

Letter pubs.acs.org/OrgLett

Synthesis and Properties of the *p*-Sulfonamide Analogue of the Green Fluorescent Protein (GFP) Chromophore: The Mimic of GFP Chromophore with Very Strong N–H Photoacid Strength

Yi-Hui Chen, Robert Sung,[†] and Kuangsen Sung*®

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan

Supporting Information

ABSTRACT: The *para*-sulfonamide analogue (*p*-TsABDI) of a green fluorescent protein (GFP) chromophore was synthesized to mimic the GFP chromophore. Its S_1 excited-state p K_a^* value in dimethylsulfoxide (DMSO) is -1.5, which is strong enough to partially protonate dipolar aprotic solvents and causes excited-state proton transfer (ESPT), so it can partially mimic the GFP chromophore to further study the ESPT-related photophysics and the blinking phenomenon of GFP. In

comparison with 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) ($pK_a = 7.4$, $pK_a^* = 1.3$ in water), p-TsABDI ($pK_a = 6.7$, $pK_a^* = -1.5$ in DMSO) is a better photoacid for pH-jump studies.

Proton transfer is a cornerstone of acid/base-catalyzed chemical reactions, where the acid/base strength of catalysts plays an important role on the proton transfer.¹ Among acid catalysts, N-H acids are not as common as oxoacids, because N-H acids are much less acidic, such as NH₃ $(pK_a = 41)^{2a}$ vs H₂O $(pK_a = 31.4)^{2b}$ in dimethylsulfoxide (DMSO), CH₃C(O)NH₂ $(pK_a = 25.5)^{2c}$ vs CH₃CO₂H $(pK_a =$ $(12.6)^{2c}$ in DMSO, and $NH_4^+(pK_a = 10.5$ in DMSO, 9.2 in H_2O) vs H_3O^+ (p $K_a = -1.7$ in H_2O).^{2d}

Since the pioneering work of Forster^{3a} and Weller,^{3b} it has been found that the acid strength of some oxoacids can be significantly boosted by photoexcitation. The first singlet (S_1) excited-state acid strength (pK_a^*) of some oxoacids can be several orders of magnitude $\bar{(}\Delta p \textit{K}^{*}_{a})$ stronger than that of its ground state (pK_a) ,^{4a} such as phenol $(pK_a = 9.82, pK_a^* = 4$ in water),^{4b} 7-cyano-2-naphthol ($pK_a = 8.75$, $pK_a^* = -1.3$ in water),^{4c} and 8-hydroxypyrene-1,3,6-trisulfonate, HPTS ($pK_a = 7.4$, $pK_a^* = 1.3$ in water).^{4d} In addition, few N–H acids have been found to be boosted by photoexcitation,4e such as tryptophan ($pK_a = 9.30$, $pK_a^* = 7.8$ in water).^{4f} These photoacids can be initiated by light to generate protons for proton-transfer reactions at a specified instant in time, so a pHjump study has been one of important applications for these photoacids, and HPTS is one of the best, highly used photoacids for pH-jump studies.^{4g,h}

Green fluorescent protein (GFP) and its mutants have attracted interest as fluorescent biological labels in the last two decades.⁵ The GFP chromophore is also a photoacid that involves excited-state proton transfer (ESPT).4ª The wild-type GFP (wtGFP) is a globular protein of 238 amino acids that are folded into an 11-stranded β -barrel with the *p*-hydroxybenzylideneimidazolinone (p-HBDI) chromophore located at the center of the β -barrel.⁶ The major electronic absorption (395 nm) of the wtGFP comes from the neutral form of the p-HBDI chromophore. Its minor electronic absorption (475 nm) comes from the electronic absorption of the *p*-HBDI anion.⁷ Upon

excitation at 395 nm, the neutral p-HBDI chromophore undergoes a rapid ESPT, emitting the dominant GFP fluorescence at 508 nm with 80% fluorescence quantum yield.⁷ It has been proposed that the hydrogen-bonding network, which is comprised of the neutral p-HBDI chromophore, an internal water molecule, Ser205, and Glu222, promotes rapid ESPT from p-HBDI.^{8a,b} This results in an ESPT phenomenon in GFP where the fluorescence wavelength is increased. This is indirectly proven in the non-ESPT-related blue fluorescent emission of the double mutant S205 V/T203 V of wtGFP.8c Unfortunately, there remains some ambiguity surrounding the ESPT-related photophysics of the wtGFP chromophore, such as charge transfer; thus, further understanding of the GFP chromophore and its analogues is an important issue.

