2</sub>O (1.0 mL). The solution was stirred for 12 h at 20° and evaporated in vacuo. The residue was chromatographed over SiO<sub>2</sub> in 15:5:1 CCl<sub>4</sub>-acetone-MeOH to give a 1:1 mixture (32 mg) of compound 10 (~12%) and the unknown product ( $R_{\rm F}$  0.39 in 15:5:1  $CCl_{a}$ -acetone-MeOH), and pure compound 10 (6 mg, 5%);  $R_{\rm F}$  0.38 in 15:5:1  $CCl_4$ -acetone-MeOH; the <sup>1</sup>H-n.m.r. data were identical with those for **10** obtained by method [A].

Deprotection of compound 11. — A solution of compound 11 (6.5 mg) in 0.05M NaOMe-MeOH (0.6 mL) was stirred for 2 d at 20°. To this solution was added M aq. NaOH (100  $\mu$ L). The mixture was stirred for 4 h at 20°, made neutral with Amberlyst-15 (H<sup>+</sup>) resin, and filtered through Celite. The filtrate was evapo-

rated *in vacuo*, and the residue was purified by gel chromatography over Sephadex G-25 in H<sub>2</sub>O, to give, quantitatively, allyl *O*-(5-acetamido-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonulopyranosylonic acid)-(2 $\rightarrow$ 3)-*O*- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 3)-*O*-[(5-acetamido-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonulopyranosylonic acid)-(2 $\rightarrow$ 3)-*O*- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)]-*O*-[(5-acetamido-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonulopyranosylonic acid)-(2 $\rightarrow$  3)-*O*- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)]-*O*-[(5-acetamido-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonulopyranosylonic acid)-(2 $\rightarrow$ 6)]-2-azido-2-deoxy- $\beta$ -D-galactopyranoside (12): m.p. 186–187° (dec.), [ $\alpha$ ]<sub>D</sub> –4.8° (c 0.25, H<sub>2</sub>O);  $R_{\rm F}$  0.36 in 2:1:1 BuOH–EtOH–H<sub>2</sub>O;  $\delta_{\rm H}$  (D<sub>2</sub>O, t-BuOH, 30°) 4.824 (d, 1 H, J 7.6 Hz, H-1c), 4.616 (d, 1 H, J 7.6 Hz, H-1d), and 4.497 (d, 1 H, J 7.8 Hz, H-1a).

Methyl O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonulopyranosyl)onate $\{-(2\rightarrow 3)-2, 4, 6-tri-O-acetyl-1-thio-\beta-D-galacto$ pyranoside (13). — To a stirred mixture of compound 8 ( $\alpha$ : $\beta$  = 1:6; 96 mg, 103 µmol) and Bu<sub>3</sub>SnSMe (42 mg, 124 µmol) in Cl(CH<sub>2</sub>)<sub>2</sub>Cl (1 mL) was added  $BF_3 \cdot Et_2O$  (17 mg, 124  $\mu$ mol) at 0°. The mixture was stirred for 3 h at 0°, diluted with EtOAc, washed with aq. KF, and filtered through Celite. The organic layer was washed with aq. NaCl, dried (MgSO<sub>4</sub>), and evaporated in vacuo. The residue was chromatographed over  $SiO_2$  in 10:10:1 EtOAc-toluene-MeOH, to give 13 (75 mg, 89%);  $[\alpha]_{D}$  -6.3° (c 0.57);  $R_{F}$  0.37 in 10:10:1 EtOAc-toluene-MeOH; n.m.r. data:  $\delta_{\rm H}$  5.548 (ddd, 1 H, J 2.7, 5.4, and 9.0 Hz, H-8b), 5.397 (dd, 1 H, J 2.7 and 9.0 Hz, H-7b), 5.108 (t, 1 H, J 9.8 Hz, H-2a), 5.086 (d, 1 H, J 10.3 Hz, NH), 4.972 (d, 1 H, J 2.4 Hz, H-4a), 4.896 (ddd, 1 H, J 4.6, 10.3, and 12.0 Hz, H-4b), 4.630 (dd, 1 H, J 9.8 and 3.4 Hz, H-3a), 4.557 (d, 1 H, J 10.0 Hz, H-1a), 4.364 (dd, 1 H, J 2.7 and 12.5 Hz, H-9b), 3.922 (t, 1 H, J 6.8 Hz, H-5a), 3.862 (s, 3 H, OCH<sub>3</sub>), 3.655 (dd, 1 H, J 2.7 and 10.7 Hz, H-6a), 2.600 (dd, 1 H, J 4.6 and 12.7 Hz, H-3beq), 2.241, 2.199, 2.191, 2.101, 2.084, 2.065, 2.052, 2.018, and 1.863 (9 s, 27 H, 7 OCOCH<sub>3</sub>, NCOCH<sub>3</sub>, and SCH<sub>3</sub>), and 1.721 (t, 1 H, J 12.5 Hz, H-3bax).

