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Abstract
The coupling of acetylated piperazinylamide spacered triterpenoic oleanolic acid and ursolic acid with meta or para
substituted carboxylated malachite green analogs gave conjugates 10, 11, 15, and 16 that were cytotoxic for several human
tumor cell lines. Especially, an oleanolic acid-derived compound 10 was cytotoxic for MCF-7 human breast carcinoma cells
(EC50= 0.7 μM). These derivatives represent first examples of triterpenoic acid derivatives holding a cationic scaffold
derived from malachite green.
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Introduction

Chemotherapeutic treatment of cancer represents still a
scientific challenge. Although nowadays many patients
suffering from cancer can be cured or—at least—their life
span can be increased. Several types of cancer, however, are

difficult to be handled, and the cure rate (Holzel et al. 2017;
Laffman-Johnson 2012; Vliek et al. 2018) remained low
over all the years despite intensive research.

Recently the potential of scaffolds holding a cationic
functional group came into the focus of renewed interest
inasmuch as their transport into cells might be facilitated by
cation-transporters (Cai et al. 2016; Everett et al. 2013; Qian
et al. 2016). Some of these transporters were reported to be
overexpressed in malignant cells (Cai et al. 2014; Cai et al.
2016; Everett et al. 2013). Several molecules holding a
cationic residue are cytotoxic and seem to target the mito-
chondria, such as ammonium (Biedermann et al. 2010;
Kataev et al. 2014) or phosphonium salts (Spivak et al.
2013, 2017) of more complex molecules. Thus, these
compounds are mitocans (“mitochondrially targeted antic-
ancer drugs”).
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Some conjugates of pentacyclic triterpenes are mitocans,
too. Thus, hybrids holding an extra cationic functional
group have shown promising to excellent cytotoxic results.
While “simple” quaternary ammonium salts (Biedermann
et al. 2010; Kataev, Strobykina, and Zakharova 2014) were
only of moderate cytotoxicity with their EC50 values being
in the same potency range as phosphonium salts (Spivak
et al. 2017, 2013), hybrids consisting of a suitable penta-
cyclic triterpene, an amine spacer and a BODIPY-FL group
(Brandes et al. 2020; Krajcovicova et al. 2018) held lower
EC50 values against a variety of different human cancer cell
lines. Superior cytotoxicity, however, was found for those
triterpenoids holding one or two O-acetyl groups on ring A,
an amide spacer at C-28 (preferentially a piperazinyl resi-
due), and a rhodamine B moiety attached to this spacer
(Sommerwerk et al. 2017). EC50 values in the low micro-
molar (Kahnt et al. 2018; Wolfram et al. 2018a, 2018b) and
even nano-molar range (Sommerwerk et al. 2017) were
reported for these conjugates.

Results and discussion

In extension of these findings and due to the close structural
similarity between malachite green (A) and rhodamine B
(B, Fig. 1) we became interested in the synthesis and

biological evaluation of conjugates holding a cationic tri-
phenylmethane moiety especially of scaffolds of the
“malachite green type”, i.e., 1 and 2; these scaffolds differ
from malachite green by the presence of an additional car-
boxyl group; the latter is necessary for the attachment to the
triterpene-spacer adduct.

Recently conjugates holding this type of a malachite
green moiety (Müller et al. 1997; Rassow and Gruber 1915;
Yang et al. 2007) have been used for the production of
antibodies to be used in environmental analyses (Yang et al.
2007), as part of a fluorophore to label antimicrobial pep-
tides (Zhao et al. 2016) and for the detection of nerve gas
simulants by chromogenic chemodosimeters (Costero et al.
2012).

The synthesis of 1 (Scheme 1) started with the reaction
of m-formyl-benzoic acid (3) with N, N-dimethylaniline in
the presence of zinc chloride to yield 4 (Rassow and
Gruber 1915; Sinev et al. 1978). Similarly, from p-for-
mylbenzoic acid (5) compound 6 was obtained in 89%
yield as a blue-greenish compound. Reaction of 4 with
tetrachloro-p-benzoquinone afforded 41% of 1 while from
6 (Harle et al. 2018; Mueller et al. 1981; Rassow and
Gruber 1915) under the same conditions 2 was obtained;
both compounds are dark green solids. Compounds of this
type are also known as “Mordant Green” or “Mordant
Blue”.