One of the issues the ESPT-related photophysics of GFP may help to solve is the GFP blinking phenomenon. It was attributed to the temporary conversion to a nonfluorescent form, which has been variously suggested to be triplet formation, 9a,b proton transfer, 9c,d or Z/E isomerization. ${}^{9e-g}$ The identity of the nonfluorescent form and the photophysics of GFP blinking phenomenon remain unsolved.^{9h} The GFP blinking phenomenon occurs right after the ESPT of GFP. How is the ESPT-related photophysics of GFP linked to the nonfluorescent form where the GFP blinking phenomenon happens? Uncovering the ESPT-related photophysics of GFP may help us to understand the GFP blinking phenomenon, because it is likely due to the ESPT-related photophysics.

Received: January 24, 2018

To study ESPT-related photophysics of GFP, *p*-HBDI was attempted to reproduce the ESPT phenomenon of *wt*GFP, but it failed to display ESPT, because the *p*-HBDI excited state undergoes much faster radiationless transitions.^{10a} In this paper, we report that the *p*-sulfonamide analogue (*p*-TsABDI) of the GFP chromophore, which displays ESPT, may qualify to be a model for further study of ESPT-related photophysics of the *wt*GFP choromphore. In addition, we also report that the *pK_a* of *p*-TsABDI can be significantly decreased by 8.2 through photoexcitation at a specified instant in time, and that makes it better than HPTS in pH-jump studies.^{4g,h}

For the synthesis of *p*-TsABDI (Scheme 1), reduction of *p*-1 to *p*-ABDI with $SnCl_2$ was attempted, ^{10b} but it was not so

successful in our hands. It is better to reduce p-1 to p-ABDI with Pd-catalyzed hydrogenation. Then, p-TsABDI was prepared by treating p-ABDI with 1.2 equiv of tosyl chloride in the presence of NEt₃.

Because *p*-TsABDI includes both the acidic sulfonamide and the basic amidine moieties, it may exist as a neutral or zwitterionic structure in an aprotic or protic solvent. In order to identify the solution structures, ESPT phenomena, and photoacid strength of *p*-TsABDI in an aprotic or protic solvent, electronic absorption and fluorescent emission spectra of *p*-TsABDI and its cation and anion were measured and compared in a protic solvent (H_2O), aprotic solvents, or mixed CH₃CN(aprotic)-H₂O(protic) solvents (see Table 1).

Table 1. Photophysical Properties of Neutral, Zwitterionic, Anionic, and Cationic *p*-TsABDI

۲	H ₃ CPhO ₂ S Neutral <i>p</i> -1	N _N N ₋ H ₃ C	CPhO ₂ S Zwitterionic p-TSABDI	Na [®] H ₃ CPhO ₂ S Anio	N_N- N_N- nic p-TsABDI
F	H ₃ CPhO ₂ S Cl [®] Cationic <i>p</i> -		PhO ₂ S N _N N ₋ Indissociated S ₁ excited tate of neutral <i>p</i> -TsABDI	* SolH H ₃ CPhO ₂ S Dissoci state of r	$\begin{bmatrix} 0 \\ N \\$
	solvent	λ_{abs} (nm)	$\varepsilon ~(\mathrm{M^{-1}~cm^{-1}})$	$\lambda_{\mathrm{f}} (\mathrm{nm})$	$\phi_{\mathrm{F}} \ (imes \ 10^{-3})$
Neutral Compounds					
	DMSO ^a	378	1.1×10^{4}	425	1.1
	DMSO ^a	378	1.1×10^{4}	520	0.06
	CH ₃ CN ^a	372	8.6×10^{3}	437	0.7
	CH ₃ CN ^a	372	8.6×10^{3}	512	0.04
	THF ^a	375	7.4×10^{3}	441	1.1
	THF ^a	375	7.4×10^{3}	510	0.01
Zwitterionic Compounds					
	H ₂ O	408	9.1×10^{3}	502	0.1
Anionic Compounds					
	H_2O	408	9.1×10^{3}	502	0.1
	DMSO	450	1.2×10^{4}	501	0.8
	CH ₃ CN	441	1.3×10^{4}	507	0.9
Cationic Compounds					
	CH ₃ CN	384	9.0×10^{3}	437	0.9

^aThe solvent was dried.