*Anal.* Calc. for C<sub>33</sub>H<sub>49</sub>NO<sub>21</sub>S: C, 47.88; H, 5.97; N, 1.69. Found: C, 47.89; H, 5.80; N, 1.74.

Propyl O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glyceroα-D-galacto-2-nonulopyranosyl)onate}-(2→3)-O-(2,4,6-tri-O-acetyl-β-D-galactopyranosyl)-(1→3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl)onate-(2→6)]-2-acetamido-4-O-acetyl-2-deoxyβ-D-galactopyranoside (14). — A mixture of compound 10 (20 mg, 13 µmol) and 10% Pd–C (7 mg) in MeOH (1 mL) was stirred for 10 h at 20° under H<sub>2</sub>, and then filtered through Celite. The filtrate was evaporated *in vacuo*. A solution of the residue in pyridine (1 mL) and Ac<sub>2</sub>O (0.5 mL) was stirred for 3 h at 20°, and then evaporated *in vacuo*, and chromatography of the residue on SiO<sub>2</sub> in 20:1 CHCl<sub>3</sub>– MeOH gave 14 (14 mg, 69%);  $[\alpha]_D$  +1.8° (*c* 0.34);  $R_F$  0.20 in 5:5:1 EtOActoluene-MeOH; n.m.r. data:  $\delta_H$  5.786 (d, 1 H, J 7.3 Hz, NH-2a), 5.540 (ddd, 1 H, J 3.1, 6.4, 8.7 Hz, H-8d), 5.466 (d, 1 H, J 3.2 Hz, H-4a), 5.042 (d, 1 H, J 8.3 Hz, H-1c), 5.002 (dd, 1 H, J 8.1 and 10.3 Hz, H-2c), 4.908 (d, 1 H, J 3.2 Hz, H-4c), 4.733 (d, 1 H, J 7.8 Hz, H-1a), 4.508 (dd, 1 H, J 3.4 and 10.0 Hz, H-3c), 3.848 (s, 3 H, OCH<sub>3</sub>), 3.792 (s, 3 H, OCH<sub>3</sub>), 3.634 (dd, 1 H, J 2.7 and 10.7 Hz, H-6d), 2.583 (dd, 1 H, J 4.6 and 12.5 Hz, H-3beq\*), 2.567 (dd, 1 H, J 4.9 and 13.2 Hz, H-3deq\*), 2.251, 2.173, 2.144, 2.107, 2.093, 2.089, 2.082, 2.074, 2.048, 2.035, 2.022, 2.007, 1.971, 1.876, 1.856 (15 s, 45 H, 12 OCOCH<sub>3</sub> and 3 NCOCH<sub>3</sub>), and 0.91 (t, 3 H, J 7.5 Hz, CH<sub>2</sub>CH<sub>3</sub>).

*Anal.* Calc. for C<sub>60</sub>H<sub>85</sub>N<sub>5</sub>O<sub>39</sub>: C, 48.03; H, 5.71; N, 4.67. Found: C, 47.65; H, 5.37; N, 4.47.

