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Abstract Spiropseudoindoxyls were synthesized by using a gold(III)-
catalyzed intramolecular nitroalkyne redox–dipolar cycloaddition cas-
cade. These compounds were then transformed into novel piperidinone
and azepanone fused indoles via a straightforward hydrogenation. The
reaction mechanism of this ring expansion is believed to proceed
through a rare Wagner–Meerwein type 1,2-amide migration.

Key words dihydro-γ-carbolinone, Wagner–Meerwein, indoles, 1,2-
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Indoles are common motifs that are found in many nat-
ural products and biologically active molecules,1 and a large
variety of syntheses towards these structures are well doc-
umented. Strategies towards 2,3-disubstituted indoles in-
clude direct cyclizations to form the five-membered ring,
direct derivatizations of the indole core and rearrangement
reactions of indolone or indolenine derivatives.2 Regarding
the latter strategy, numerous examples have been de-
scribed that proceed through C-3 to C-2 migratory aryl or
alkyl 1,2-shifts. As an example, the Pictet–Spengler reaction
is believed to proceed via a spiroindolenine intermediate,
which subsequently rearranges through a 1,2-alkyl shift;3

such shifts are also known to proceed under gold catalysis.4
3,3-Disubstituted 3H-indolinium species are known to give
2,3-disubstituted indoles through the Ciamician–Plancher
rearrangement.5 When the C-2 of the indolinium salt bears
an alkyl substituent, this rearrangement is reversible and
proceeds through both C-2 to C-3 and C-3 to C-2 alkyl mi-
grations.6 Remarkably, such Wagner–Meerwein type migra-
tory 1,2-shifts from C-2 to C-3 to give 2,3-disubstituted in-
doles have barely been described. This rearrangement can
occur for example when 3-hydroxy-2,2-disubstituted indo-

lines are treated with acid to give the cationic C-3 interme-
diate. This reaction was reported in 1951 by Witkop and
Patrick7 and has only been described in a few examples
since then, including a recent approach towards polycyclic
indolines and indolenines starting from spiropseudoindox-
yls (2-spiroindol-3-ones).8
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In a previous study by our group regarding the synthesis
of 2-spiropseudoindoxyls, the selective N–O cleavage of 1a
towards 2a was investigated.9 For most examples, the reac-
tion reached completion in two hours and afforded near-
quantitative yields. However, in one case (Scheme 1), the
‘closed’ 1a and ‘open’ pseudoindoxyl 2a gave completely
overlapping signals on both TLC and HPLC, suggesting at
first sight that no conversion took place. After a prolonged
reaction time (ca. 16 h), a significant conversion was ob-
served towards dihydro-γ-carbolinone 3a rather than the
envisioned spiropseudoindoxyl 2a. Compounds  containing
this dihydro-γ-carbolinone core are known to display inter-
esting bioactivities (e.g., Alosteron, a 5-HT3 serotonin re-
ceptor antagonist).10 Although this transformation was an
unexpected discovery, the conditions that were used ap-
peared to be too mild to obtain full conversion. A further
optimization towards the synthesis of 3 was therefore nec-
essary.

The starting materials 1 for this optimization study and
for the subsequent exploration of the scope of the reaction
were synthesized from carboxylic acids 4 in a simple two-
step approach (Scheme 2). Both the Ugi reaction and amide
bond formation through activation of 4 with T3P (n-propa-
nephosphonic acid anhydride) gave amides 5 in good
yields. Treatment of 5 with catalytic amounts of gold cata-
lyst 711 at room temperature resulted in cycloisomerization
towards isatogen 6, followed by spontaneous [3+2]-cy-
cloaddition to afford pseudoindoxyls 1 in excellent yields.9

Given our group’s ongoing interest in azepinone con-
taining polyheterocycles,12 substrate 1e was chosen as a
model substrate for the screening of hydrogenation condi-
tions, expecting that the ring expansion of a six-membered
to a seven-membered ring would be more difficult than
conversion of 1a into 3a. The original 1 bar hydrogenation
was chosen as a benchmark and resulted in ca. 45% conver-
sion of 2e after 16 hours at room temperature (Table 1).
However, conversion stagnated afterwards, and even pro-
longed reaction times (up to 7 days) did not drive the reac-
tion further towards completion. This difficulty in hydroge-
nation probably arises from the steric hindrance caused by
the adjacent spirocyclic lactam. A simple increase in hydro-
gen pressure was attempted while keeping solvent and cat-

alyst the same. This already led to a significant increase in
conversion, while also giving rise to the formation of side
product 8 through partial hydrogenation of the benzene
ring of intermediate 2e.13

Either increasing or lowering the reaction temperature
(entries 3 and 4) was largely inefficient because this result-
ed in either a loss of hydrogenation chemoselectivity or
conversion, respectively. A solvent switch to ethanol also
had a detrimental effect on the formation of 3e. Other hy-
drogenation catalysts were also screened (entries 6 and 7)
but in these cases no indole formation was observed. How-
ever, the use of PtO2 as a catalyst facilitated a clean conver-
sion of 1e into 8, providing a facile entry to these fused
spiropyrrolinones 8. Finally, generation of a catalytic
amount of HCl in situ through hydrogenation of chloroben-
zene was evaluated (entry 8)14 but this also did not lead to
an increased formation of indoles 3e. After this limited opti-
mization study, it was decided to use the conditions de-
scribed in entry 2 (Table 1) to evaluate the scope of the re-
action.