For the fluorescent emission spectrum of *p*-TsABDI, it displays dual fluorescence in polar aprotic solvents (see Table 1 and Figure 1) The major peak is located at 425 nm ($\Phi_F = 1.1 \times$

Figure 1. Normalized electronic absorption (dotted line) and fluorescent emission spectra (solid line) of *p*-TSABDI in water (cyan), DMSO (purple), acetonitrile (dark blue), or THF (red).

10⁻³) in DMSO, 437 nm ($\Phi_F = 7 \times 10^{-4}$) in acetonitrile, and 441 nm ($\Phi_F = 1.1 \times 10^{-3}$) in tetrahydrofuran (THF), and the other is a weak shoulder fluorescence at 520 nm ($\Phi_F = 6.0 \times 10^{-5}$) in DMSO, 512 nm ($\Phi_F = 4.0 \times 10^{-5}$) in acetonitrile, and 510 nm ($\Phi_F = 1.0 \times 10^{-5}$) in THF. This is quite unusual.

To check if the weak shoulder fluorescence of *p*-TsABDI is caused by ESPT, it was compared with the fluorescence of the *p*-TsABDI anion. The *p*-TsABDI anion was prepared by titration of *p*-TsABDI in acetonitrile or DMSO with NaOH_(aq) with 3 μ L of water added (see Figure 2 and Table 1). Its

Figure 2. Change in the electronic absorption (top) and in the fluorescent emission spectra (bottom) for the titration of *p*-TsABDI (1.4×10^{-5} M) in CH₃CN with NaOH_(aq) ($0-9 \times 10^{-4}$ M) with 3 μ L of water added.

lowest-energy electronic absorption is significantly red-shifted to 450 nm ($\varepsilon = 1.2 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) in DMSO and 441 nm (ε = $1.3 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) in acetonitrile. It is consistent with another similar experimental result that the electronic absorption of the *p*-HBDI anion is red-shifted by \sim 75 nm, in comparison with that of p-HBDI.^{10d} This result indicates that the sulfonamide N-H acid of p-TsABDI is not dissociated in polar aprotic solvents. The fluorescent emission of the p-TsABDI anion is also significantly red-shifted to 501 nm ($\Phi_{\rm F}$ = $8.0 \times 10^{-4})$ in DMSO and 507 nm ($\Phi_{\rm F}$ = 9.0 \times $10^{-4})$ in acetonitrile, which looks like the weak shoulder fluorescence of p-TsABDI. However, according to the electronic absorption spectra of p-TsABDI, p-TsABDI in dipolar aprotic solvents does not have any trace of the *p*-TsABDI anion (see Figure 3). Hence, we suggest that the weak shoulder fluorescence of p-TsABDI in DMSO, acetonitrile, and THF is important evidence for the ESPT of p-TsABDI (see Figure 3). We suggest that the weak shoulder fluorescence of p-TsABDI comes from its dissociated S1 excited state while the other

Figure 3. Evidence of the ESPT of *p*-TsABDI. The electronic absorptions (top) and the fluorescent emission spectra (bottom) of the neutral *p*-TsABDI (solid line) and the *p*-TsABDI anion (dotted line) in CH_3CN (dark blue) or DMSO (red).

major fluorescence of *p*-TsABDI is from its undissociated S_1 excited state (see Scheme 2).