Propyl O-{sodium (5-acetamido-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-2-nonu $lopyranosyl)onate \left\{ -(2 \rightarrow 3) - O - \alpha - D - galactopyranosyl - (1 \rightarrow 3) - O - [sodium] \right\}$ (5-acetam $ido-3,5-dideoxy-D-glycero-\alpha-D-galacto-2-nonulopyranosyl)onate-(2\rightarrow 6)]-2-acet$ amido-2-deoxy- $\beta$ -D-galactopyranoside (15). — A solution of compound 14 (10 mg, 6  $\mu$ mol) in MeOH (2 mL) and M aq. NaOH (240  $\mu$ L) was stirred for 5 h at 20°, made neutral with Amberlyst-15 (H<sup>+</sup>) resin, diluted with H<sub>2</sub>O, and the suspension filtered through Celite. The filtrate was evaporated in vacuo, and the residue was purified by gel chromatography over Sephadex G-25 in H<sub>2</sub>O, to give 15 (6.5 mg, quantitative); m.p. 227–229° (dec.),  $[\alpha]_D = -2.1°$  (c 0.14, H<sub>2</sub>O);  $R_F = 0.36$  in 2:1:1 BuOH-EtOH-H<sub>2</sub>O; n.m.r. data: δ<sub>H</sub> (D<sub>2</sub>O, *t*-BuOH, 20°) 4.480 (d, 2 H, J 8.1 Hz, H-1a,1c), 4.176 (d, 1 H, J 3.4 Hz, H-4a), 4.056 (dd, 1 H, J 2.9 and 10.0 Hz, H-3c), 3.981 (dd, 1 H, J 8.1 and 11.0 Hz, H-2a), 2.734 (dd, 1 H, J 4.6 and 12.7 Hz, H-3deq\*), 2.702 (dd, 1 H, J 4.6 and 12.7 Hz, H-3beq\*), 2.017, 2.014, 1.999 (3 s, 9 H, 3 NCOCH<sub>3</sub>), 1.781 (t, 1 H, J 12.5 Hz, H-3dax), 1.673 (t, 1 H, J 12.1 Hz, H-3bax), 1.539 (sex, 2 H, J 7.20, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), and 0.856 (t, 3 H, J 7.3 Hz,  $CH_2CH_2CH_3$ ).

Anal. Calc. for  $C_{39}H_{63}N_3Na_2O_{27} \cdot 2 H_2O$ : C, 43.06; H, 6.20; N, 3.86. Found: C, 42.92; H, 5.72; N, 3.71.

Deallylation of compound 10. — A mixture of compound 10 (107 mg, 70  $\mu$ mol), PdCl<sub>2</sub> (18 mg, 98  $\mu$ mol), and NaOAc (23 mg, 287  $\mu$ mol) in 20:1 AcOH-H<sub>2</sub>O (1 mL) was stirred for 12 h at 20°, and then diluted with EtOAc, and filtered through Celite. The filtrate was successively washed with aq. NaHCO<sub>3</sub> and aq. NaCl, dried (MgSO<sub>4</sub>), and evaporated *in vacuo*. The residue was chromatographed over SiO<sub>2</sub> in 5:5:1 EtOAc-toluene-MeOH, to give 16 (66 mg, 64%); [ $\alpha$ ]<sub>D</sub> +0.8° (c 0.51);  $R_{\rm F}$  0.26 in 5:5:1 EtOAc-toluene-MeOH; n.m.r. data:  $\delta_{\rm H}$  3.850 (s, 3 H, OCH<sub>3</sub>), 3.780 (s, 1.5 H, OCH<sub>3</sub>), and 3.770 (s, 1.5 H, OCH<sub>3</sub>).