Scheme 1  Serendipitous over-reduction of 1a towards fused indole 3a
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Scheme 2  Synthesis of spiropseudoindoxyls 1 from carboxylic acids 4

NO2

COOH

4

Ugi reaction

or T3P, DIPEA,
2° amine, 
CH2Cl2, Δ,16 h

NO2

O

N
R2

n

5 mol% 7
toluene, rt

rt, 2–8 h
N

O

O

O

N
R2

5a–g (69–99%)

1a–g

1a n = 1, R1 = H, 
               R2 = CH2C(O)NHt-Bu (84%)
1b n = 1, R1 = 4-Me, 
               R2 = CH2C(O)NHt-Bu (92%)
1c n = 1, R1 = 4-F, 
               R2 = CH2C(O)NHt-Bu (93%)

1d n = 1, R1 = 4-OMe, 
               R2 = CH2C(O)NHt-Bu (93%)
1e n = 2, R1 = H, 
               R2 = CH2C(O)NHt-Bu (99%)
1f n = 2, R1 = H, 
               R2 = Bn (80%)
1g n = 2, R1 = 5-Cl, 
               R2 = Bn (79%)

n

N

N

O O

O

R2

6

R1
R1

R1R1N

O

O

Au

Cl

Cl

7

© Georg Thieme Verlag  Stuttgart · New York — Synlett 2017, 28, A–E



C

N. Marien et al. LetterSyn  lett

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f C

ol
or

ad
o.

 C
op

yr
ig

ht
ed

 m
at

er
ia

l.
While conversion of 1e into 3e was deemed acceptable,
isolation of 3 from the reaction mixture proved to be chal-
lenging. Indoles 3 displayed very poor solubility in most or-
ganic solvents, except for dimethyl sulfoxide (DMSO) and
warm AcOH. Considering the need to remove the heteroge-
neous Pd/C catalyst either by filtration or centrifugation,
this lack of solubility was unfortunate. A minor washing
step with DMSO after filtration was therefore introduced
during workup to circumvent this issue as much as possi-
ble. After evaporation of the methanol, the crude reaction
mixture in DMSO was purified further by direct reverse-
phase (C18) flash chromatography.

To evaluate the scope of this reaction, a number of
spiropseudoindoxyls 1 were subjected to the optimized re-
action conditions (Scheme 3). In the case of five-membered
rings 1a–d, no side product 8 formation was observed and
conversions were in general quite clean. Both electron-do-
nating and electron-withdrawing groups were tolerated
and the desired dihydro-γ-carbolinones 3a–d could be iso-
lated. For six-membered rings 1e–f, we expected yields to
be lower due to byproduct 8 formation and therefore a
more difficult chromatographic purification. This was
largely consistent with experimental observations, as indo-
loazepinones 3e–f were isolated in relatively low yields.

When a chlorine atom was used as a substituent in 1g, hy-
drogenative dechlorination and indole formation occurred
equally fast, resulting in the formation of 3f rather than 3g.

Scheme 3  Scope evaluation using the optimized conditions

Concerning the reaction mechanism, it is noteworthy
that only migration of the amide carbonyl was observed
(Scheme 4, path A), because alkyl groups are also known to
migrate after acid treatment of 3-hydroxy-2,2-dialkylindo-
lines.15 The 1,2-shift of an amide functionality in indolines