Fig. 1 Structure of malachite
green (a) and rhodamine B (b)
as well as of scaffolds 1 and 2.
The lower section displays the
close structural similarity
between malachite green and
rhodamine B
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Oleanolic acid (7) was acetylated (Sommerwerk et al.
2017) (Scheme 2) to yield acetate 8; the latter compound
was coupled with piperazine as previously reported to yield
9 (Sommerwerk et al. 2017). Compound 1 was activated
in situ with oxalyl chloride and coupled with 9 to afford
target compound 10. Reaction of 9 with 2 gave 11.

Acetylation of ursolic acid (12) gave acetate 13 followed by
its reaction with piperazine to yield amide 14 (Sommerwerk
et al. 2017). Coupling of the latter compound with 1 or 2 as
described above afforded the hybrids 15 and 16, respectively.

The compounds were screened for their cytotoxic activity
using sulforhodamine B assays; the results from these assays
are summarized in Table 1. Betulinic acid and doxorubicin
were used as standards. While ursolic acid (12) is of similar
cytotoxicity as standard betulinic acid, no significant cyto-
toxicity was found for oleanolic acid (7). Cytotoxicity
increased about tenfold for the actylated piperazinylamides 9
and 14. Except for the HT29 human adenocarcinoma cells,
the EC50 values determined for the carboxylated malachite
green derivatives 1 and 2 were found in the low one-digit
μM range. As far as the coupling products 10, 11, 15, and 16
are concerned, oleanolic acid-derived compounds 10 and 11
were of significantly higher cytotoxicity than ursolic acid-
derived 15 and 16. The selectivity between tumor cells and
the nonmalignant fibroblasts is—by and large—the same as
in betulinic acid but significantly better than that of doxor-
ubicin. Furthermore, meta substituted malachite green car-
boxylates 10 and 15 were about twice as cytotoxic than para
substituted analogs 11 and 16, respectively. Thus, this makes
oleanolic acid-derived 10 to the most cytotoxic compound of
this series holding EC50 values between 0.7 and 0.9 μM.
Furthermore, 10 is ~17 times more cytotoxic than standard
triterpenoic acid betulinic acid and circa 50 times more
cytotoxic than starting material oleanolic acid. Interestingly,
while the lowest cytotoxicity was observed for HT29 cells,
for an analogous rhodamine B derivative especially for this
cell line the highest cytotoxicity has been noted. This seems
to prove that both the type of triterpenoic acid, the type of
amide linkage, the type of cationic residue, and its sub-
stitution pattern are of great importance both with respect to
a tumor cell line-specific cytotoxicity and to cytotoxicity in
general. Ongoing studies in our laboratory try to gain a
deeper insight into these observations.

Conclusion

Coupling of acetylated triterpenoic oleanolic acid and
ursolic acid holding a piperazinylamide spacer with meta or
para substituted carboxylated malachite green analogs gave
conjugates 10, 11, 15, and 16, respectively. These com-
pounds were cytotoxic for several human tumor cell lines.
Thereby, oleanolic acid-derived compound 10 was espe-
cially cytotoxic for MCF-7 human breast carcinoma cells
(EC50= 0.7 μM).

Experimental

NMR spectra were recorded using the Varian spectrometers
Gemini 2000 or Unity 500 (δ given in ppm, J in Hz; typical
experiments: H-H-COSY, HMBC, HSQC, NOESY), MS
spectra were taken on a Finnigan MAT LCQ 7000 (elec-
trospray, voltage 4.1 kV, sheath gas nitrogen) instrument.
The optical rotations were measured on a Perkin-Elmer
polarimeter at 20 °C; TLC was performed on silica gel
(Merck 5554, detection with cerium molybdate reagent);
melting points are uncorrected (Leica hot stage micro-
scope), and elemental analyses were performed on a Foss-
Heraeus Vario EL (C-HNS) unit. IR spectra were recorded
on a Perkin Elmer FT-IR spectrometer Spectrum 1000. The
solvents were dried according to usual procedures. The
purity of the compounds was determined by HPLC and
found to be >96%. Oleanolic acid (7) and ursolic acid (12)
were obtained from Betulinines (Stříbrná Skalice, Czech
Republic) in bulk quantities.