Transformation of compound **16** into trichloroacetimidate **17**. — To a stirred solution of compound **16** (96 mg, 65  $\mu$ mol) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) were added Cl<sub>3</sub>CCN (45 mg, 325  $\mu$ mol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (4.8  $\mu$ L, 33  $\mu$ mol) at 0°. After stirring for 1 h at 0°, the mixture was directly chromatographed over SiO<sub>2</sub> in 5:5:1 EtOAc-toluene–MeOH, to give crude trichloroacetimidate **17** (80 mg, 76%); [ $\alpha$ ]<sub>D</sub> +11.7° (*c* 0.5); *R*<sub>F</sub> 0.39 in 5:5:1 EtOAc-toluene–MeOH; n.m.r. data:  $\delta_{\rm H}$  6.490 (d, 1 H, *J* 3.7 Hz, H-1a), and 3.860 and 3.790 (2 s, 6 H, 2 CH<sub>3</sub>O).

N-(Benzyloxycarbonyl)-O-{methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy - D - glycero -  $\alpha$  - D - galacto - 2 - nonulopyranosyl)onate} - (2 $\rightarrow$ 3) - O - (2,4,6 - tri - O-acetyl- $\beta$ -D-galactopyranosyl)-(1 $\rightarrow$ 3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy - D - glycero -  $\alpha$  - D - galacto - 2 - nonulopyranosyl)onate

-  $(2\rightarrow 6)$ ] - O -  $(4 - O - acetyl-2 - azido-2 - deoxy-\alpha - and -\beta$ -D-galactopyranosyl)- $(1\rightarrow 3)$ -Lserine benzyl ester (**18** and **21**). — To a stirred mixture of compound **5** (56 mg, 171  $\mu$ mol), compound **17** (92 mg, 57  $\mu$ mol), and powdered molecular sieves AW-300 (200 mg) in Cl(CH<sub>2</sub>)<sub>2</sub>Cl (0.8 mL) was added dropwise BF<sub>3</sub> · Et<sub>2</sub>O (8.3  $\mu$ L, 68  $\mu$ mol) at  $-15^{\circ}$  under Ar. After stirring for 30 min at  $-15^{\circ}$ , the mixture was diluted with EtOAc, and filtered through Celite. The filtrate was washed successively with aq. NaHCO<sub>3</sub> and H<sub>2</sub>O, dried (MgSO<sub>4</sub>), and evaporated *in vacuo*. The residue was chromatographed over SiO<sub>2</sub> in 2:1 CH<sub>2</sub>Cl<sub>2</sub>-acetone, to give **18** (12 mg, 12%) and **21** (33 mg, 32%).

Compound **18** had  $[\alpha]_D$  +43.8° (*c* 0.08);  $R_F$  0.34 in 2:1 CHCl<sub>3</sub>-acetone; n.m.r. data:  $\delta_H$  7.39–7.33 (m, 10 H, aromatic), 6.103 (d, 1 H, *J* 9.0 Hz, N*H*-2Ser), 5.674 (dt, 1 H, *J* 3.2 and 8.5 Hz, H-8d), 5.361 (d, 1 H, *J* 2.9 Hz, H-4a), 5.233 (d, 1 H, *J* 12.5 Hz, *CH*<sub>2</sub>Ph), 5.158 (d, 1 H, *J* 12.5 Hz, *CH*<sub>2</sub>Ph), 5.148 (d, 1 H, *J* 12.5 Hz, *CH*<sub>2</sub>Ph), 5.054 (d, 1 H, *J* 12.5 Hz, *CH*<sub>2</sub>Ph), 4.882 (d, 1 H, *J* 3.4 Hz, H-4c), 4.851 (d, 1 H, *J* 3.4 Hz, H-1a), 4.89–4.80 (m, 2 H, H-4b,4d), 4.673 (d, 1 H, *J* 7.8 Hz, H-1c), 4.627 (dt, 1 H, *J* 3.2 and 9.0 Hz, H-2Ser), 4.535 (dd, 1 H, *J* 3.4 and 10.3 Hz, H-3c), 4.480 (dd, 1 H, *J* 3.2 and 9.0 Hz, H-9b or 9d), 4.267 (dd, 1 H, *J* 3.2 and 12.1 Hz, H-9b or d), 4.221 (dd, 1 H, *J* 3.4 and 11.1 Hz, H-9b or 9d), 3.884 (t, 1 H, *J* 6.1 Hz, H-5c), 3.845 (s, 3 H, OCH<sub>3</sub>), 3.735 (s, 3 H, OCH<sub>3</sub>), 3.671 (dd, *J* 3.4 and 11.2 Hz, H-6a), 2.586 and 2.537 (2 dd, 2 H, *J* 4.6 and 12.5 Hz, and *J* 4.4 and 12.7 Hz, H-3beq and 3deq), 2.247, 2.172, 2.144, 2.112, 2.096, 2.092, 2.076, 2.038, 2.020 (6 H), 2.016, 1.906, 1.872, 1.864 (13 s, total 42 H, 12 OCOCH<sub>3</sub> and 2 NCOCH<sub>3</sub>), and 1.890 and 1.720 (2 t, 2 H, *J* 12.5 Hz, H-3bax and 3dax).

