

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 60 (2004) 7951-7961

24,24-Dimethylvitamin D₃-26,23-lactones and their 2α -functionalized analogues as highly potent VDR antagonists^{$\frac{1}{2}\phi}$}

Nozomi Saito,^a Manami Masuda,^a Toshihiro Matsunaga,^a Hiroshi Saito,^b Miyuki Anzai,^b Kazuya Takenouchi,^b Daishiro Miura,^b Seiichi Ishizuka,^b Midori Takimoto-Kamimura^b and Atsushi Kittaka^{a,*}

> ^aFaculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan ^bTeijin Institute for Bio-medical Research, Tokyo 191-8512, Japan

> > Received 6 May 2004; accepted 28 May 2004

Available online 7 July 2004

Abstract—Novel vitamin D receptor (VDR) antagonists, 24,24-dimethyl-1 α -hydroxyvitamin D₃-26,23-lactones (8 and 9) and their C2 α functionalized analogues (8a-c and 9a-c) were efficiently synthesized and their biological activities were evaluated. The construction of vitamin D₃ triene skeleton was achieved by palladium-catalyzed alkenylative cyclization of A-ring precursor enyne (22 and 22a-c) with CD-ring bromoolefin having a 24,24-dimethyl- α -methylene- γ -lactone unit on the side chain (13 and 14). The CD-ring precursors 13 and 14 were prepared by using chromium-mediated allylation of the aldehyde 10 derived from vitamin D₂. On the other hand, the A-ring enyne having 2 α -(3-hydroxypropyl) group (22b) was newly synthesized from epoxide 15 using regio- and stereoselective alkylation methodology. The potency of the antagonistic activity of the newly designed analogues (8 and 9) increased up to 12 times that of TEI-9647 (2). Furthermore, introduction of the three motifs, that is, a methyl (8a and 9a), an α -hydroxypropyl (8b and 9b) or an ω -hydroxypropoxyl group (8c and 9c) into the C2 α position of 8 and 9, respectively, resulted in remarkable enhancement, up to 89 times, of the antagonistic activity on VDR.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

1α,25-Dihydroxyvitamin D₃ (1), which is a hormonally active form of vitamin D, exerts various biological profiles including calcium and phosphorous homeostasis, cell proliferation and differentiation of various types of tumor cells, and immune reaction.^{1,2} Most of the biological responses of 1 are mediated by its specific receptor, vitamin D receptor (VDR), which is a member of the nuclear receptor superfamily and acts as a ligand-dependent gene transcription factor with coactivators.^{3,4} Recently, we have synthesized several 1α,25-dihydroxyvitamin D₃ analogues, which systematically introduced an alkyl, ω-hydroxyalkyl, and ω-hydroxyalkoxyl group into the C2α position of 1.⁵ Some of these 2α-modified vitamin D₃ analogues exhibited unique biological activities with potent agonistic activity.^{6,7} In particular, introduction of the 2α-methyl (1a),^{5a,b} 2α-(3hydroxypropyl) (1b),^{5c,d} and 2α-(3-hydroxypropoxy) (1c)^{5e}

e-mail address: akittaka@pharm.teikyo-u.ac.jp

Figure 1. Structures of 1α ,25-dihydroxyvitamin D_3 (1) and its C2 α -modified analogues 1a-c.

groups showed 2- to 4-fold higher binding affinity to the bovine thymus VDR relative to 1 (Fig. 1).

In 1999, the first VDR antagonists, 25-dehydro-1 α -hydroxyvitamin D₃-26,23-lactones, TEI-9647 (**2**) and TEI-9648 (**3**) were discovered during the course of studies on the side-chain modification of the 1 α ,25-dihydroxyvitamin D₃-26,23-lactone metabolite⁸ derived from **1** (Fig. 2).^{9,10} Both vitamin D₃ analogues **2** and **3** specifically antagonize the VDR-mediated genomic action of **1**.¹¹ That is, **2** and **3** inhibit differentiation of human leukemia cells (HL-60 cells)^{9a} as well as 25-hydroxyvitamin D₃-24-hydroxylase

Supplementary data associated with this article can be found in the online version, at doi: 10.1016/j.tet.2004.05.113

Keywords: Active vitamin D₃; VDR antagonist; α -Methylene- γ -lactone. * Corresponding author. Tel./fax: +81-426-85-3713;

Figure 2. Structures of 1a-hydroxyvitamin D₃-26,23-lactones (TEI-9647: 2 and TEI-9648: 3), their 2α -modified (2a-c and 3a-c), 24-modified (4-7), and 2,24-double modified analogues (4a and 5a).

gene expression in human osteosarcoma cells^{9b} and in HL-60 cells^{9d} induced by 1. Furthermore, TEI-9647 (2) antagonizes the genomic-mediated calcium metabolism regulated by 1 in vivo in rat.^{9e} The interesting biological profiles of the vitamin D_3 analogues 2 and 3 prompted us to investigate structure-activity relationship of the vitamin D₃ lactones from the standpoint of developing more potent anti-D molecules.

Quite recently, we found that some pertinent modifications of 2 and 3 enhanced their biological activities.¹² Namely, introduction of the above three motifs, that is, the methyl, the 3-hydroxypropyl or the 3-hydroxypropoxy group, into the C2 α position of 2 and 3 (2a-c and 3a-c) raised the potential of the antagonistic activity up to 30-fold.^{12a} On the other hand, it was also found that the VDR binding affinity and antagonistic activity of 2 and 3 were affected by the structure including stereochemistry of the lactone part (4-7).^{12b} Especially, introducing the methyl group into the C24 position on the lactone ring improved the antagonistic activity to be up to 2.5-fold more potent than that of TEI-9647 (2). Furthermore, we disclosed that simultaneous

Figure 3. 24,24-Dimethylvitamin D₃ lactones (8 and 9) and their 2α -modified analogues (8a-c and 9a-c).

double functionalization of the C2 α and C24 positions of 2 (4a and 5a) remarkably increased the antagonistic activity of 2 to 62-fold stronger than that of the original 2.

On the basis of our previous results, we newly designed novel vitamin D_3 lactone analogues 8 and 9, which have the dimethyl groups at the C24 position, to investigate further structure-activity relationships on the lactone core structure (Fig. 3). From the point of manufacturing new drug candidates, reduction of the number of chiral centers is favorable. Moreover, we expected that biological activity of the vitamin D_3 lactone analogues would be enhanced by introduction of the above three motifs, that is, the methyl (8a and 9a), the 3-hydroxypropyl (8b and 9b) and the 3-hydroxypropoxyl group (8c and 9c) as in our previous studies.^{6,7,12} Here, we report the synthesis and biological evaluation of the novel 24,24-dimethylvitamin D₃-26,23lactones and their 2α -modified analogues.

2. Results

2.1. Synthesis and biological evaluation of 24,24dimethylvitamin D₃-26,23-lactones

For the synthesis of the 24,24-dimethylvitamin D_3 lactone analogues, we utilized the Pd-catalyzed A-ring/CD-ring connective strategy.¹³ First of all, we prepared the CD-ring precursors having the 24,24-dimethyl- α -methylene- γ -lactone side chain via the low-valent Cr-mediated allylationlactonization process¹⁴ (Scheme 1). The aldehyde **10** was synthesized from vitamin D_2 ,¹² and the alcohol **11**¹⁵ was treated with PBr₃ to give allylic bromide **12** in 83% yield. When aldehyde 10 reacted with 12 in the presence of the Cr(II) complex generated from CrCl₃ and LiAlH₄, two hydrindan derivatives 13 and 14, which were diastereomers with respect to the C23 position on the lactone ring (based on steroidal numbering), were obtained in 80% yield in the ratio of 1 to 2. The absolute streochemistries at C23 position

N. Saito et al. / Tetrahedron 60 (2004) 7951-7961

Figure 4. Stereoscopic views of the crystal structure of compounds 13 (upper) and 14 (lower). The thermal displacement parameters are drawn at both 50% probability (13 and 14).

Scheme 2. Improved synthesis of A-ring precursor having 3-hydroxypropyl side chain 22b.

of **13** and **14** were confirmed by X-ray structual determination, respectively (Fig. 4).¹⁶

Next, the A-ring precursor having the ω -siloxypropyl sidechain **22b** was synthesized in an improved manner from known epoxide **15**¹⁷ by using our regio- and stereoselective alkylation methodology reported previously^{5e,18} (Scheme 2). The epoxide **15** was treated with allyl magnesium chloride¹⁹ followed by hydroboration–oxidation to give diol **16** in 3 steps in 91% yield. Protection of two hydroxyl groups with Piv and TBS provided **18**, which was then converted into bromide **19** via radical benzylidene acetal cleavage by NBS. Pyranose ring-opening reaction of **19** with activated-zinc in the presence of NaBH₃CN gave **20** in

Scheme 3. Synthesis of 24,24-dimethylvitamin D₃-26,23-lactones 8 and 9.

89% yield. The alcohol **20** reacted with TsCl, then the resulting sulfonate derivative was treated with TBAF to afford epoxide **21**. Introduction of the TMS-ethynyl group into **21** followed by deprotection under basic conditions gave a triol. The resulting triol was protected by TBS groups to provide the desired A-ring precursor **22b** in totally 12 steps from epoxide **15**.²⁰

Construction of the vitamin D_3 triene unit was achieved by Pd-catalyzed alkenylative cyclization of **22**^{5a} with **13** or **14**;

Table 1. Biological activities of 24,24-dimethylvitamin D3 lactones 8 and 9

Compounds	VDR binding affinity ^a	Antagonistic activity ^b (IC ₅₀ , nM)
1 TEI-9647 (2)	100 12	8.3
4 ^c	29	3.7
5 ^c	22	3.2
8	37	0.71
TEI-9648 (3)	7	111.6
6 ^c	12	160.0
7 ^c	5	51.0
9	18	51.5

^a The potency of $\mathbf{1}$ is normalized to 100.