Synthesis

N-(4-((3-carboxyphenyl)(4-(dimethylamino)phenyl)
methylene)cyclohexa-2,5-dien-1-yliden)-N-
methylmethanaminium chloride (1)

Following the procedure given for the synthesis of 2 from
4 (1.34 mmol, 500 mg), tetrachloro-p-benzoquinone
(393 mg, 1.6 mmol) and glacial acetic acid (1 mL;
0.1 mmol) followed by crystallization of the solid from
water (100 mL) 1 (224 mg, 41%) was obtained as a purple

Scheme 1 Synthesis of
malachite green analogs 1 and 2:
reactions and conditions:
a ZnCl2, EtOH, N, N-
dimethylaniline, reflux, 1 day,
89% (of 4), 69% (of 6);
b tetrachloro-p-benzoquinone,
CHCl3, 35 °C, 2 h, 41% (of 1),
65% (of 2)
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Scheme 2 Synthesis of
compounds 7–16: reactions and
conditions: a Ac2O, NEt3,
DMAP, DCM, 88% (of 8), 64%
(of 13); b oxalyl chloride, THF;
DCM, piperazine 49%; c oxalyl
chloride, THF; NEt3, DMAP,
25 °C, 2 h, 50%; d oxalyl
chloride, THF; NEt3, DMAP,
25 °C, 2 h, 50%; e oxalyl
chloride, THF; DCM, piperazine
57%; f oxalyl chloride, THF;
NEt3, DMAP, 25 °C, 2 h, 50%;
g oxalyl chloride, THF; NEt3,
DMAP, 25 °C, 2 h, 41%

Table 1 Cytotoxicity of selected
compounds; SRB assay EC50

values [µM] after 72 h of
treatment; averaged from three
independent experiments
performed each in triplicate;
confidence interval CI= 95%

# FaDu A2780 HT29 MCF-7 SW1736 NIH 3T3

1 6.1 ± 1.0 9.7 ± 1.1 18.2 ± 1.4 6.4 ± 0.8 8.1 ± 1.5 6.3 ± 1.7

2 8.2 ± 0.9 4.6 ± 0.7 12.4 ± 1.2 6.5 ± 1.1 9.7 ± 0.8 5.2 ± 1.1

7 >30 >30 >30 >30 >30 >30

9 n.d. 1.7 ± 0.1 1.3 ± 0.1 1.7 ± 0.1 1.8 ± 0.9 2.2 ± 1.0

10 0.8 ± 0.2 0.9 ± 0.2 4.3 ± 0.5 0.7 ± 0.1 0.9 ± 0.1 0.6 ± 0.2

11 1.5 ± 0.1 2.1 ± 0.3 4.6 ± 0.2 1.4 ± 0.3 1.7 ± 0.1 1.5 ± 0.3

12 n.d. 11.7 ± 0.6 10.6 ± 0.7 12.7 ± 0.1 14.3 ± 0.4 5.2 ± 1.4

14 n.d. 2.1 ± 0.1 1.9 ± 0.3 2.0 ± 0.1 3.1 ± 0.8 9.7 ± 0.8

15 1.5 ± 0.1 1.4 ± 0.3 2.4 ± 0.2 1.2 ± 0.1 1.7 ± 0.4 1.2 ± 0.3

16 2.3 ± 0.2 4.9 ± 0.6 7.9 ± 0.5 2.9 ± 0.7 4.0 ± 0.5 2.6 ± 0.7

Betulinic acid n.d. 12.7 ± 1.8 18.4 ± 2.0 12.0 ± 1.7 16.4 ± 1.9 16.1 ± 1.4

Doxorubicin n.d. 0.01 ± 0.01 0.9 ± 0.2 1.1 ± 0.3 1.7 ± 0.3 0.008 ± 0.001

Human cancer cell lines: FaDu (hypopharyngeal carcinoma), A2780 (ovarian carcinoma), HT29 (colorectal
carcinoma), MCF-7 (breast adenocarcinoma), SW1736 (thyroid carcinoma) NIH 3T3 (nonmalignant
fibroblasts); cutoff 30 μM

n.d. not determined
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solid; RF= (ACN/H2O, 85:15)= 0.44; m.p. 207–210 °C;
1H NMR (400 MHz, DMSO-d6): δ= 10.23 (s, 1H,
COOH), 8.25 (d, J= 7.8 Hz, 1H, 4′-H), 7.80 (t, J=
1.8 Hz, 1H, 2′-H), 7.73 (t, J= 7.7 Hz, 1H, 5′-H), 7.56 (dt,
7.7, 1.5 Hz, 1H, 6′-H), 7.34–7.29 (m, 4H, 2-H, 7-H), 7.08
(d, J= 9.3 Hz, 4H, 3-H, 8-H) ppm; 13C NMR (400 MHz,
DMSO-d6): δ= 174.0 (C-5), 172.4 (C-OOH), 167.0
(C-9), 156.9 (C-1), 140.5 (C-7), 138.5 (C-6′), 134.9 (C-
2′), 133.5 (C-4′), 131.6 (C-1′), 129.6 (C-3′), 126.9 (C-6,
C4), 121.1 (C-5′), 114.7 (C-3, C8), 41.0 (1-NMe2), 21.5
(9-NMe2) ppm; IR (KBr): ν= 3447sbr, 1617w, 1584m,
1369m, 1168m cm−1; UV–Vis (CHCl3): λmax (log ε)=
220 (3.4), 345.17 (2.82), 475.22 (2.72), 682.72 (3.06),
714.92 (3.27) nm; MS (ESI, MeOH): m/z (%)= 373.33
(100%, [M–Cl]−); analysis calcd for C24H25N2O2Cl
(408.93): C 70.49, H 6.16, N 6.85; found: C 70.35, H
6.38, N 6.73.