Compound **21** had  $[\alpha]_D -15.3^\circ$  (*c* 0.15);  $R_F 0.31$  in 2:1 CH<sub>2</sub>Cl<sub>2</sub>-acetone; n.m.r. data:  $\delta_H 7.36-7.31$  (m, 10 H, aromatic), 5.883 (d, 1 H, *J* 8.1 Hz, N*H*-2Ser), 5.570 (ddd, 1 H, *J* 2.9, 5.9, and 9.0 Hz, H-8d), 5.387 (dd, 1 H, *J* 2.9 and 8.8 Hz, H-7d), 5.342 (d, 1 H, *J* 2.9 Hz, H-4a), 4.855 (d, 1 H, *J* 7.8 Hz, H-1c), 4.237 (d, 1 H, *J* 7.8 Hz, H-1a), 3.853 and 3.769 (2 s, 6 H, 2 OCH<sub>3</sub>), 3.487 (dd, 1 H, *J* 8.1 and 10.3 Hz, H-2a), 3.319 (dd, 1 H, *J* 6.0 and 10.1 Hz, H-6a), 2.590 and 2.556 (2 dd, 2 H, *J* 4.6 and 12.7 Hz, and *J* 4.6 and 12.7 Hz, H-3beq and 3deq), 2.274, 2.221, 2.182, 2.107, 2.102, 2.096, 2.068, 2.048, 2.038, 2.015, 2.010, 1.998, 1.872, 1.860 (14 s, 42 H, 12 OCOCH<sub>3</sub> and 2 NCOCH<sub>3</sub>), 1.943 and 1.715 (2 t, 2 H, *J* 12.9 Hz, H-3bax and 3dax).

Anal. Calc. for  $C_{78}H_{100}N_6O_{42}$ · $H_2O$ : C, 51.71; H, 5.67; N, 4.64. Found (for a 1:1 mixture of compound **18** and **21**): C, 51.53; H, 5.39; N, 4.58.

