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‘O-Acyl isopeptide method’: racemization-free
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Abstract—We disclosed a novel ‘racemization-free segment condensation’ based on the ‘O-acyl isopeptide method’ in which an N-
segment including C-terminal O-acyl isopeptide structure with urethane-protected Ser/Thr residue was employed for the segment
condensation, suggesting that the use of this method contributes to the effective convergent synthesis of long peptides/proteins.
� 2006 Elsevier Ltd. All rights reserved.
Total chemical synthesis of peptides/proteins is of great
significance to understand biological functions. Toward
this purpose, many kinds of convergent synthetic meth-
ods have been reported.1 However, a fundamental draw-
back of convergent synthesis is that racemization at the
C-terminal residue of an N-segment occurs during the
condensation reaction with the C-segment. In ‘segment
condensation’,1g–r which is one of the important meth-
ods in convergent synthesis, a large amount of racemiza-
tion is generally involved. Particularly, in solid phase
segment condensation,1k–r the lower reactivity causes
a higher extent of racemization as compared with
solution phase synthesis. That is because, in contrast
to urethane-protected amino acids, peptides easily form
chirally labile oxazolones upon C-terminal carboxyl
activation, limiting the N-segment to contain either a
C-terminal Gly or Pro residue.1j,o,r

We have recently disclosed a novel ‘O-acyl isopeptide
method’2 in which a native amide bond at a hydroxy-
amino acid residue, for example, Ser, was isomerized
to an ester bond, followed by an O–N intramolecular
acyl migration reaction (Fig. 1A). The method has been
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successfully applied to efficiently synthesize difficult
sequence-containing peptides such as Alzheimer’s dis-
ease-related amyloid b peptide (Ab) 1–42.2c–g,i Our
studies indicated that isomerization of the peptide back-
bone at only one position in the whole peptide sequence,
that is, formation of a single ester bond, significantly
changed the unfavorable secondary structure of the dif-
ficult sequence-containing peptide, leading to improved
coupling and deprotection efficacy during SPPS. Mutter
et al.,3 Carpino et al.,4 and Börner and co-workers5 have
also confirmed the efficacy of the ‘O-acyl isopeptide
method’. Moreover, very recently, we designed a novel
‘O-acyl isodipeptide unit’, that is, Boc-Ser/Thr(Fmoc-
Xaa)-OH (Fig. 1B).2h,i The use of O-acyl isodipeptide
units, in which the racemization-inducing esterification
reaction on resin could be omitted, allows the ‘O-acyl
isopeptide method’ to fully automated protocols for
the synthesis of peptides/proteins.

Herein, we disclosed a novel ‘racemization-free segment
condensation’ based on the ‘O-acyl isopeptide method’
(Fig. 2B). We conceived the idea that the N-segment,
which possesses a C-terminal O-acyl isopeptide struc-
ture, could be coupled to the N-terminal amino group
of a C-segment without any undesired racemization
because the isopeptide structure includes a urethane-
protected Ser/Thr residue. Thus, during the activation
of the carboxyl group of the isopeptide, the formation of
racemization-inducing oxazolones should be remarkably
suppressed.

mailto:kiso@mb.kyoto-phu.ac.jp


A B1
1

Fmoc–Tyr–D-Ser–Phe–OH
(3.0%)

retention time (min) retention time (min)

No racemized compound
at Ser residue

15 20 25 15 20 25

Figure 3. HPLC profiles of crude peptide Fmoc-Tyr-Ser-Phe-OH (1)
synthesized using (A) the standard segment condensation and (B) ‘O-
acyl isopeptide method’-based segment condensation. Analytical
HPLC was performed using a C18 reverse phase column
(4.6 · 150 mm; YMC Pack ODS AM302) with a binary solvent
system: a linear gradient of CH3CN (35–55% CH3CN, 40 min) in 0.1%
aqueous TFA at a flow rate of 0.9 mL min�1 (40 �C), detected at
230 nm.
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Figure 1. (A) ‘O-Acyl isopeptide method’: the synthetic strategy for difficult sequence-containing peptides via the O–N intramolecular acyl migration
reaction of O-acyl isopeptides; (B) ‘O-acyl isodipeptide units’.
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Figure 2. (A) A standard segment condensation; (B) a novel ‘racemi-
zation-free segment condensation’ based on the ‘O-acyl isopeptide
method’.
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To evaluate this hypothesis, we first selected Fmoc-Tyr-
Ser-Phe-OH (1) as a model. As a comparative study, 1
was synthesized by the standard segment condensation
method.6 Fmoc-Tyr(tBu)-Ser(tBu)-OH was coupled to
H-Phe-O-resin (2-chlorotrityl resin) using the DIP-
CDI(1,3-diisopropylcarbodiimide, 2.5 equiv)–HOBt(1-
hydroxybenzotriazole, 2.5 equiv) method to obtain
Fmoc-Tyr(tBu)-Ser(tBu)-Phe-O-resin. After the pro-
tected peptide resin was deprotected with TFA, the
resulting crude 1 was analyzed by HPLC. As a result,
3.0% of Fmoc-Tyr-DD-Ser-Phe-OH was detected in crude
1 (Fig. 3A), which was confirmed by an independent
synthesis of the DD-Ser derivative. This result indicated
that racemization at the activated Ser residue occurred
during segment condensation.