^b Antagonistic activity was assessed in terms of IC₅₀ for differentiation of HL-60 cells induced by 10 nM of 1.

^c See: Ref. 12b.

7953

and then deprotection of the silyl groups by HF gave the desired 24,24-dimethylvitamin D_3 lactones 8 and 9 (Scheme 3).

First, the receptor binding affinity and antagonistic activity of 24,24-dimethylvitamin D_3 lactones 8 and 9 were evaluated to see the biological effects of the 24,24-dimethyl groups (Table 1). We also show the data of 24-methylvitamin D_3 lactones (4-7) for comparison. Binding affinities of 8 and 9 to the chick intestinal VDR were examined as described previously.²¹ The affinity of (23S)-24,24-dimethylactone derivative 8 increased to be 3.1-fold more potent than that of 2. In the case of TEI-9648 type analogue 9, introducing the dimethyl unit into the C24 position raised the binding affinity to 2.6 times higher compared with that of 3. The antagonistic activities of 8 and 9 were assessed by the NBT-reduction method²² in terms of inhibition of HL-60 cell differentiation induced by 1 (10 nM). Surprisingly, introduction of the dimethyl groups into the original antagonist 2 resulted in marked enhancement of the antagonistic activity to be ca. 12 times stronger than that of 2. Although TEI-9648 (3) type analogue 9 showed weaker antagonistic activity than that of 2, the dimethyl analogue 9 exhibited 2.2-fold higher activity compared to the original compound 3. These results indicated that the vitamin D₃ lactone derivatives having the two-methyl groups on the C24 position (8 and 9) altered binding affinity for the VDR and worked on antagonism on the VDR more effectively than the mono methyl analogues (4-7).

2.2. Effect of C2 α modifications of 24,24dimethylvitamin D₃ lactones

Next, we turned our attention to C2 α -functionalization of 24,24-dimethylvitamin D₃-lactone analogues **8** and **9**. According to our previous results, C2 α -functionalization of 24-methylvitamin D₃ lactones effectively enhanced both binding affinity to the VDR and antagonistic activity.^{12b} Therefore, we expected a high increase in VDR binding affinity and marked improvement of the VDR antagonistic activity through such functionalizations of the new 24,24dimethylvitamin D₃ lactones. The 2 α -modified vitamin D₃ analogues (**8a**-**c** and **9a**-**c**) were similarly synthesized from the corresponding CD-ring unit **13** and **14** with the A-ring precursor **22a**,^{17a} **22b** and **22c**,^{5e} respectively (Scheme 4).

8a (47%) 13 1) cat. Pd(PPh₃)₄ **8b** (39%) toluene/Et₃N or 8c (69%) TBSO OTBS 2) HF/MeCN (5/95) 14 9a (58%) **9b** (46%) 22a: R = Me 9c (57%) 22b: R = CH₂CH₂CH₂OTBS **22c**: $R = OCH_2CH_2CH_2OTBS$

Scheme 4. Synthesis of 2α -modified 24,24-dimethylvitamin D_3 lactones 8a-c and 9a-c.

The evaluation of biological activities of 8a-c and 9a-cdisclosed that C2 α modifications were also effective to enhance the biological potency of 24,24-dimethylvitamin D₃ lactones (Table 2). That is, VDR binding affinity of TEI-9647 (2) type analogues increased to 3.0–5.9 times stronger

Table 2. Biological activities of 2\alpha-modified 24,24-dimethylvitamin D_3 lactones 8a-c and 9a-c

Compounds	VDR binding affinity ^a	Antagonistic activity ^b (IC ₅₀ , nM)	
TEI-9647 (2)	12	8.3	
8a	67	0.093	
8b	71	0.7	
8c	36	0.3	
TEI-9648 (3)	7	111.6	
9a	48	5.8	
9b	53	7.7	
9c	12	28.0	

^a The potency of $\mathbf{1}$ is normalized to 100.

^b Antagonistic activity was assessed in terms of IC₅₀ for differentiation of HL-60 cells induced by 10 nM of 1.

than that of 2 by introduction of the three motifs into the C2 α position of 8 (8a-c). Such C2 α modification exhibited remarkable effect on antagonistic activity. Especially, VDR antagonistic activity of 2α -methyl analogue **8a** increased to be ca. 89-fold more potent than that of the original 2 (7.6 times stronger than 8). The other lactone derivatives 8b and 8c also showed 12- and 28-fold stronger antagonistic activity than that of 2, respectively. In the case of TEI-9648 type derivatives (9a-c), receptor binding affinity was raised to be 1.7–7.6 fold more potent than TEI-9648 (3). Although 9a-c generally showed weaker antagonistic activities than 8a-c, C2a functionalization of 9 significantly increased the activities in comparison with the original compound 3 (4–19 more potent than 3) and 24,24dimtehylvitamin D_3 lactone derivative 9 (1.8-8.9 times stronger than 9).

3. Discussion

In the generally accepted mechanism of transactivation mediated by VDR, a ligand first binds to the ligand bindingdomain (LBD) of an apo form of VDR. Next, the VDR– ligand complex changes the conformation into a transcriptionally active holo form, which binds to the coactivators to activate transcription of the target gene.²³ In this conformational change process, the appropriate positioning of helix 12 of VDR, which is the most C-terminal α -helix and presents an interaction site with the other proteins such as coactivators in the active holo form, is essential, and regulates whether the function of the ligand on the VDR exhibits agonism or antagonism.²⁴

The antagonist **2** binds to the LBD of a VDR, and the binding of **2** changes the conformation of the VDR into an unusual transcriptionally inactive form.²⁵ We at present speculate that some amino acid residues in the LBD participate in the unusual conformational change of the VDR through the interaction with the *exo*-methylene lactone moiety of **2**. Namely, there are two cysteines, that is, Cys403 on helix 11 and Cys410 on the hinge region between helix 11 and helix 12, in the LBD of the hVDR.²⁶ The nucleophilic thiol groups of the cysteines could attack on the α -methylene- γ -lactone of **2** via 1,4-addition to give the corresponding cysteine adduct.²⁷ Such interaction between the LBD and the ligand might prevent the usual positioning of helix 12. As the result, the VDR-**2** complex

could not form transcriptionally active conformation. Therefore, it is thought that the antagonist, whose *exo*-methylene unit is located on more favorable position to interact with Cys403 and/or Cys410, would show more potent antagonistic activity.

Although it is yet unclear why the newly synthesized 24,24dimethylvitamin D₃ lactones (8 and 9) and their C2 α modified analogues (8a-c and 9a-c) exhibited more potent antagonistic activity than the original 2 and 3, they might be situated in the above mentioned preferable position to interact with the cysteine residues after the binding to the LBD of the VDR.

4. Conclusion

We have succeeded in developing highly potent vitamin D receptor antagonists (8, 8a-c, 9 and 9a-c), 24,24-dimethyl-1 α -hydroxyvitamin D₃-26,23-lactones and their C2 α -functionalized analogues. Recently, the VDR antagonists are expected to be potent therapeutic agents for some diseases caused by hypersensitivity to 1 α ,25-dihydroxyvitamin D₃, such as Paget's bone disease.²⁸ We expect that these analogues with potent anti-vitamin D activity would contribute to understanding the mechanisms involved in the expression of antagonistic activity on VDR as well as to finding the seeds of new medicines for treating Paget's bone disease.

5. Experimental

5.1. General

All manipulations were performed under an argon atmosphere unless otherwise mentioned. All solvents and reagents were purified when necessary using standard procedures. Column chromatography was performed on silica gel 60 N (Kanto Chemical Co., Inc., $100-210 \mu m$), and flash column chromatography was performed on silica gel 60 (Merck, $40-63 \mu m$). NMR spectra were measured on a JEOL AL-400 magnetic resonance spectrometer. Infrared spectra were recorded on JASCO FTIR-8000 spectrometer. Mass spectra were measured on JEOL JMX-SX 102 mass spectrometer. Specific optical rotations were measured on JASCO DIP-370 digital polarimeter.

5.1.1. Methyl 2-(bromomethyl)-3-methylbut-2-enoate (12). To a solution of 11 (200 mg, 1.4 mmol) in Et₂O was added PBr₃ (80 μ L, 0.83 mmol) at 0 °C, and the mixture was stirred at room temperature for 1 h. To the mixture was added H₂O at 0 °C, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt=20/1) to give 12 (240 mg, 83%) as a colorless oil. IR (neat) 1723, 1628, 1373 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.99, (s, 3H), 2.16 (s, 3H), 3.79 (s, 3H), 4.31 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 23.0, 24.0, 29.4, 51.7, 124.6, 153.8, 166.9; EI-LRMS *m/z* 205 (M⁺), 191, 175; EI-HRMS Calcd for C₇H₁₁O₂⁷⁹Br 205.9942, found 205.9951.