N-(*Benzyloxycarbonyl*)-O-{*methyl* (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5dideoxy- D - glycero -  $\alpha$  - D - galacto - 2 - nonulopyranosyl)onate} - (2 $\rightarrow$ 3) - O -(2,4,6 - tri - O - acetyl- $\beta$ -D-galactopyranosyl)-(1 $\rightarrow$ 3)-O-[*methyl* (5-acetamido-4,7,8,9tetra-O-acetyl-3,5- dideoxy - D - glycero -  $\alpha$  - D - galacto - 2 - nonulopyranosyl)onate - (2 $\rightarrow$ 6)]-O-(2 - acetamido-4-O-acetyl-2-deoxy- $\alpha$ - and - $\beta$ -D-galactopyranosyl)-(1 $\rightarrow$ 3)-*L-serine benzyl ester* (**19** and **22**). — [A] Compound **18** (4.0 mg, 2.2  $\mu$ mol) was dissolved in a solution of NiCl<sub>2</sub>·6 H<sub>2</sub>O (8 mg, 34  $\mu$ mol) and H<sub>3</sub>BO<sub>3</sub> (4 mg, 65 μmol) in EtOH (0.2 mL). To this solution was added NaBH<sub>4</sub> (2 mg, 53 μmol) at 20°. After being stirred for 15 min at 20°, AcOH (0.2 mL) and EtOH (0.4 mL) were added, and the mixture was evaporated *in vacuo*. The residue was extracted with CHCl<sub>3</sub>, and the extract successively washed with H<sub>2</sub>O and aq. NaCl, dried (MgSO<sub>4</sub>), and evaporated *in vacuo*. A solution of the residue in Ac<sub>2</sub>O (0.15 mL) and pyridine (0.3 mL) was stirred for 4 h, and then evaporated *in vacuo*. The residue was chromatographed over SiO<sub>2</sub> in 2:1 THF-toluene, to give **19** (3.7 mg, 92%);  $[\alpha]_D$  +31.4° (*c* 0.11);  $R_F$  0.33 in 2:1 THF-toluene; n.m.r. data:  $\delta_H$  7.42–7.28 (m, 10 H, aromatic), 6.044 (d, 1 H, *J* 8.1 H, N*H*), 6.017 (d, 1 H, *J* 9.3 Hz, N*H*), 5.683 (dt, 1 H, *J* 1.7 and 9.3 Hz, H-8d), 4.870 (d, 1 H, *J* 3.7 Hz, H-1a), 4.605 (d, 1 H, *J* 8.1 Hz, H-1c), 4.385 (dt, 1 H, *J* 3.7 and 10.0 Hz, H-2a), 3.852 (s, 3 H, OCH<sub>3</sub>), 3.748 (s, 3 H, OCH<sub>3</sub>), 3.270 (dd, 1 H, *J* 4.2 and 10.5 Hz, H-6a), 2.589 and 2.540 (2 dd, 2 H, *J* 4.9 and 13.2 Hz, *J* 4.6 and 12.7 Hz, H-3beq and 3deq), 2.313, 2.274, (9 H), 2.188, 2.117, 2.098, 2.067, 2.027, 2.022, 2.018, 1.969, 1.959, 1.871, and 1.864 (13 s, total 45 H, 12 OCOCH<sub>3</sub> and 3 NCOCH<sub>3</sub>).

[B] Compound **21** (9.7 mg, 5.4  $\mu$ mol) was treated as described in [A], to give **22** (6.3 mg, 64%);  $[\alpha]_D -2.5^\circ$  (c 0.16);  $R_F 0.39$  in 2:1 THF-toluene; n.m.r. data:  $\delta_H 7.39-7.28$  (m, 10 H, aromatic), 6.041 (d, 1 H, J 8.3 Hz, NH-2Ser), 5.758 (d, 1 H, J 6.8 Hz, NH-2a), 5.540 (ddd, 1 H, J 2.9, 6.4, and 9.0 Hz, H-8d), 5.434 (d, 1 H, J 3.2 Hz, H-4a), 5.362 (dd, 1 H, J 2.4 and 8.8 Hz, H-7d), 5.209 (bs, 2 H, CH<sub>2</sub>Ph), 5.156 (d, 1 H, J 12.5 Hz, CH<sub>2</sub>Ph), 5.107 (d, 1 H, J 12.5 Hz, CH<sub>2</sub>Ph), 5.052 (d, 1 H, J 10.3 Hz, NH), 4.968 (d, 1 H, J 7.8 Hz, H-1c), 4.900 (d, 1 H, J 2.9 Hz, H-4c), 4.701 (d, 1 H, J 7.6 Hz, H-1a), 4.540 (m, 1 H, H-2Ser), 4.500 (dd, 1 H, J 3.4 and 10.3 Hz, H-3c), 3.848 (s, 3 H, OCH<sub>3</sub>), 3.773 (s, 3 H, OCH<sub>3</sub>), 3.333 (dd, 1 H, J 4.2 and 9.8 Hz, H-6a), 2.583 and 2.553 (2 dd, 2 H, J 4.6 and 12.5, J 4.4 and 11.7 Hz, H-3beq, and 3deq), 2.230, 2.176, 2.172, 2.125, 2.099, 2.096, 2.078, 2.071, 2.064, 2.043, 2.012, (6 H), 2.007, 1.875, and 1.859 (14 s, total 45 H, 12 OCOCH<sub>3</sub> and 3 NCOCH<sub>3</sub>), 1.961 and 1.679 (2 t, 2 H, J 12.9 and 12.7 Hz, H-3bax and 3dax).