On the other hand, in segment condensation based on
the ‘O-acyl isopeptide method’,7 O-acyl isodipeptide
unit, Boc-Ser(Fmoc-Tyr(tBu))-OH8 (2, Fig. 1B) was
coupled to H-Phe-O-resin using the DIPCDI(2.5
equiv)–HOBt(2.5 equiv) method to obtain Boc-Ser-
(Fmoc-Tyr(tBu))-Phe-O-resin. After deprotection with
TFA, the obtained isopeptide H-Ser(Fmoc-Tyr)-Phe-
OHÆTFA was treated with phosphate buffer (pH 7.4)
to induce an O–N intramolecular acyl migration to
afford 1. In HPLC analysis of crude 1, no detectable
racemized compound Fmoc-Tyr-DD-Ser-Phe-OH was
observed (Fig. 3B), indicating that the O-acyl isodipep-
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Figure 4. HPLC profile of crude 4 synthesized using a standard
segment condensation. Analytical HPLC was performed using a C18
reverse phase column (4.6 · 150 mm; YMC Pack ODS AM302) with a
binary solvent system: a linear gradient of CH3CN (0–100% CH3CN,
40 mm) in 0.1% aqueous TFA at a flow rate of 0.9 mL min�1 (40 �C),
detected at 230 nm.
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Figure 5. HPLC profile of crude isopeptide 7 (Rt = 17.0 min) synthe-
sized using the ‘O-acyl isopeptide method’-based segment condensa-
tion. The retention time of H-DD-allo-Thr(Ac-Val-Val)-Val-Val-NH2,
which was synthesized independently, was 17.8 min. Analytical HPLC
was performed using a C18 reverse phase column (4.6 · 150 mm; YMC
Pack ODS AM302) with a binary solvent system: a linear gradient of
CH3CN (0–100% CH3CN, 40 min) in 0.1% aqueous TFA at a flow rate
of 0.9 mL min�1 (40 �C), detected at 230 nm.
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tide unit could be introduced to the amino group on the
resin without any racemization at the activated Ser res-
idue in the isopeptide structure.

To further elucidate the efficacy of this ‘O-acyl isopep-
tide method’-based segment condensation, pentapeptide
Ac-Val-Val-Thr-Val-Val-NH2

2h,i (4) was adopted. In
the condensation of Ac-Val-Val-Thr(tBu)-OH with H-
Val-Val-NH-resin (as a standard segment condensa-
tion),9 a large amount of racemization (37.5%) at the
activated Thr residue occurred during the DIPCDI–
HOBt segment condensation (Fig. 4), which was
confirmed by an independent synthesis of Ac-Val-Val-
DD-allo-Thr-Val-Val-NH2. In contrast, in the ‘O-acyl
isopeptide method’-based segment condensation
(Scheme 1),10 N-segment Boc-Thr(Ac-Val-Val)-OH,11

which was synthesized using O-acyl isodipeptide unit
Boc-Thr(Fmoc-Val)-OH 3 (Fig. 1B),2h was coupled to
C-segment H-Val-Val-NH-resin (5) to obtain isopeptide
resin 6. The DIPCDI(2.5 equiv)–HOBt(2.5 equiv)
method in DMF (2 h) was employed for segment con-
densation, in which N-segment Boc-Thr(Ac-Val-Val)-
OH was readily solubilized. The completeness of the
coupling was verified by the Keiser test. After TFA
treatment, O-acyl isopeptide 7ÆTFA was obtained with
Rink-Amide AM resin
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2.5 equiv), HOBt (2.5 equiv), DMF, 2 h; (iii) Boc-Thr(Ac-Val-Val)-OH (2.5 e
cresol–thioanisole–H2O (92.5:2.5:2.5:2.5), 90 min; (v) phosphate buffered sal
an isolated yield of 69%. As shown in Figure 5, HPLC
analysis of crude 7 exhibited a high purity of the desired
product without any byproduct derived from racemiza-
tion at Thr, which was confirmed by an independent
synthesis of H-DD-allo-Thr(Ac-Val-Val)-Val-Val-NH2.
Moreover, the use of an N-segment with a C-terminal
isopeptide did not lead to any additional side reaction.
Isopeptide 7 was converted to 4 in phosphate buffered
saline at pH 7.4.2h These results reveal that a protected
O-acyl isopeptide with a C-terminal Boc-Thr residue
could be introduced to the peptide resin without any
racemization at the activated Thr residue, in contrast
to the standard method using Ac-Val-Val-Thr(tBu)-
OH that involved a significant amount of racemization
during condensation to the solid support.

In summary, we herein developed a novel ‘racemization-
free segment condensation’ based on the ‘O-acyl isopep-
tide method’ with the successful synthesis of small pep-
tides. This method allows the use of an N-segment
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quiv), DIPCDI (2.5 equiv), HOBt (2.5 equiv), DMF, 2 h; (iv) TFA–m-
ine, pH 7.4, 25 �C.
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possessing a C-terminal Ser/Thr residue for segment
condensation, without any racemization, as a result of
the C-terminal O-acyl isopeptide structure with a ure-
thane-protected Ser/Thr residue. Thus, in the synthesis
of long peptides/proteins, racemization-free segment
condensation becomes possible at not only the C-termi-
nal Gly/Pro but also Ser/Thr residues of the N-segment.
Additionally, final deprotected peptides/proteins synthe-
sized using the ‘O-acyl isopeptide method’-based seg-
ment condensation are effectively purified by HPLC,
because a simple isomerization to an O-acyl isopeptide
remarkably and temporarily changes the physicochemi-
cal properties of the native peptide, and an O–N intra-
molecular acyl migration triggers the native amide
bond formation under physiological conditions.2 Exam-
ples of such studies include membrane peptides/proteins
that are difficult to handle in various conditions because
of their high self-assembling characters.
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P.; Tuchscherer, G.; Mutter, M. J. Am. Chem. Soc. 2005,
127, 11888–11889.

4. (a) Carpino, L. A.; Krause, E.; Sferdean, C. D.; Schü-
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