5.1.2. (S)-5-{(R)-2-[(1R, 4E, 3aR, 7aR)-4-Bromomethylene-7a-methylperhydroinden-1-yl]propyl}-4,4-dimethyl-3-methylenedihydrofuran-2-one (13) and (R)-5- $\{(R)-2-[(1R,4E,3aR,7aR)-4-bromomethylene-7a-methyl$ perhydroinden-1-yl]propyl}-4,4-dimethyl-3-methylenedihydrofuran-2-one (14). To a suspension of CrCl₃ (739 mg, 4.7 mmol) in THF (23 mL) was added LiAlH₄ (94 mg, 2.3 mmol) at 0 °C, and the mixture was stirred at room temperature for 30 min. To the mixture were added a solution of 10 (486 mg, 2.3 mmol) in THF (8 mL) and a solution of 12 (350 mg, 1.2 mmol) at room temperature, and the resulting mixture was stirred at the same temperature for 1 h. To the mixture was added H₂O at 0 °C, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=10/ 1) to give a mixture of 13 and 14 (390 mg, 80% in the ratio of 2 to 1). Further separation was performed by recycle-HPLC (column: SHIMADZU Shim-pack PREP-SIL(H)-KIT, eluent: hexane/AcOEt=8/1, flow rate: 10 mL/min, detector: UV (235 nm)). 13: mp. 130 °C (recrystallized from Et₂O-hexane); $[\alpha]_D^{25} = +31.4$ (c 0.85, CHCl₃); IR (film, CHCl₃) 1767, 1653, 1634, 1371, 1133 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.58 (s, 3H), 1.05 (s, 3H), 1.08 (d, J=6.6 Hz, 3H), 1.21 (s, 3H), 1.25-1.70 (m, 11H), 1.95-2.04 (m, 3H), 2.88 (dd, J=15.9, 3.9 Hz, 1H), 4.10 (dd, *J*=9.0, 2.9 Hz, 1H), 5.46 (s, 1H), 5.65 (s, 1H), 6.14 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 11.8, 19.7, 22.1, 22.6, 23.0, 24.3, 27.9, 31.0, 35.3, 35.5, 39.8, 42.6, 45.6, 55.7, 55.9, 86.1, 97.5, 118.9, 114.8, 146.1, 170.5; EI-LRMS m/z 394 (M^+) , 315, 256, 227; EI-HRMS Calcd for $C_{21}H_{31}O_2^{79}Br$ 394.1507, found 394.1508. Anal. Calcd for C₂₁H₃₁O₂Br: C, 63.79; H, 7.90. Found: C, 64.13; H, 8.27. 14: mp. 117 °C (recrystallized from Et₂O-hexane); $[\alpha]_D^{25} = +141.2$ (c 0.38, CHCl₃); IR (film, CHCl₃) 1767, 1651, 1638, 1458, 1190 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.59 (s, 3H), 1.00 (d, J=6.3 Hz, 3H), 1.05 (s, 3H), 1.11 (dd, J=13.4, 11.2 Hz, 1H), 1.21 (s, 3H), 1.25-1.36 (m, 3H), 1.44-1.66 (m, 7H), 1.89 (m, 1H), 1.96-2.04 (m, 2H), 2.89 (dd, J=15.6, 6.8 Hz, 1H), 4.14 (d, J=10.5 Hz, 1H), 5.47 (s, 1H), 5.65 (s, 1H), 6.15 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 11.9, 18.6, 22.1, 22.5, 22.8, 25.1, 27.6, 31.0, 32.9, 35.9, 39.9, 41.9, 45.6, 55.9, 56.2, 84.2, 97.6, 119.1, 144.7, 146.1, 170.3; EI-LRMS m/z 394 (M⁺), 315, 256, 227; EI-HRMS Calcd for C₂₁H₃₁O₂⁷⁹Br 394.1507, found 394.1508. Anal. Calcd for C₂₁H₃₁O₂Br: C, 63.79; H, 7.90. Found: C, 63.57; H, 8.20.

5.1.3. Methyl 4,6-*O*-benzylidene-3-allyl-3-deoxy-α-Daltropyranoside. To a solution of 15 (264 mg, 1.0 mmol) in THF (1.5 mL) was added a solution of allylmagnesium chloride in THF (2.0 M, 1.5 mL, 3.0 mmol) at room temperature, and the mixture was stirred at 80 °C for 1 h. To the mixture was added water at 0 °C, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=2/1) to give the desired allylated compound (314 mg, quant.) as an amorphous solid. IR (neat) 3422, 2930, 1642, 1456, 1381 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.90 (m, 1H), 2.26 (m, 1H), 2.53 (dd, *J*=7.1, 7.1 Hz, 2H), 3.39 (s, 3H), 3.78 (dd, J=10.2, 10.2 Hz, 1H), 3.97 (m, 1H), 4.00 (ddd, J=10.2, 10.2, 5.1 Hz, 1H), 4.12 (dd, J=10.2, 5.1 Hz, 1H), 4.29 (dd, J=10.2, 5.1 Hz, 1H), 4.60 (s, 1H), 5.06 (d, J=10.2 Hz, 1H), 5.11 (d, J=17.2 Hz, 1H), 5.60 (s, 1H), 5.83 (ddt, J=17.2, 10.2, 7.1 Hz, 1H), 7.36–7.37 (m, 3H), 7.48–7.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 29.1, 42.8, 55.6, 59.9, 69.7, 69.9, 76.4, 102.3, 102.7, 116.9, 126.4 (2C), 128.5 (2C), 129.2, 137.3, 137.9; EI-LRMS m/z 306 (M⁺); EI-HRMS Calcd for C₁₇H₂₂O₅ 306.1467, found 306.1469.

5.1.4. Methyl 4.6-O-benzylidene-3-deoxy-3-(3-hydroxy**propyl**)- α -**D**-altropyranoside (16). To a solution of the above allylated compound (1.8 g, 5.9 mmol) in THF (12 mL) was added a solution of BH3 THF in THF (1.0 M, 14.7 mL, 14.7 mmol) at 0 °C, and the mixture was stirred at room temperature for 23 h. To the mixture was added 3N NaOH aq. solution (7.7 mL) and 30% H₂O₂ aq. solution (7.7 mL) at 0 °C, and the mixture was stirred at room temperature for 3 h. To the mixture was added saturated NH₄Cl aq. solution at 0 °C, and the aqueous layer was extracted with AcOEt. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt=1/2) to give alcohol (1.72 g, 91%) as a colorless oil. $[\alpha]_{D}^{19} = +84.2$ (c 2.31, CHCl₃); IR (neat) 3403, 2936, 1103, 1051 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.52-1.86 (m, 4H), 2.17-2.18 (m, 3H), 3.36 (s, 3H), 3.61 (t, J=6.3 Hz, 2H), 3.76 (dd, J=10.1, 10.1 Hz, 1H), 3.92 (m, 1H), 3.97 (ddd, J=10.1, 10.1, 5.2 Hz, 1H), 4.11 (dd, J=10.1, 5.2 Hz, 1H), 4.27 (dd, J=10.1, 5.2 Hz, 1H), 4.57 (s, 1H), 5.57 (s, 1H), 7.34-7.39 (m, 3H), 7.45–7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 31.4, 42.5, 55.2, 59.5, 62.8, 69.5, 70.2, 76.4, 102.0, 102.1, 126.1 (2C), 128.2 (2C), 129.0, 137.5; EI-LRMS m/z 324 (M⁺), 292, 274, 215, 162, 143, 105, 77; EI-HRMS Calcd for C₁₇H₂₄O₆ 324.1573, found 324.1575.

5.1.5. Methyl 4,6-O-benzylidene-3-deoxy-3-[(3-pivaloyloxy)propyl]- α -D-altropyranoside (17). To a solution of 16 (227 mg, 0.7 mmol) in pyridine (3.5 mL) was added pivaloyl chloride (95 µL, 0.77 mmol) at 0 °C, and the mixture was stirred at room temperature for 12 h. To the mixture was added water at 0 °C, and the aqueous layer was extracted with AcOEt. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=4/1) to give 17 (270 mg, 94%) as a colorless oil. $[\alpha]_D^{19} = +66.1$ (c 2.38, CHCl₃); IR (neat) 3474, 2963, 1725, 1287, 1103, 1049 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.18 (s, 9H), 1.63-1.90 (m, 4H), 2.18 (m, 1H), 2.32 (br s, 1H), 3.36 (s, 3H), 3.77 (dd, J=10.2, 10.2 Hz, 1H), 3.91 (m, 1H), 3.97 (ddd, J=10.2, 10.2, 5.0 Hz, 1H), 4.01-4.14 (m, 3H), 4.27 (dd, J=10.2, 5.0 Hz, 1H), 4.58 (s, 1H), 5.58 (s, 1H), 7.33-7.38 (m, 3H), 7.44–7.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 27.2 (3C), 27.5, 38.8, 42.5, 55.2, 59.5, 64.3, 69.5, 70.1, 76.2, 101.9, 102.1, 126.1 (2C), 128.1 (2C), 128.9, 137.6, 178.6; EI-LRMS *m*/*z* 408 (M⁺), 390, 358, 241, 162, 105; EI-HRMS Calcd for C₂₂H₃₂O₇ 408.2140, found 408.2140.