Table 1  Evaluation of Reaction Conditions for the Synthesis of 3e from 1e

Entry Conditions Ratio 2e/3e/8a

1 1 bar H2, 10 mol% Pd/C, MeOH, r.t. 56:41:3

2 5 bar H2, 10 mol% Pd/C, MeOH, r.t. 23:59:18

3 5 bar H2, 10 mol% Pd/C, MeOH, 10 °C 60:16:24

4 5 bar H2, 10 mol% Pd/C, MeOH, 70 °C complex mixture

5 5 bar H2, 10 mol% Pd/C, EtOH, r.t. 16:7:77

6 5 bar H2, 10 mol% Pt/C, MeOH, r.t. 93:0:7

7 5 bar H2, 10 mol%PtO2, MeOH, r.t. 36:0:64

8 5 bar H2, 10 mol% Pd/C, MeOH, r.t., 10 mol% PhCl 44:28:28
a Ratios based on HPLC analysis; reactions were performed on 50 mg scale (0.025 mM); full conversion of 1e into 2e, 8 and/or 3e was observed in all cases 
(HPLC).
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of type 2 (spirocyclic or not) has not been described previ-
ously. It has been shown that in azapinacol-type migra-
tions, substituents that stabilize a cationic center have larg-
er migratory aptitude because of the proposed 3-center-2-
electron transition state (cf. 11).16 Next to these electronic
properties of the migrating groups, the stability of the cat-
ionic intermediate also needs to be taken into account. In
our case, the migrating carbonyl group can stabilize the
generated positive charge at C through delocalization from
the amide N-atom (cf. 12). In addition, this migration leads
to a stabilized intermediate 13, whereas in the case of an al-
kyl migration the generated positive charge is destabilized
by the electron-withdrawing amide carbonyl group (cf. 14).
This result is consistent with the migration of ester groups
over alkyl groups in related Wagner–Meerwein type rear-
rangements.15–17 We were able to identify only one paper in
which a 1,2-acyl shift was observed in substituted 3-hy-
droxyindolines;8f in that case, the reduction of duocarmycin
induced the C-2 to C-3 migration of an ester carbonyl group.

Scheme 4  Mechanistic proposal

In conclusion, we synthesized piperidinone and azepa-
none fused indoles through a Wagner–Meerwein type 1,2-
amide migration of 2-spiroindolinones. The proposed am-
ide migration is unprecedented in indolines and offers a
simple procedure that facilitates access to these interesting
polyheterocycles.18–21
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(dd, J = 10.0, 4.9 Hz), 3.41 (m, 1 H), 1.38 (s, 9 H). 13C NMR (125
MHz, CDCl3): δ = 195.1, 168.6, 166.2, 162.9, 137.8, 126.9, 126.1,
124.3, 119.0, 83.0, 73.3, 51.9, 51.2, 48.7, 44.6, 28.9. HRMS: m/z
[M + H]+ calcd: 344.1605; found: 344.1606.

(21) Hydrogenation towards indoles 3; Typical procedure for 3a.
A Teflon insert for a Parr hydrogenation vessel was flushed with
argon and charged with spiropseudoindoxyl 1a (240 mg, 0.70
mmol). After dissolving this solid in methanol (10 mL; ca. 0.05
M), the resulting solution was flushed again with argon. Palla-
dium on carbon (74 mg, 10wt%, 0.07 mmol.) was added in one
portion, followed by rinsing of the insert walls with methanol if
necessary. The reaction mixture was then subjected to 5 bar of
hydrogen in a Parr series 4793 high-pressure vessel and stirred
for 16 h at room temperature. Subsequently, the reaction
mixture was transferred to a vial of appropriate size and centri-
fuged to afford a semiclear solution, which was filtered through
a plug of Celite. The precipitated solid was washed with MeOH
(2 × 5 mL) and DMSO (1 mL) in MeOH (5 mL) and the centrifu-
gation/filtration steps were repeated. The resulting solution
was concentrated in vacuo until only the DMSO (ca. 1 mL)
remained. This crude mixture was purified by reverse-phase
column chromatography with liquid loading and using Milli-Q
water+0.1% TFA / acetonitrile+0.1% TFA as eluents (see the Sup-
porting Information for gradient details). Acetonitrile and tri-
fluoroacetic acid were evaporated and the remaining water was
removed by freeze-drying to afford the desired fused indole 3a
(55%, 126 mg, 0.38 mmol) as a white solid. Mp 241–242 °C. IR
(neat): δ = 1660, 1623, 1489, 1454, 1218, 1177, 785, 741 cm–1.
1H NMR (500 MHz, DMSO-d6): δ = 11.60 (br s, 1 H), 7.91 (d,
J = 7.5 Hz, 1 H), 7.53 (br s, 1 H), 7.41 (d, J = 7.5 Hz, 1 H), 7.11 (m,
2 H), 5.00 (br s, 1 H), 4.08 (d, J = 15.4 Hz, 1 H), 3.94 (d,
J = 15.4 Hz, 1 H), 3.77 (m, 2 H), 3.66 (dd, J = 9.2, 8.5 Hz, 1 H),
3.57 (dd, J = 12.2, 6.4 Hz, 1 H), 3.24 (qt, J = 5.7 Hz, 1 H), 1.28 (s,
9 H). 13C NMR (125 MHz, DMSO-d6): δ = 168.4, 164.1, 144.6,
136.2, 125.2, 121.6, 120.6, 119.6, 111.7, 105.2, 61.6, 50.2, 49.8,
48.8, 36.3, 28.6. HRMS: m/z [M + H]+ calcd: 330.1812; found:
330.1810.
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