Scheme 2. Proposed Photoexcitation, Fluorescence, ESPT and Proton Recombination of *p*-TsABDI

To check if p-TsABDI exists as a neutral or zwitterionic structure in an aprotic solvent, its electronic absorption was compared with that of the p-TsABDI cation. The p-TsABDI cation was prepared by titration of p-TsABDI in acetonitrile with $HCl_{(aq)}$ with 3 μ L of water added (see Figure 4 and Table 1). Its lowest-energy electronic absorption is slightly red-shifted to 384 nm ($\varepsilon = 9.0 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$) and its fluorescent emission is also ~437 nm ($\Phi_{\rm F} = 9.0 \times 10^{-4}$). It is consistent with another experimental result that the electronic absorption of the *p*-HBDI cation is red-shifted by \sim 20 nm, in comparison with that of p-HBDI.^{10d} This result confirms that p-TsABDI in CH₃CN exists in the neutral structure, instead of the zwitterionic structure. If p-TsABDI in CH₃CN exists in the zwitterionic structure, protonation of p-TsABDI would make its electronic absorption blue-shifted. The p-TsABDI cation is supposed to have a proton added on the amidine nitrogen, according to the experimental result that the pK_a value for the amidinium N-H proton of the p-HBDI cation is 1.4 in water.^{10e}

To check if *p*-TsABDI exists as a neutral or zwitterionic structure in a protic solvent, the electronic absorption and

Figure 4. Change in the electronic absorption (top) and in the fluorescent emission spectra (bottom) for the titration of *p*-TsABDI (1.7×10^{-5} M) in CH₃CN with HCl_(aq) ($0-1.2 \times 10^{-4}$ M) with 3 μ L of water added.

fluorescent emission spectra of *p*-TsABDI were compared with those of the *p*-TsABDI anion in various ratios of mixed CH_3CN-H_2O solvents (see Figure 5). Upon increasing the

Figure 5. Electronic absorptions (top) and the fluorescent emission (bottom) spectra of the neutral *p*-TsABDI (solid line) and the *p*-TsABDI anion (dotted line) in mixed CH_3CN-H_2O solvents (dark blue for acetonitrile, red for 2:1 CH_3CN-H_2O , lime green for 1:2 CH_3CN-H_2O , and purple for water).

water percentage of mixed CH₃CN-H₂O solvents, the electronic absorption at 372 nm decreases with a simultaneous increase of the electronic absorption at 408 nm for p-TsABDI, while the lowest-energy electronic absorption of the *p*-TsABDI anion is blue-shifted with gradual migration from 441 nm to 408 nm. It means that p-TsABDI in mixed CH₃CN-H₂O solvents exists only in two structures: the undissociated neutral structure for the electronic absorption at 372 nm and the zwitterion structure for the electronic absorption at 408 nm. However, p-TsABDI in CH₃CN and DMSO exists only in the undissociated neutral structure, as shown in Figure 3. However, the p-TsABDI anion always exists in the anionic structure, whereas the ground state of the p-TsABDI anion is highly stabilized by various percentages of water through hydrogen bonding, causing blue-shifted migration of the electronic absorption. When the water percentage of mixed CH₃CN-H₂O solvents nears 100%, the lowest-energy electronic absorptions of p-TsABDI and the p-TsABDI anion are both located at 408 nm, indicating that *p*-TsABDI in H₂O exists only in the zwitterion structure and the electronic absorption spectra of the zwitterionic p-TsABDI and the p-TsABDI anion are almost the same.

Upon increasing the water percentage of mixed CH_3CN-H_2O solvents, both the major and the weak shoulder fluorescent emissions of *p*-TsABDI at 437 and 512 nm and the fluorescent emission of the *p*-TsABDI anion at 507 nm decreases significantly. It is likely because hydrogen bonding with water increases radiationless relaxation of their S₁ excited states.¹¹ When the water percentage of mixed CH_3CN-H_2O solvents reaches 100%, the fluorescent emissions of *p*-TsABDI and the *p*-TsABDI anion are both located at 502 nm, indicating that the emission spectra of the zwitterionic *p*-TsABDI and the *p*-TsABDI anion are also almost the same.