5.1.6. Methyl 4,6-*O*-benzylidene-2-(*tert*-butyldimethyl-silyloxy)-3-deoxy-3-[(3-pivaloyloxy)propyl]- α -D-altro-

pyranoside (18). To a solution of 17 (270 mg, 0.66 mmol) in CH₂Cl₂ (6.6 mL) were added 2,6-lutidine (0.39 mL, 3.3 mmol) and TBSOTf (0.23 mL, 0.99 mmol) at 0 °C, and the mixture was stirred at room temperature for 13 h. To the mixture was added water at 0 °C, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=9/1) to give 18 (332 mg, 96%) as a colorless oil. $[\alpha]_D^{19} = +35.9$ (c 0.62, CHCl₃); IR (neat) 2955, 1728, 1258, 1107, 1051 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.086 (s, 3H), 0.092 (s, 3H), 0.92 (s, 9H), 1.19 (s, 9H), 1.60–1.89 (m, 4H), 2.05 (m, 1H), 3.34 (s, 3H), 3.77 (dd, J=10.1, 10.1 Hz, 1H), 3.87 (br s, 1H), 3.92 (ddd, J=10.1, 10.1, 5.0 Hz, 1H), 4.03-4.14 (m, 3H), 4.26 (dd, J=10.1, 5.0 Hz, 1H), 4.45 (s, 1H), 5.59 (s, 1H), 7.34–7.37 (m, 3H), 7.47–7.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -4.9, -4.8, 18.1, 21.1, 25.8 (3C), 27.2 (3C), 27.8, 38.8, 43.4, 55.0, 59.4, 64.4, 69.7, 70.7, 76.4, 101.9, 102.6, 126.2 (2C), 128.6 (2C), 128.9, 137.8, 178.4; EI-LRMS m/z 522 (M⁺), 491, 358, 244, 159; EI-HRMS Calcd for C₂₈H₄₆O₇ 522.3013, found 522.3015.

5.1.7. Methyl 4-O-benzoyl-6-bromo-2-[(tert-butyldimethylsilyl)oxy]-3-deoxy-3-[(3-pivaloyloxy)propyl]-6deoxy- α -D-altropyranoside (19). To a solution of 18 (2.28 g, 4.4 mmol) in CCl₄ (22 mL) were added BaCO₃ (861 mg, 4.4 mmol) and NBS (932 mg, 5.2 mmol) at room temperature, and the mixture was stirred at 80 °C for 30 min. To the mixture was added saturated $Na_2S_2O_3$ aq. solution and saturated NaHCO3 aq. solution, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=9/1) to give **19** (2.46 g, 94%) as a colorless oil. $[\alpha]_{D}^{18} = +18.4$ (c 2.92, CHCl₃); IR (neat) 2957, 1727, 1267, 1116, 1042 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.10 (s, 3H), 0.12 (s, 3H), 0.93 (s, 9H), 1.08 (s, 9H), 1.43-1.73 (m, 3H), 1.87 (m, 1H), 2.16 (ddt, J=6.0, 5.9, 6.3 Hz, 1H), 3.43 (s, 3H), 3.58 (dd, J=10.7, 7.6 Hz, 1H), 3.66 (dd, J=10.7, 2.8 Hz, 1H), 3.82 (dd, J=6.0, 2.4 Hz, 1H), 4.00 (t, J= 6.1 Hz, 2H), 4.10 (ddd, J=7.8, 7.6, 2.8 Hz, 1H), 4.55 (d, J=2.4 Hz, 1H), 5.38 (dd, J=7.8, 5.9 Hz, 1H), 7.43-7.47 (m, 2H), 7.59 (m, 1H), 7.99-8.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -4.8, -4.6, 18.1, 21.7, 25.8 (3C), 26.9, 27.1 (3C), 33.4, 38.7, 42.1, 55.4, 64.2, 69.0, 71.0, 71.1, 103.7, 128.5 (2C), 129.5, 129.6 (2C), 133.3, 165.3, 178.3; EI-LRMS m/z 569 (M+-OMe), 423, 339, 322, 213; EI-HRMS Calcd for C₂₇H₄₂O₆⁷⁹Br 569.1934, found 569.1931.

5.1.8. (2*S*,3*R*,4*R*)-4-[(Benzoyl)oxy]-2-[(*tert*-butyldimethylsilyl)oxy]-3-[3-(pivaloyloxy)propyl]hexa-5-ene-1ol (20). To a solution of 19 (2.40 g, 4.0 mmol) in 1-propanol/H₂O (5/1, 24 mL) were added activated Zn dust (45.5 g, 0.7 mol) and NaBH₃CN (9.8 g, 0.14 mol) at 95 °C, and the mixture was stirred at the same temperature for 1.5 h. To the mixture was added saturated NH₄Cl aq. solution, and the aqueous layer was extracted with AcOEt. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=6/1) to give 20 (1.76 g, 89%) as a colorless oil. $[\alpha]_{D}^{19} = +25.4$ (c 2.62, CHCl₃); IR (neat) 3495, 2957, 1725, 1598, 1271, 1111, 1069 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H), 0.06 (s, 3H), 0.90 (s, 9H), 1.18 (s, 9H), 1.42–1.63 (m, 2H), 1.67–1.90 (m, 3H), 2.06 (ddt, J=6.3, 5.6, 6.1 Hz, 1H), 3.62 (dd, J=11.0, 4.9 Hz, 1H), 3.72 (dd, J=11.0, 5.3 Hz, 1H), 3.95 (ddd, J=5.6, 5.3, 4.9 Hz, 1H), 4.04 (t, J=6.1 Hz, 2H), 5.28 (ddd, J=10.5, 1.2, 1.2 Hz, 1H), 5.37 (ddd, J=17.1, 1.2, 1.2 Hz, 1H), 5.56 (dd, J=6.7, 6.3 Hz, 1H), 5.92 (ddd, J=17.1, 10.5, 6.7 Hz, 1H), 7.42–7.46 (m, 2H), 7.56 (m, 1H), 8.02–8.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -4.6, -4.2, 18.2, 22.8, 25.9 (3C), 27.2 (3C), 27.9, 38.8, 44.8, 64.4, 65.0, 73.0, 75.8, 118.4, 128.3 (2C), 129.5 (2C), 130.3, 132.9, 134.6, 165.4, 178.4; EI-LRMS m/z 391 (M+-OPiv), 239, 105; EI-HRMS Calcd for C₂₂H₃₅O₄Si 391.2305, found 391.2307.

5.1.9. (3R,4R)-3-Benzoyloxy-4-[(1S)-1-{(tert-butyldimethylsilyl)oxy}-2-(p-toluenesulfonyl)ethyl]-7-(pivaloyloxy)hept-1-ene. To a solution of 20 (1.72 g, 3.4 mmol) in pyridine (7 mL) was added TsCl (3.0 g, 16 mmol) at 0 °C, and the mixture was stirred at room temperature for 17.5 h. To the mixture was added water at 0 °C, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=9/1) to give the desired sulfonate (2.24 g, 99%) as a colorless oil. $[\alpha]_D^{19} = +18.6 \ (c \ 0.46, \ CHCl_3); \ IR \ (neat) \ 2957, \ 1725, \ 1599,$ 1269, 1107 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ -0.06 (s, 3H), -0.04 (s, 3H), 0.83 (s, 9H), 1.17 (s, 9H), 1.33-1.79 (m, 4H), 1.95 (m, 1H), 2.43 (s, 3H), 3.92-4.05 (m, 4H), 4.14 (ddd, J=6.2, 5.5, 2.8 Hz, 1H), 5.26 (ddd, J=10.4, 1.2, 1.2 Hz, 1H), 5.35 (ddd, J=17.3, 1.2, 1.2 Hz, 1H), 5.43 (dd, J=7.3, 7.1 Hz, 1H), 5.84 (ddd, J=17.3, 10.4, 7.1 Hz, 1H), 7.30-7.34 (m, 2H), 7.42-7.48 (m, 2H), 7.59 (m, 1H), 7.78-7.80 (m, 2H), 8.01-8.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -5.0, -4.3, 18.0, 21.7, 22.3, 25.8 (3C), 27.2 (3C), 27.6, 38.8, 45.0, 64.1, 70.0, 71.3, 75.5, 118.9, 127.9 (2C), 128.4 (2C), 129.5 (2C), 129.8 (2C), 130.1, 132.7, 133.0, 134.6, 144.8, 165.2, 178.3; EI-LRMS m/z 475 (M⁺-OTs), 329, 229; EI-HRMS Calcd for C₂₇H₄₃O₅Si 475.2880, found 475.2887.

5.1.10. (3R,4R)-3-[(Benzoyl)oxy]-4-(S)-oxiranyl-7-(pivaloyloxy)hept-1-ene (21). To a solution of the above sulfonate (110 mg, 0.17 mmol) in THF (1.7 mL) was added a solution of TBAF in THF (1.0 M, 0.26 mL, 0.26 mmol) at 0 °C, and the mixture was stirred at room temperature for 6 h. To the mixture was added water at 0 °C, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na_2SO_4 , and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=9/1) to give 21 (64 mg, quant.) as a colorless oil. $[\alpha]_D^{20} = +28.7$ (c 2.31, CHCl₃); IR (neat) 2973, 1725, 1601, 1269, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.15 (s, 9H), 1.50 (m, 1H), 1.59–1.78 (m, 2H), 1.79–1.92 (m, 2H), 2.59 (dd, J=4.9, 2.6 Hz, 1H), 2.77 (dd, J=4.9, 3.9 Hz, 1H), 2.93 (ddd, J=8.3, 3.9, 2.6 Hz, 1H), 4.06 (t, J=6.3 Hz, 2H), 5.28 (ddd, J=10.5, 1.2, 1.0 Hz, 1H), 5.37 (ddd, J=17.1, 1.2, 1.0 Hz, 1H), 5.62 (dddd, J=6.6, 6.6, 1.0, 1.0 Hz, 1H), 5.90 (ddd, J=17.1, 10.5, 6.6 Hz, 1H), 7.44-7.47 (m, 2H), 7.58 (m, 1H), 8.03–8.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 25.8, 26.2, 27.2 (3C), 38.7, 45.9, 46.8, 53.1, 64.1, 75.5, 118, 2, 128.4 (2C), 129.5 (2C), 129.9, 133.1, 134.2, 165.3, 178.4; EI-LRMS *m*/*z* 360 (M⁺), 259, 136, 80; EI-HRMS Calcd for C₂₁H₂₈O₅ 360.1937, found 360.1935.