Anal. Calc. for  $C_{80}H_{104}N_4O_{43}$ : C, 53.10; H, 5.79; N, 3.10. Found (for a 1:1 mixture of **19** and **22**): C, 53.39; H, 5.69; N, 3.13.

### ACKNOWLEDGMENTS

This work was partly supported by a grant-in-aid for scientific research of the Ministry of Education, Science, and Culture, and also by SANKYO Foundation of Life Science. We thank Mr. Y. Shitori (MECT Co.) for a generous supply of *N*-glycolylneuraminic acid, Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra, Dr. H. Yamazaki and his staff for the elemental analyses, and A. Takahashi and K. Moriwaki for their technical assistance.

### REFERENCES

- 1 S. SATO, Y. ITO, AND T. OGAWA, Tetrahedron Lett., 29 (1988) 5267-5270.
- 2 N. SHARON AND H. LIS, in H. NEURATH AND R. L. HILL (Eds.), *The Proteins*, Vol. 5, Academic Press, New York, 1982, pp. 1–144.
- 3 D. LECAT, M. LEMONNIER, C. DERAPPE, M. LHERMITTE, H. VAN HALBEEK, L. DORLAND, AND J. F. G. VLIEGENTHART, *Eur. J. Biochem.*, 140 (1984) 415–420.
- 4 B. FOURNET, A.-M. FIAT, C. ALAIS, AND P. JOLLÈS, Biochim. Biophys. Acta, 576 (1979) 339–346; H. VAN HALBEEK, L. DORLAND, J. F. G. VLIEGENTHART, A.-M. FIAT, AND P. JOLLÈS, *ibid.*, 623 (1980) 295–300; S. A. M. KORREL, K. J. CLEMETSON, H. VAN HALBEEK, J. P. KAMERLING, J. J. SIXMA, AND J. F. G. VLIEGENTHART, Eur. J. Biochem., 140 (1984) 571–576.
- 5 H. IIJIMA AND T. OGAWA, Carbohydr. Res., 172 (1988) 183-193.
- 6 H. IIJIMA AND T. OGAWA, Carbohydr. Res., 186 (1988) 95-106.
- 7 M. NUMATA, M. SUGIMOTO, K. KOIKE, AND T. OGAWA, Carbohydr. Res., 163 (1987) 209-225.
- 8 T. OGAWA AND M. MATSUI, *Carbohydr. Res.*, 54 (1977) c17–c21; T. OGAWA, S. NAKABAYASHI. AND K. SASAJIMA, *ibid.*, 95 (1981) 308–312.
- 9 S. SATO, M. MORI, Y. ITO, AND T. OGAWA, Carbohydr. Res., 155 (1986) C6-C10.
- 10 R. BOSS AND R. SCHEFFOLD, Angew. Chem., 88 (1976) 578–579; T. OGAWA AND S. NAKABAYASHI, Carbohydr. Res., 93 (1981) C1–C5.
- 11 H. PAULSEN AND J.-P. HÖLCK, Carbohydr. Res., 109 (1982) 89–107; H. PAULSEN AND V. SINNWELL, Chem. Ber., 111 (1978) 879–889.