To understand the ground-state acid strength of *p*-TsABDI, Shi's method^{12a} was used, and the ground-state pK_a values of N-H acids of formamide and *p*-TsABDI in DMSO were calculated using the combined methods of B3PW91/6-311+ +G(3df,2p)//B3LYP/6-31+G(d)//HF//CPCM/UA0. The calculated ground-state pK_a value of formamide in DMSO is 23.1, which is very close to the experimental value of 23.5.^{2d} The calculated ground-state pK_a value of *p*-TsABDI in DMSO is 6.7. This is consistent with the experimental result that *p*-TsABDI, which exists as a neutral structure in CH₃CN and DMSO, turns into a zwitterionic structure in water.

According to the thermodynamics of the Forster cycle,^{4a} an excited state is a stronger acid than its ground state if the absorption or emission spectrum of the conjugated base is characterized by a red shift, relative to that of the conjugated acid.^{4a} Hence, the S_1 excited state of *p*-TsABDI is a stronger acid than its ground state. The Forster equation is

$$pK_{a}^{*} = pK_{a} - N_{A} \frac{(hv_{1} - hv_{2})}{2.3RT}$$

where frequency (v) is suggested to be the average of absorption frequency (v_a) and fluorescence frequency (v_f) for better accuracy.^{12b} In the case of *p*-TsABDI in DMSO,

$$v_1 = \frac{\left(\frac{c}{\lambda_a(378 \text{ nm})} + \frac{c}{\lambda_f(425 \text{ nm})}\right)}{2}$$

for p-TsABDI and

$$v_2 = \frac{\left(\frac{c}{\lambda_{\rm a}(450\,\rm{nm})} + \frac{c}{\lambda_{\rm f}(501\,\rm{nm})}\right)}{2}$$

for the *p*-TsABDI anion (see Table 1). Then, the value of $\Delta p K_a^*$ ($\Delta p K_a^* = p K_a^* - p K_a$) is equal to -8.2. The $p K_a^*$ value of the S₁ excited state of *p*-TsABDI in DMSO is -1.5, which is low enough to be able to protonate DMSO, CH₃CN, and THF, causing the ESPT. The $p K_a^*$ value of the S₁ excited state of *p*-HBDI in H₂O is 0.1, based on its ground-state $p K_a$ value of 8.0,^{10d} its electronic absorption at 370 nm and the electronic absorption (430 nm) of its anion.^{10c} The reason why *p*-TsABDI shows ESPT but *p*-HBDI does not is likely because *p*-TsABDI has a much stronger photoacid strength.

In conclusion, in polar aprotic solvents, such as DMSO, acetonitrile, and THF, *p*-TsABDI exists in the undissociated neutral structure and shows dual fluorescence. The major fluorescence is from the undissociated S_1 excited state, and the weak shoulder fluorescence is from the dissociated S_1 excited state, which is important evidence for the ESPT. In water, *p*-

TsABDI exists in the zwitterionic structure, whose electronic absorption and fluorescent emission spectra are almost the same as those of the *p*-TsABDI anion. In comparison with HPTS ($pK_a = 7.4$, $pK_a^* = 1.3$ in water),^{4d} which is one of the best, highly used photoacids for pH-jump studies, *p*-TsABDI ($pK_a = 6.7$, $pK_a^* = -1.5$ in DMSO) is a better photoacid than HPTS for pH-jump studies. Unlike *p*-HBDI, *p*-TsABDI displays ESPT so it qualifies to be a model for further study of the ESPT-related photophysics of GFP. Hopefully, it could be used to uncover the photophysics of the GFP blinking phenomenon as well.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b00257.

Acidity, synthesis, characterization, ¹H and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: kssung@mail.ncku.edu.tw.

ORCID ©

Kuangsen Sung: 0000-0003-3920-6674

Present Address

[†]Faculty of Family Medicine, Northern Ontario School of Medicine, Ontario, Canada.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Science Council of Taiwan for financial support (No. NSC104-2119-M-006-013).

REFERENCES

(1) (a) Caldin, E. F.; Gold, V. Proton-Transfer Reactions; Chapman and Hall: London, 1975. (b) Kresge, A. J. Acc. Chem. Res. 1975, 8, 354–360. (c) Richard, J. P. Biochemistry 2012, 51, 2652–2661.