5.1.11. (3R,4R,5S)-4-(3-Hydroxypropyl)oct-1-en-7-yne-**3,5-diol.** To a solution of ethynyltrimethylsilane (0.32 mL, 2.2 mmol) in THF (3 mL) was added a solution of n-BuLi in hexane (1.56 M, 1.1 mL, 1.7 mmol) at -78 °C, and the mixture was stirred at the same temperature for 30 min. To the mixture were added a solution of **21** (400 mg, 1.1 mmol) in THF (8 mL) and BF₃·OEt₂ (0.15 mL, 1.2 mmol) at -78 °C, and the resulting mixture was stirred at the same temperature for 3 h. To the mixture was added saturated NH₄Cl aq. solution, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was dissolved in MeOH (11 mL). To the mixture was added NaOMe (300 mg, 5.6 mmol) at 0 °C, and the mixture was stirred at 40 °C for 15.5 h. To the mixture was added saturated NH₄Cl aq. solution at 0 °C, and the aqueous layer was extracted with AcOEt. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt=1/4) to give the desired triol (217 mg, 99%) as a colorless oil. $[\alpha]_{D}^{20} = +9.88 \ (c \ 0.77, \ CHCl_{3}); \ IR \ (neat) \ 3304, \ 2940, \ 2118,$ 1630, 1051 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45–1.77 (m, 5H), 2.02 (dd, J=2.7, 2.7 Hz, 1H), 2.33 (ddd, J=16.8, 7.1, 2.7 Hz, 1H), 2.48 (ddd, J=16.8, 7.1, 2.7 Hz, 1H), 3.03 (br s, 3H), 3.62–3.74 (m, 2H), 4.20 (dt, J=1.5, 7.1 Hz, 1H), 4.41 (m, 1H), 5.25 (ddd, J=10.5, 1.6, 1.6 Hz, 1H), 5.37 (ddd, J=17.1, 1.7, 1.7 Hz, 1H), 5.91 (ddd, J=17.1, 10.5, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 24.3, 30.4, 44.8, 62.8, 70.3, 70.4, 73.6, 81.0, 115.5, 139.5; EI-LRMS m/z 180 (M⁺-H₂O), 161, 105, 79; EI-HRMS Calcd for $C_{11}H_{16}O_2$ 180.1150, found 180.1149.

5.1.12. (3R,4R,5S)-3,5-Bis[(tert-butyldimethylsilyl)oxy]-4-[3-{(tert-butyldimethylsilyl)oxy}propyl]oct-1-en-7-yne (22b). To the solution of the above triol (14 mg, 71 µmol) in CH_2Cl_2 (0.7 mL) were added 2,6-lutidine (49 μ L, 0.42 mmol) and TBSOTf (65 µL, 0.28 mmol) at 0 °C, and the mixture was stirred at room temperature for 1 h. To the mixture was added water at 0 °C, and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq. solution, dried over Na2SO4, and concentrated. The residue was purified by column chromatography on silica gel (hexane) to give 22b (36 mg, 94%) as a colorless oil. $[\alpha]_D^{22} = +8.32$ (c 0.77, CHCl₃); IR (neat) 3314, 2932, 1256, 1102 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H), 0.04 (s, 6H), 0.05 (s, 3H), 0.07 (s, 3H), 0.09 (s, 3H), 0.89 (s, 27H), 1.32 (m, 2H), 1.56 (m, 2H), 1.75 (ddt, J=6.4, 4.0, 6.8 Hz, 1H), 1.95 (t, J=2.8 Hz, 1H), 2.38 (ddd, J=16.8, 6.2, 2.8 Hz, 1H), 2.42 (ddd, J=16.8, 6.2, 2.8 Hz, 1H), 3.56 (t, J=6.8 Hz, 2H), 4.03 (dt, J=4.0, 6.2 Hz, 1H), 4.12 (dd, J=7.6, 6.4 Hz, 1H), 5.08 (d, J=10.0 Hz, 1H), 5.14 (d, J=17.2 Hz, 1H), 5.84 (ddd, J=17.2, 10.0, 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -5.1 (2C), -4.4, -4.2, -3.9, -3.4, 18.25, 18.32, 18.5, 22.2, 26.0 (3C), 26.08 (3C), 26.12 (3C), 26.2, 32.6, 49.2, 63.6, 69.9, 71.5, 75.9, 82.1, 115.5, 140.4; EI-LRMS m/z 483 (M⁺-tBu);

EI-HRMS Calcd for $C_{25}H_{51}O_3Si_3$ 483.3146, found 483.3141.

5.2. General procedure for the synthesis of vitamin D_3 lactones

To a solution of an A-ring precursor (1.5 equiv. to a CD-ring precursor), and the CD-ring precursor in toluene were added Et_3N and $Pd(PPh_3)_4$ (30 mol% to the CD-ring precursor) and the mixture was stirred at 110 °C. After the mixture was filtered through a silica gel pad, the filtrate was concentrated. The crude product was dissolved in MeCN (1 mL). To the solution was added 10% solution of conc. HF in MeCN (1 mL) at 0 °C, the mixture was stirred at room temperature. To the mixture was added saturated NaHCO₃ aq. solution, and the aqueous layer was extract with AcOEt. The organic layer was washed with saturated NaCl aq. solution, dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel or thin-layer chromatography on silica gel to give the vitamin D3 derivative. Further purification for biological assays was conducted by reversed-phase recycle HPLC (YMC-Pack ODS column, 20×150 mm, 9.9 mL/min, eluent: CH₃CN/H₂O=90/10).

5.2.1. (23S)-25-Dehydro-1α-hydroxy-24,24-dimethylvitamin D_3 -26,23-lactone (8). According to the general procedure, a crude product, which was obtained from 13 (31 mg, 78 µmol), 22 (43 mg, 117 µmol), Et₃N (0.8 mL) and Pd(PPh₃)₄ (33 mg, 28 µmol) in toluene (0.8 mL) at 110 °C for 1 h, was treated with conc. HF in MeCN for 1 h. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/AcOEt=1/1) to give 8 (17 mg, 48% in 2 steps) as an amorphous solid. UV (EtOH) $\lambda_{\text{max}} = 264.0 \text{ nm}; \ [\alpha]_{\text{D}}^{24} = -21.8 \ (c \ 0.85, \text{CHCl}_3); \text{ IR}$ (film, CHCl₃) 3382, 1765, 1663, 1057 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.56 (s, 3H), 1.05 (s, 3H), 1.07 (d, J=6.6 Hz, 3H), 1.21 (s, 3H), 1.25–1.72 (m, 13H), 1.88– 2.06 (m, 5H), 2.32 (dd, J=13.4, 6.3 Hz, 1H), 2.60 (dd, J=13.4, 3.5 Hz, 1H), 2.83 (dd, J=10.4, 3.8 Hz, 1H), 4.10 (dd, J=10.4, 3.4 Hz, 1H), 4.23 (br s, 1H), 4.43 (br s, 1H), 5.00 (dd, J=1.6, 1.5 Hz, 1H), 5.33 (dd, J=1.7, 1.6 Hz, 1H), 5.45 (s, 1H), 6.02 (d, J=11.2 Hz, 1H), 6.13 (s, 1H), 6.38 (d, J=11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 19.7, 22.3, 23.0, 23.6, 24.4, 27.9, 29.1, 35.4, 35.6, 40.4, 42.6, 42.9, 45.3, 46.0, 56.2, 56.7, 66.8, 70.8, 86.3, 111.6, 117.1, 118.8, 124.8, 133.0, 142.8, 146.2, 147.6, 170.5; EI-LRMS m/z 454 (M⁺), 418, 403; EI-HRMS Calcd for C₂₉H₄₂O₄ 454.3083, found 454.3083.

5.2.2. (23*R*)-25-Dehydro-1α-hydroxy-24,24-dimethylvitamin D₃-26,23-lactone (9). According to the general procedure, a crude product, which was obtained from 14 (30 mg, 76 µmol), 22 (48 mg, 114 µmol), Et₃N (0.8 mL) and Pd(PPh₃)₄ (26 mg, 23 µmol) in toluene (0.8 mL) at 110 °C for 30 min, was treated with conc. HF in MeCN for 30 min. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/AcOEt=1/ 1) to give 9 (27 mg, 78% in 2 steps) as an amorphous solid. UV (EtOH) λ_{max} =265.0 nm; $[\alpha]_{D}^{24}$ =+56.2 (*c* 1.15, CHCl₃); IR (film, CHCl₃) 3426, 1759, 1672, 1057 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.57 (s, 3H), 0.99 (d, *J*=6.6 Hz, 3H), 1.05 (s, 3H), 1.11 (dd, *J*=10.5, 1.47 Hz, 1H), 1.21 (s, 3H), 1.26 (s, 3H), 1.45–1.76 (m, 9H), 1.83–2.04 (m, 5H), 2.31 (dd, J=13.4, 6.5 Hz, 1H), 2.60 (dd, J=13.4, 3.4 Hz, 1H), 2.83 (dd, J=12.0, 3.9 Hz, 1H), 4.14 (dd, J=11.6, 1.6 Hz, 1H), 4.24 (br s, 1H), 4.43 (br s, 1H), 5.00 (s, 1H), 5.33 (s, 1H), 5.47 (s, 1H), 6.12 (d, J=11.4 Hz, 1H), 6.15 (s, 1H), 6.37 (d, J=11.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.1, 18.6, 22.3, 22.8, 23.6, 25.1, 27.6, 29.1, 32.9, 35.9, 40.5, 42.0, 42.9, 45.3, 46.0, 56.4, 57.0, 66.8, 70.8, 84.3, 111.7, 117.2, 119.1, 124.7, 133.1, 142.6, 146.2, 147.5, 170.4; EI-LRMS m/z 454 (M⁺), 418, 403; EI-HRMS Calcd for C₂₉H₄₂O₄ 454.3083, found 454.3083.

