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Abstract: Boc-cis-4-fluoro-L-proline and 4-difluoro-L-proline, usable in classical peptide synthesis, 
were obtained in respectively 71% (3 steps) and 65% (4 steps) overall yields from the readily available 
trans-4-hydroxy-L-proline methyl ester. The corresponding fluorinated trans-isomer was isolated in 
24% yield (5 steps). Transformation of Boc-protected compounds to their Fmoc-equivalents was 
performed in high yields. © t998 Elsevier Science Ltd. All rights reserved. 

Proline residues confer unique structural constraints in a peptide chain and hence may play a major role 

in protein folding, structure and function. Fluorinated prolines therefore, in particular 4-fluoro and 4- 

difluoroprolines 1-3 (chart 1, R = H), are useful tools for investigating protein-peptide or protein-protein 

interactions as well as conformational transitions, l 

Chart I 

02 H C02H 02 H C02 H 

R R R 

R = Boc la  2a 3a 4 
Fmoc lb 2b 3b 

Several methods describing the preparation of fluoro and difluoroprolines starting from N-acety1-2, 

benzoy1-3 and Z-hydroxyproline 4 methyl esters or hydroxyproline-derived diketopiperazine 5 and 

oxazolidinone 6 have been reported. However, to our knowledge, no simple synthesis of compounds 1 -3 ,  

suitably protected for solid phase peptide synthesis, has been formally described. In the present letter, we 

report a straighforward synthesis of Boc- and Fmoc-protected cis- and trans-4-fluoro-L-prolines (respectively 

1 and 2) and 4-difluoro-L-proline 3 starting from the commercially available trans-4-hydroxy-L-proline 4. 

One example of direct fluorination of Boc-protected 4-hydroxypyroglutamic acid has been described in 

moderate yield (40%). 7 We observed that Boc-protected compound 6 readily obtained from compound 4 was 

easily converted into cis-4-fluoroproline 7 in good yield (81%) with DAST. g Oxidation of compound 6 with 

PDC 9 and difluorination gave difluoroproline 9 in 72% yield (2 steps) (scheme 1). 
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Scheme I 
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a: Boc20, NEt 3 / CH2C12, r.t.; b: DAST / dry CH2CI 2 -78°C to r.L; c: PDC / CH2C12, r.t., 3 A molecular sieves 

Inversion of configuration at C-4 was not obvious. The diastereoselective alcohol inversion of Z- 

hydroxyproline reported by Patchett and Witkop lo could not be transposed to the Boc-methyl ester series 

since borohydride reduction of ketone 8 led to a mixture of cisltrans-Boc-hydroxyproline methyl esters. 

Treatment of compound 6 in Mitsunobu conditions 11 gave a mixture of N- and C-deprotected by-products. 

This suggests either a participation of the Boc-carbonyl group via an intramolecular substitution 12 or a 

saponification of the methyl ester during hydrolysis of the intermediary benzoyl ester. 

Inversion of the alcohol configuration was finally performed in 58% yield starting from N- 

tr i tylhydroxyproline 10 (scheme 2). 13 Further deprotection / protection as tert-butyl carbamate and 

fluorination as reported above gave trans-4-fluoroproline 12 in 54% overall yield (2 steps). 

Scheme 2 

a ~ b e 

= 02Me " 02Me '~ 02Me 
76% 58% 63% 

10 R=Tr  11a N 12 

J c,d 86% 

Boc 11b 

a: Tr-CI, NEt 3 / CHCI3, O°C; b: PPh 3, DEAD, Ph-CO2H / toluene then KOH / MeOH; c: HCO2H / CICH2-CH2CI; d: Boc20, 
NEt 3 / CH2C! 2, r.t.; e: DAST / dry CH2C! 2 -78°(2 to r.t.. 

Final saponification afforded Boc-protected compounds l a -3a  in very good yields. 14,15 Acidic 

deprotection and treatment with Fmoc-Su in methanol 16 led to the corresponding Fmoc-protected equivalents 

lb-3b in 93-99% yields (scheme 3). 17 

Even though Young and coworkers demonstrated that fluorination with DAST occurs with complete 

inversion of configuration, 7 we assessed that our sequences of reactions did not epimerise any asymmetric 

center. Comparison of 1H, 13C and 19F NMR data for compounds l a b  and 2ab  clearly showed numerous 
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significative differences. For each compound, no trace of the other diastereomer were detected. This 

confh'med that no epimerisation oceured at C-2 or C-4 position. Moreover, diastereomeric purity of Fmoc- 

fluoroprolines was also checked by TLC (D.e. > 99%; lb:  Rf = 0.40; 2b: Rf : 0.31; 0.25 ram silica gel 60; 

eluant: chloroform:methanol:acetic acid 98:1:1). 

~heme 3 

x~,, x~,,., x~,... 
a • b,c . 

7 X I = H , ) ( 2 = F  la  92% lb  99% 
12 XI=F, X2--H 211 99*/* ~ 96% 

311 95% 31) 93% 9 X1 = F, X2=F 
a: 2 equiv. LiOH / CH3CN-H20 3-1 r.t.; b: TFA / CH2C12; c: Fmoe-Su NEt 3 / MeOH. 

1H, 13C and 19F NMR spectra of the rifle compounds clearly showed significative doubling of several 

signals. This clearly demonstrates the existence of cis- and trans- conformers of the Boc- and Fmoc- 

fluoroprolines as already observed with Boc -17 and Fmoc-prolines urethane bonds (scheme 4) and for the 

aminoacyl-proline 19 and N-acetylproline amide bonds. 7, 20 These results unambiguously demonstrate that 

reaction of Boc-protected 4-hydroxyproline derivatives with DAST occurs via a SN ~ process. This has been 

very recently discussed by Patino and coworkers who reported the synthesis of compounds lb  and 2b. 20 The 

authors asserted that doubling of 19F NMR signals (-172.8 and -173.8 ppm) reflects an epimerisation at C-4. 

However, in our hands, compound lb  gave two singlets at 173.7 ppm (40%) and 174.8 ppm (60%) 

corresponding to the mixture of cis- and trans-carbamate conformers, whereas compound 2b appeared as two 

singlets at 178.4 ppm (65%) and 179.0 ppm (35%). 

Scheme 4 

E E 

'q)~O CO2 H ~ C 0 2 H  

R 

T r a n s  - conformer C/s - conformer 

OCOR = Boc or Fmoc 

In conclusion, we described in this paper a convergent and straighforward preparation of optically pure 

Boc- and Fmoc-prolines fluorinated on C-4, starting from the unexpensive trans-hydroxyproline. These 

compounds, used in classical peptide synthesis, displayed stabilities and reactivities similar to their 

hydrocarbon patterns. 
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