(2) (a) Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295–3299. (b) Bordwell, F. G.; Drucker, G. E.; Fried, H. E. J. Org. Chem. 1981, 46, 632–635. (c) Bordwell, F. G.; Algrim, D. J. Org. Chem. 1976, 41, 2507–2508. (d) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456–463.

(3) (a) Forster, T. Naturwissenschaften **1949**, *36*, 186–187. (b) Well, A. Prog. React. Kinet. **1961**, *1*, 189–214.

(4) (a) Tolbert, L. M.; Solntsev, K. M. Acc. Chem. Res. 2002, 35, 19–
27. (b) Granucci, G.; et al. J. Am. Chem. Soc. 2000, 122, 12243–12253.
(c) Tolbert, L. M.; Haubrich, J. E. J. Am. Chem. Soc. 1990, 112, 8163–
8165. (d) Spies, C.; et al. Phys. Chem. Chem. Soc. 1990, 112, 8164–
9114. (e) Wan, P.; Shukla, D. Chem. Rev. 1993, 93, 571–584.
(f) Eftink, M. R.; et al. J. Phys. Chem. 1995, 99, 5713–5723.
(g) Donten, M. L.; Hamm, P. J. Phys. Chem. Lett. 2011, 2, 1607–1611.
(h) Simkovitch, R.; et al. J. Phys. Chem. B 2016, 120, 12615–12632.
(5) (a) Meech, S. R. Chem. Soc. Rev. 2009, 38, 2922–2934.
(b) Zimmer, M. Chem. Rev. 2002, 102, 759–781.

(6) (a) Orm, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.; Remington, S. J. Science **1996**, 273, 1392–1395. (b) Yang, F.; Moss, L. G.; Phillips, G. N. J. Nat. Biotechnol. **1996**, 14, 1246–1251.

(7) (a) Heim, R.; Prasher, D. C.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.
S. A. 1994, 91, 12501–12504. (b) Chattoraj, M.; King, B. A.; Bublitz,
G. U.; Boxer, S. G. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 8362–8367.

Organic Letters

(8) (a) Brejc, K.; et al. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 2306–2311.
(b) Palm, G. J.; et al. Nat. Struct. Mol. Biol. 1997, 4, 361–365.
(c) Shu, X.; et al. Protein Sci. 2007, 16, 2703–2710.

(9) (a) Habuchi, S.; et al. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9511–9516. (b) Jimenez-Banzo, A.; et al. Biophys. J. 2008, 94, 168–172. (c) Haupts, U.; et al. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 13573–13578. (d) Liu, Y.; et al. J. Phys. Chem. B 2006, 110, 24138–24146. (e) Chudakov, D. M.; Feofanov, A. V.; Mudrik, N. N.; Lukyanov, S.; Lukyanov, K. A.; et al. J. Biol. Chem. 2003, 278, 7215–7219. (f) Quillin, M. L.; et al. Biochemistry 2005, 44, 5774–5787. (g) Henderson, J. N.; et al. Physiology 2006, 21, 162–170. (h) Tolbert, L. M.; et al. Acc. Chem. Res. 2012, 45, 171–181.

(10) (a) Mandal, D.; Tahara, T.; Meech, S. R. J. Phys. Chem. B 2004, 108, 1102. (b) Yang, J.-S.; Huang, G.-J.; Liu, Y.-H.; Peng, S.-M. Chem. Commun. 2008, 1344–1346. (c) Chen, Y.-H.; Lo, W.-J.; Sung, K. J. Org. Chem. 2013, 78, 301–31. (d) Dong, J.; Solntsev, K. M.; Tolbert, L. M. J. Am. Chem. Soc. 2006, 128, 12038–12039. (e) He, X.; Bell, A. F.; Tonge, P. J. FEBS Lett. 2003, 549, 35–38.

(11) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd Edition; Springer: New York, 2006.

(12) (a) Huang, X.-Y.; Wang, H.-J.; Shi, J. J. Phys. Chem. A 2010, 114, 1068. (b) Mulder, W. H. J. Photochem. Photobiol., A 2003, 161, 21-25.