5.2.3. (23S)-25-Dehydro-1\alpha-hydroxy-2\alpha,24,24-trimethylvitamin D₃-26,23-lactone (8a). According to the general procedure, a crude product, which was obtained from 13 (25 mg, 63 µmol), 22a (41 mg, 107 µmol), Et₃N (0.6 mL) and Pd(PPh₃)₄ (37 mg, 32 µmol) in toluene (0.6 mL) at 110 °C for 1.5 h, was treated with conc. HF in MeCN for 1 h. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/ AcOEt=1/1) to give 8a (14 mg, 47% in 2 steps) as an amorphous solid. UV (EtOH) $\lambda_{\text{max}} = 266.0 \text{ nm}; \ [\alpha]_{\text{D}}^{26} =$ +11.6 (c 1.08, CHCl₃); IR (film, CHCl₃) 3441, 1752, 1671, 1636, 1051 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ0.55 (s, 3H), 1.04 (s, 3H), 1.06 (d, J=6.7 Hz, 3H), 1.07 (d, J=6.7 Hz, 3H), 1.21 (s, 3H), 1.25-1.70 (m, 13H), 1.88-2.04 (m, 4H), 2.23 (dd, J=13.8, 8.1 Hz, 1H), 2.66 (dd, J=13.8, 4.0 Hz, 1H), 2.82 (m, 1H), 3.84 (ddd, J=7.6, 7.6, 4.2 Hz, 1H), 4.10 (dd, J=8.8, 3.4 Hz, 1H), 4.31 (d, J=3.2 Hz, 1H), 5.00 (d, J=1.7 Hz, 1H), 5.27 (dd, J=2.0, 1.0 Hz, 1H), 5.45 (s, 1H), 6.01 (d, J=11.2 Hz, 1H), 6.13 (s, 1H), 6.38 (d, J=11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 12.6, 19.7, 22.3, 23.0, 23.5, 24.3, 27.9, 29.1, 35.4, 35.6, 40.4, 42.6, 43.5, 44.2, 46.0, 56.2, 56.7, 71.7, 75.4, 86.2, 113.1, 117.0, 118.8, 124.7, 133.1, 142.8, 146.2, 146.5, 170.5; EI-LRMS *m*/*z* 468 (M⁺), 451, 434, 419; EI-HRMS Calcd for C₃₀H₄₄O₄ 468.3240, found 468.3248.

5.2.4. (23R)-25-Dehydro-1\alpha-hydroxy-2\alpha,24,24-trimethylvitamin D₃-26,23-lactone (9a). According to the general procedure, a crude product, which was obtained from 14 (26 mg, 66 µmol), 22a (40 mg, 105 µmol), Et₃N (1 mL) and Pd(PPh₃)₄ (24 mg, 21 µmol) in toluene (1 mL) at 110 °C for 2.5 h, was treated with conc. HF in MeCN for 1 h. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/AcOEt=1/1) to give 9a (18 mg, 58% in 2 steps) as an amorphous solid. UV (EtOH) $\lambda_{\text{max}} = 266.5 \text{ nm}; [\alpha]_D^{26} = +78.5 (c \ 1.38, \text{CHCl}_3);$ IR (film, CHCl₃) 3476, 1750, 1649, 1051 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.56 (s, 3H), 1.00 (d, *J*=6.7 Hz, 3H), 1.06 (s, 3H), 1.08 (d, J=6.7 Hz, 3H), 1.12 (m, 1H), 1.21 (s, 3H), 1.26-1.34 (m, 3H), 1.46-1.72 (m, 10H), 1.90-2.04 (m, 3H), 2.23 (dd, J=13.4, 7.9 Hz, 1H), 2.67 (dd, J=13.4, 4.0 Hz, 1H), 2.83 (m, 1H), 3.85 (ddd, J=7.5, 7.5, 4.2 Hz, 1H), 4.15 (dd, J=11.6, 1.3 Hz, 1H), 4.31 (br s, 1H), 5.01 (d, J=2.0 Hz, 1H), 5.28 (s, 1H), 5.47 (s, 1H), 6.01 (d, J=11.2 Hz, 1H), 6.15 (s, 1H), 6.38 (s, J=11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.1, 12.6, 18.6, 22.3, 22.9, 23.5, 25.1, 27.6, 29.1, 32.9, 35.9, 40.6, 42.0, 43.4, 44.2, 46.0, 56.4, 57.0, 71.7, 75.3, 84.3, 113.1, 117.1, 119.1, 124.6, 133.2, 142.6, 146.2, 146.5, 170.4; EI-LRMS m/z 468 (M⁺), 451, 434, 419, 404; EI-HRMS Calcd for C₃₀H₄₄O₄ 468.3240, found 468.3264.

5.2.5. (23S)-25-Dehydro-1\alpha-hydroxy-2\alpha-(3-hydroxypropyl)-24,24-dimethylvitamin **D**₃-26,23-lactone (8b). According to the general procedure, a crude product, which was obtained from 13 (18 mg, 46 µmol), 22b (37 mg, 68 µmol), Et₃N (0.4 mL) and Pd(PPh₃)₄ (30 mg, 26 µmol) in toluene (0.4 mL) at 110 °C for 4 h, was treated with conc. HF in MeCN for 4 h. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/AcOEt=1/4) to give 8b (9 mg, 39% in 2 steps) as an amorphous solid. UV (EtOH) λ_{max} =267.5 nm; $[\alpha]_{D}^{26} = +13.7 (c \ 0.85, CHCl_{3}); IR (film, CHCl_{3}) 3380, 1763,$ 1653, 1057 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.55 (s, 3H), 1.05 (s, 3H), 1.07 (d, J=6.6 Hz, 3H), 1.21 (s, 3H), 1.24-1.54 (m, 10H), 1.58-1.77 (m, 7H), 1.92-2.02 (m, 5H), 2.25 (dd, J=13.5, 8.9 Hz, 1H), 2.66 (dd, J=13.6, 4.3 Hz, 1H), 2.83 (m, 1H), 3.69-3.71 (m, 2H), 3.89 (ddd, J=8.3, 8.3, 4.4 Hz, 1H), 4.11 (dd, J=9.0, 3.2 Hz, 1H), 4.38 (d, J=2.9 Hz, 1H), 5.00 (d, J=1.6 Hz, 1H), 5.28 (d, J=1.6 Hz, 1H), 5.46 (s, 1H), 6.00 (d, J=11.4 Hz, 1H), 6.14 (s, 1H), 6.40 (d, J=11.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 12.6, 19.7, 22.3, 23.0, 23.5, 24.3, 27.9, 29.1, 35.4, 35.6, 40.4, 42.6, 43.5, 44.2, 46.0, 56.2 (2C), 56.7 (2C), 71.7, 75.4, 86.2, 113.1, 117.0, 118.8, 124.7, 133.1, 142.8, 146.2, 146.5, 170.5; EI-LRMS m/z 512 (M⁺), 495, 478, 461; EI-HRMS Calcd for C₃₂H₄₈O₅ 512.3502, found 512.3490.

5.2.6. (23R)-25-Dehydro-1α-hydroxy-2α-(3-hydroxypropyl)-24,24-dimethylvitamin **D**₃-26,23-lactone (9b). According to the general procedure, a crude product, which was obtained from 14 (39 mg, 76 µmol), 22b (68 mg, 126 µmol), Et₃N (0.8 mL) and Pd(PPh₃)₄ (25 mg, 22 µmol) in toluene (0.8 mL) at 110 °C for 4 h, was treated with conc. HF in MeCN for 1.5 h. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/AcOEt=1/4) to give **9b** (18 mg, 46% in 2 steps) as an amorphous solid. UV (EtOH) λ_{max} =268.0 nm; $[\alpha]_{D}^{22} = +69.4 (c \ 1.38, CHCl_3); IR (film, CHCl_3) 3393, 1757,$ 1649, 1638 1076 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.56 (s, 3H), 0.99 (d, J=6.3 Hz, 3H), 1.06 (s, 3H), 1.11 (m, 1H), 1.21 (s, 3H), 1.26-1.35 (m, 5H), 1.48-1.86 (m, 11H), 1.97-2.05 (m, 3H), 2.25 (dd, J=13.3, 8.7 Hz, 2H), 2.28 (br s, 1H), 2.66 (dd, J=13.3, 4.2 Hz, 1H), 2.83 (m, 1H), 3.69-3.70 (m, 2H), 3.90 (ddd, J=8.2, 8.2, 4.3 Hz, 1H), 4.15 (dd, J=11.4, 1.1 Hz, 1H), 4.38 (d, J=2.9 Hz, 1H), 4.99 (d, J=1.7 Hz, 1H), 5.28 (d, J=1.7 Hz, 1H), 5.47 (s, 1H), 6.00 (d, J=11.2 Hz, 1H), 6.15 (s, 1H), 6.39 (d, J=11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.2, 14.2, 18.6, 22.3, 22.9, 23.5, 25.1, 27.6, 29.0, 30.1, 33.0, 35.9, 40.6, 42.0, 44.3, 46.0, 49.0, 56.4, 56.9, 62.7, 70.3, 73.5, 84.3, 113.6, 117.1, 119.1, 124.5, 133.0, 142.6, 146.2, 146.4, 170.4; EI-LRMS m/z 512 (M⁺), 495, 478, 461; EI-HRMS Calcd for C₃₂H₄₈O₅ 512.3502, found 512.3502.

5.2.7. (23S)-25-Dehydro-1 α -hydroxy-2 α -(3-hydroxypropoxy)-24,24-dimethylvitamin D₃-26,23-lactone (8c). According to the general procedure, a crude product, which was obtained from 13 (14 mg, 35 μ mol), 22c (35 mg, 63 μ mol), Et₃N (0.4 mL) and Pd(PPh₃)₄ (13 mg, 11 μ mol) in toluene (0.4 mL) at 110 °C for 2 h, was treated with conc. HF in MeCN for 1.5 h. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/AcOEt=1/4) to give 8c (13 mg, 69% in 2

steps) as an amorphous solid. UV (EtOH) λ_{max} =267.0 nm; $[\alpha]_{D}^{23} = +13.3$ (c 0.69, CHCl₃); IR (neat) 3330, 1763, 1649, 1624, 1096 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.70 (s, 3H), 1.05 (s, 3H), 1.06 (d, J=6.6 Hz, 3H), 1.21 (s, 3H), 1.23-1.72 (m, 11H), 1.84-2.04 (m, 5H), 2.24 (dd, J=13.6, 9.2 Hz, 1H), 2.53 (br s, 3H), 2.68 (dd, J=13.6, 4.6 Hz, 1H), 2.82 (m, 1H), 3.38 (dd, J=7.4, 3.3 Hz, 1H), 3.83 (m, 4H), 4.05 (m, 1H), 4.10 (dd, J=8.9, 3.3 Hz, 1H), 4.45 (d, J=2.9 Hz, 1H), 5.10 (d, J=1.5 Hz, 1H), 5.39 (d, J=1.5 Hz, 1H), 5.46 (s, 1H), 6.02 (d, J=11.2 Hz, 1H), 6.13 (s, 1H), 6.42 (d, J=11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.1, 19.7, 22.3, 23.0, 23.5, 24.3, 27.9, 29.1, 32.0, 35.6, 40.4, 41.0, 42.6, 46.0, 52.5, 56.2, 56.7, 61.2, 68.4, 68.5, 71.9, 84.5, 86.2, 116.1, 117.2, 118.8, 125.4, 131.6, 143.1, 144.2, 146.2, 170.5; EI-LRMS *m*/*z* 528 (M⁺), 511, 494, 477, 435; EI-HRMS Calcd for C₃₂H₄₈O₆ 528.3451, found 528.3451.

5.2.8. (23R)-25-Dehydro-1α-hydroxy-2α-(3-hydroxypropoxy)-24,24-dimethylvitamin D₃-26,23-lactone (9c). According to the general procedure, a crude product, which was obtained from 14 (30 mg, 76 µmol), 22c (71 mg, 128 µmol), Et₃N (0.8 mL) and Pd(PPh₃)₄ (27 mg, 23 µmol) in toluene (0.8 mL) at 110 °C for 3 h, was treated with conc. HF in MeCN for 1 h. After usual work up, the crude product was purified by column chromatography on silica gel (hexane/AcOEt=1/4) to give 9c (23 mg, 57% in 2 steps) as an amorphous solid. UV (EtOH) λ_{max} =267.0 nm; $[\alpha]_D^{23} = +64.9 (c 1.77, CHCl_3); IR (film, CHCl_3) 3397, 1763,$ 1638, 1076 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.56 (s, 3H), 0.99 (d, J=6.6 Hz, 3H), 1.05 (s, 3H), 1.11 (m, 1H), 1.21 (s, 3H), 1.23-1.35 (m, 4H), 1.47-1.56 (m, 3H), 1.66-1.88 (m, 6H), 1.96–2.05 (m, 2H), 2.24 (dd, J=13.6, 8.8 Hz, 1H), 2.68 (dd, J=13.6, 4.4 Hz, 1H), 2.73 (br s, 3H), 2.83 (m, 1H), 3.37 (dd, *J*=7.6, 3.2 Hz, 1H), 3.74–3.91(m, 4H), 4.06 (ddd, J=8.2, 8.2, 4.4 Hz, 1H), 4.15 (dd, J=11.5, 1.2 Hz, 1H), 4.45 (d, J=2.9 Hz, 1H), 5.09 (d, J=1.7 Hz, 1H), 5.39 (s, 1H), 5.47 (s, 1H), 6.12 (d, J=11.2 Hz, 1H), 6.15 (s, 1H), 6.41 (d, J=11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.2, 18.6, 22.3, 22.9, 23.5, 25.1, 27.6, 29.1, 31.9, 32.9, 35.9, 40.6, 41.0, 42.0, 46.0, 56.4, 56.9, 61.1, 68.3, 68.4, 71.8, 84.3, 84.4, 116.0, 117.3, 119.1, 125.2, 131.8, 142.9, 144.2, 146.2, 170.4; EI-LRMS m/z 528 (M⁺), 511, 494, 477, 435; EI-HRMS Calcd for C32H48O6 528.3451, found 528.3449.

5.3. Vitamin D receptor (VDR) binding assay

[26,27-*Methyl*-³H]-1 α ,25-dihydroxyvitamin D₃ (specific activity 6.623 TBq/mmol, 15,000 dpm, 15.7 pg) and various amounts of 1 α ,25-dihydroxyvitamin D₃ and an analogue to be tested were dissolved in 50 µL of absolute ethanol in 12×75-mm polypropylene tubes. The chick intestinal VDR (0.2 mg) and 1 mg of gelatin in 1 mL of phosphate buffer solution (25 nM KH₂PO₄, 0.1 M KCl, 1 mM dithiothreitol, pH 7.4) were added to each tube in an ice bath. The assay tubes were incubated in shaking water bath for 1 h at 25 °C and then chilled in an ice bath. 1 mL of 40% polypropylene glycol 6000 in distilled water was added to each tube, which was the mixed vigorously and centrifuged at 2,260×g for 60 min at 4 °C. After the supernatant was decanted, the bottom of the tube containing the pellet was cut off into a scintillation vial containing 10 mL of

dioxane-based scintillation fluid and the radioactivity was counted with a Beckman liquid scintillation counter (Model LS6500). The relative potency of the analogues were calculated from their concentration needed to displace 50% of [26,27-methyl-³H]-1 α ,25-dihydroxyvitamin D₃ from the receptor compared with the activity of 1 α ,25-dihydroxyvitamin D₃ (assigned a 100% value).

5.4. Assay for HL-60 cell differentiation

Nitro blue tetrazolium (NBT)-reducing activity was used as a cell differentiation marker. HL-60 cells were cultured in RPMI-1640 medium supplemented with 10% heat-inactivated FCS. Exponentially proliferating cells were collected, suspended in fresh medium and seeded in culture plates (Falcon, Becton Dickinson and Company, Franklin Lakes, NJ). Cell concentration at seeding was adjusted to 2×10^4 cells/mL and the seeding volume was 1 mL/well. An ethanol solution of 1α ,25-dihydroxyvitamin D₃ (final concentration: 10^{-8} M) and an analogue (final concentration: 10^{-11} to 10^{-6} M) was added to the culture medium at 0.1% volume and culture was continued for 96 h at 37 °C in a humidified atmosphere of 5% CO2/air without medium change. The same amount of vehicle was added to the control culture. NBT-reducing assay was performed according to the method of Collins.²² Briefly, cells were collected, washed with PBS, and suspended in serum-free medium. NBT/TPA solution (dissolved in PBS) was added. Final concentrations of NBT and TPA were 0.1% and 100 ng/mL, respectively. Then, the cell suspensions were incubated at 37 °C for 25 min. After incubation, cells were collected by centrifugation and resuspended in FCS. Cytospin smears were prepared, and the counter-staining of nuclei was done with Kemechrot solution. At least 500 cells per preparation were observed.

6. Supporting Information Available

Charts of vitamin D receptor binding assay of compounds 8, 8a-c, 9, and 9a-c, and assay for HL-60 cell differentiation to test antagonistic activity of compounds 8, 8a-c, 9, and 9a-c. This material is available online with the paper in Science Direct.

Acknowledgements

The authors thank Miss J. Shimode and Miss A. Tonoki (Teikyo University) for spectroscopic measurements. We also thank emeritus professor Hiroaki Takayama for helpful discussions. This study was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan. N.S. acknowledges TAKEDA SCIENCE FOUNDATION for support.

References and notes

 (a) In Vitamin D; Feldman, D., Glorieux, F. H., Pike, J. W., Eds.; Academic: New York, 1997. (b) Ettinger, R. A.; DeLuca, H. F. Adv. Drug Res. 1996, 28, 269.

- Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocr. Rev. 1995, 16, 200.
- (a) Evans, R. M. Science 1988, 240, 889. (b) Umezono, K.; Murakami, K. K.; Thompson, C. C.; Evans, R. M. Cell 1991, 65, 1255.
- Takeyama, K.; Masuhiro, Y.; Fuse, H.; Endoh, H.; Murayama, A.; Kitanaka, S.; Suzawa, M.; Yanagisawa, J.; Kato, S. *Mol. Cell Biol.* **1999**, *19*, 1049.
- (a) Konno, K.; Maki, S.; Fujishima, T.; Liu, Z.; Miura, D.; Chokki, M.; Takayama, H. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 151. (b) Konno, K.; Fujishima, T.; Maki, S.; Liu, Z.; Miura, D.; Chokki, M.; Ishizuka, S.; Yamaguchi, K.; Kan, Y.; Kurihara, M.; Miyata, N.; Smith, C.; DeLuca, H. F.; Takayama, H. *J. Med. Chem.* **2000**, *43*, 4247. (c) Suhara, Y.; Nihei, K.-i.; Tanigawa, H.; Fujishima, T.; Konno, K.; Nakagawa, K.; Okano, T.; Takayama, H. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1129. (d) Suhara, Y.; Nihei, K.-i.; Kurihara, M.; Kittaka, A.; Yamaguchi, K.; Fujishima, T.; Konno, K.; Miyata, N.; Takayama, H. *J. Org. Chem.* **2001**, *66*, 8760. (e) Kittaka, A.; Suhara, Y.; Takayanagi, H.; Fujishima, T.; Kurihara, M.; Takayama, H. *Org. Lett.* **2000**, *2*, 2619.
- For our account, see: Takayama, H.; Kittaka, A.; Fujishima, T.; Suhara, Y. In *Vitamin D Analogs in Cancer Prevention and Therapy*. Recent Results in Cancer Research 164; Reichrath, J., Friedrich, M., Tilgen, W., Eds.; Springer: Berlin, 2003; pp 289–317.
- This concept was also good for 19-nor 1, see: (a) Ono, K.; Yoshida, A.; Saito, N.; Fujishima, T.; Honzawa, S.; Suhara, Y.; Kishimoto, S.; Sugiura, T.; Waku, K.; Takayama, H.; Kittaka, A. J. Org. Chem. 2003, 68, 7407. (b) Yoshida, A.; Ono, K.; Suhara, Y.; Saito, N.; Takayama, H.; Kittaka, A. Synlett 2003, 1175. (c) For the alternative synthesis of ED-71, see: Hatakeyama, S.; Ikeda, T.; Maeyama, J.; Esumi, T.; Iwabuchi, Y.; Irie, H.; Kawase, A.; Kubodera, N. Bioorg. Med. Chem. Lett. 1997, 7, 2871.
- (a) Ishizuka, S.; Ishimoto, S.; Norman, A. W. *Biochemistry* 1984, 23, 1473. (b) Ishizuka, S.; Ohba, T.; Norman, A. W. In *Vitamin D: Molecular, Cellular and Chemical Endocrinology*; Norman, A. W., Schaefer, K., Grigoleit, H. G., von Herrath, D., Eds.; Walter de Gruyter: Berlin, 1988; pp 143–144.
- (a) Miura, D.; Manabe, K.; Ozono, K.; Saito, M.; Gao, Q.; Norman, A. W.; Ishizuka, S. J. Biol. Chem. 1999, 274, 16392.
 (b) Ozono, K.; Saito, M.; Miura, D.; Michigami, T.; Nakajima, S.; Ishizuka, S. J. Biol. Chem. 1999, 274, 32376. (c) Miura, D.; Manabe, K.; Gao, Q.; Norman, A. W.; Ishizuka, S. FEBS Lett. 1999, 460, 297. (d) Ishizuka, S.; Miura, D.; Eguchi, H.; Ozono, K.; Chokki, M.; Kamimura, T.; Norman, A. W. Arch. Biochem. Biophys. 2000, 380, 92. (e) Ishizuka, S.; Miura, D.; Ozono, K.; Chokki, M.; Mimura, H.; Norman, A. W. Endocrinology 2001, 142, 59. (f) Ishizuka, S.; Miura, D.; Ozono, K.; Saito, M.; Eguchi, H.; Chokki, M.; Norman, A. W. Steroids 2001, 66, 227.
- The other type of VDR antagonist of 25-carboxylic esters ZK159222 and ZK168281, see: (a) Herdick, M.; Steinmeyer, A.; Carlberg, C. J. Biol. Chem. 2000, 275, 16506. (b) Bury, Y.; Steinmeyer, A.; Carlberg, C. Mol. Pharmacol. 2000, 58, 1067. (c) Herdick, M.; Steinmeyer, A.; Carlberg, C. Chem. Biol. 2000, 7, 885. (d) Toell, A.; Gonzalez, M. M.; Ruf, D.; Steinmeyer, A.; Ishizuka, S.; Carlberg, C. Mol. Pharmacol. 2001, 59, 1478. (e) Väisänen, S.; Peräkylä, M.; Kärkkäinen, J. I.; Steinmeyer, A.; Carlberg, C. J. Mol. Biol. 2002, 315, 229.
- 11. Carlberg, C. J. Cell. Biochem. 2003, 88, 274.

7960

- (a) Saito, N.; Matsunaga, T.; Fujishima, T.; Anzai, M.; Saito, H.; Takenouchi, K.; Miura, D.; Ishizuka, S.; Takayama, H.; Kittaka, A. Org. Biomol. Chem. 2003, 1, 4396. (b) Saito, N.; Saito, H.; Anzai, M.; Yoshida, A.; Fujishima, T.; Takenouchi, K.; Miura, D.; Ishizuka, S.; Takayama, H.; Kittaka, A. Org. Lett. 2003, 5, 4859.
- Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc. 1992, 114, 9836.
- 14. Okuda, Y.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. Chem. Lett. 1985, 481.
- 15. Xu, L.-H.; Kündig, E. P. Helv. Chim. Acta 1994, 77, 1480.
- 16. Crystal data of **13** are as follows: space group $P2_1$, Z=2, a=9.394(2), b=7.571(1), c=14.713(2) Å, $\beta=106.10(1)^\circ$, V=1005.3(3) Å³, $D_c=1.445$ g/cm³. Crystal data of **14** are as follows: space group $P2_1$, Z=2, a=11.137(2), b=7.609(2), c=12.433(2) Å, $\beta=100.02(1)^\circ$, V=1037.5(2) Å³, $D_c=1.400$ g/ cm³. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 239774 for **13** and CCDC 239775 for **14**. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033 or e-mail: dposit@ccdc.cam.ac.uk).
- 17. Wiggins, L. S. Methods Carbohydr. Chem. 1963, 2, 181.
- (a) Suhara, Y.; Kittaka, A.; Kishimoto, S.; Calverly, M. J.; Fujishima, T.; Saito, N.; Sugiura, T.; Waku, K.; Takayama, H. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3255. (b) Honzawa, S.; Suhara, Y.; Nihei, K.-i.; Saito, N.; Kishimoto, S.; Fujishima, T.; Kurihara, M.; Sugiura, T.; Waku, K.; Takayama, H.; Kittaka, A. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3503.
- (a) Wood, A. J.; Jenkins, P. R.; Fawcett, J.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1995, 1567. (b) Wood, A. J.; Holt, D. J.; Dominguez, M.-C.; Jenkins, P. R. J. Org. Chem. 1998, 63, 8522.
- Previously, enyne 22b was prepared from 1,2-O-isopropylidene-D-xylofuranose in 29 steps. See, Ref. 5c,d.
- 21. (a) Eisman, J. A.; Hamstra, A. J.; Kream, B. E.; DeLuca, H. F.

Arch. Biochem. Biophys. **1976**, 176, 235. (b) Inaba, M.; DeLuca, H. F. Biochim. Biophys. Acta **1989**, 1010, 20.

- Collins, S. J.; Ruscetti, F. W.; Gallagher, R. E.; Gallo, R. C. J. Exp. Med. 1979, 149, 969.
- For recent description of VDR regulated transactivation mechanism, see: Masuno, H.; Yamamoto, K.; Wang, X.; Choi, M.; Ooizumi, H.; Shinki, T.; Yamada, S. J. Med. Chem. 2002, 45, 1825.
- 24. Recent review on the function of VDR in response to 1 and the other synthetic ligands, see: Carlberg, C. In *Vitamin D Analogs in Cancer Prevention and Therapy. Recent Results in Cancer Research 164*; Reichrath, J., Friedrich, M., Tilgen, W., Eds.; Springer: Berlin, 2003; pp 29–42; See also, Ref. 11.
- Bula, C. M.; Bishop, J. E.; Ishizuka, S.; Norman, A. W. Mol. Endocrinol. 2000, 14, 1788.
- Ochiai, E.; Miura, D.; Eguchi, H.; Takenouchi, K.; Harada, Y.; Azuma, Y.; Kamimura, T.; Ishizuka, S. J. Bone Miner. Res. 2003, 18(Suppl. 2), S103.
- Takenouchi, K.; Sogawa, R.; Manabe, K.; Saito, H.; Gao, Q.; Miura, D.; Ishizuka, S. J. Steroid Biochem. Mol. Biol. 2004, in press.
- 28. Recent reports on Paget's bone disease, see: (a) Menaa, C.; Barsony, J.; Reddy, S. V.; Cornish, J.; Cundy, T.; Roodman, G. D. J. Bone Miner. Res. 2000, 15, 228. (b) Kurihara, N.; Reddy, S. V.; Menaa, C.; Anderson, D.; Roodman, G. D. J. Clin. Invest. 2000, 105, 607. (c) Menaa, C.; Reddy, S. V.; Kurihara, N.; Maeda, H.; Anderson, D.; Cundy, T.; Cornish, J.; Singer, F. R.; Bruder, J. M.; Roodman, G. D. J. Clin. Invest. 2000, 105, 1833. (d) Leach, R. J.; Singer, F. R.; Roodman, G. D. J. Clin. Endocrinol. Metab. 2001, 86, 24. (e) Reddy, S. V.; Kurihara, N.; Menaa, C.; Landucci, G.; Forthal, D.; Koop, B. A.; Windle, J. J.; Roodmann, G. D. Endocrinology 2001, 142, 2898. (f) Friedrichs, W. E.; Reddy, S. V.; Bruder, J. M.; Cundy, T.; Cornish, J.; Singer, F. R.; Roodman, G. D. J. Bone Miner. Res. 2002, 17, 145. (g) Reddy, S. V.; Kurihara, N.; Menaa, C.; Roodman, G. D. Rev. Endocr. Metab. Disord. 2001, 2, 195.