N-(4-((4-carboxyphenyl)(4-(dimethylamino)phenyl)
methylene)cyclohexa-2,5-dien-1-yliden)-N-
methylmethanaminium chloride (2)

To a solution of 6 (500 mg 1.34 mmol) and tetrachloro-p-
benzoquinone (393 mg, 1.6 mmol) in CHCl3 (50 mL) gla-
cial acetic acid (1 mL, 0.1 mmol) was added, and stirring at
35 °C was continued for 2 h. The volatiles were removed
under reduced pressure, and the residue was crystallized
from water (100 mL) to yield 2 (970 mg, 65%) as a dark
green solid; RF= 0.3 (ACN/H2O, 85:15); m.p. 230–232 °C;
1H NMR (400MHz, DMSO-d6): δ= 10.21 (s, 1H, COOH),
8.12 (d, J= 8.7 Hz, 2H, 3′-H), 7.42 (d, J= 8.5 Hz, 2H, 2′-
H), 7.32 (d, J= 9.2 Hz, 2H, 3-H), 7.08 (d, J= 9.2 Hz, 2H,
2-H), 6.97 (d, J= 9.2 Hz, 2H, 7-H), 6.61 (d, J= 9.2 Hz, 2H,
8-H), 3.31 (s, 12H, 1–NMe2), 2.85 (s, 6H, 9–NMe2) ppm;
13C NMR (100MHz, DMSO-d6): δ= 173.6 (C-5), 166.7
(C-OOH), 156.7 (C-1), 154.3 (C-9), 140.3 (C-3), 136.0 (C-
1′), 134.9 (C-2′), 134.3 (C-4′), 129.7 (C-3′), 128.9 (C-7),
121.0 (C-6), 111.9 (C-8), 41.1 (1–NMe2), 40.6 (9–NMe2)
ppm; IR (KBr): ν= 3447s, 1589m, 1363m, 1169m cm−1;
UV–vis (CHCl3): λmax (log ε)= 345 (4.38), 480 (4.14), 675
(4.43), 725 (4.65) nm; MS (ESI, MeOH): m/z (%)= 373.33
(100, [M− Cl]−); analysis calcd for C24H25N2O2Cl
(408.93): C 70.49, H 6.16, N 6.85; found: C 70.30, H 6.32,
N 6.69.

3-[Bis(4-dimethylamino)phenyl]methyl-benzoic acid (4)

To a solution of 3 (1 g, 6.67 mmol) and ZnCl2 (2.7 g,
20.01 mmol) in ethanol (50 mL) N, N-dimethylaniline
(2.5 g, 20.01 mmol) was added, and stirring under reflux
was continued for 1 day. Work-up as described for 6 gave 4
(2.23 g, 89%) as a greenish/blue solid; RF= 0.89 (n-hexane/
EtOAc, 8:1); m.p. 149–151 °C; 1H NMR (400MHz,

DMSO-d6): δ= 7.92 (d, J= 13.8 Hz, 2H, 2′-H, 4′-H), 7.29
(d, J= 19.0 Hz, 2H, 6′-H, 3′-H), 6.94 (d, J= 13.8 Hz, 4H,
3-H), 6.67 (d, J= 13.8 Hz, 4H, 2-H), 5.4 (s, 1H, 5-H), 2.88
(s, 12H, 1–NMe2) ppm; 13C-NMR (400MHz, DMSO-d6):
δ= 148.8 (C-1), 145.5 (C-1′), 134.1 (C-2′), 132.8 (C-3′),
131.1 (C-5′), 129.9 (C-3, C-4), 129.1 (C-6′), 128.1 (C-4′),
113.0 (C-2), 54.9 (C-5), 40.9 (NMe2) ppm; IR (KBr): ν=
3448s, 1614m, 1519m, 1351w cm−1; UV–vis (CHCl3): λmax

(log ε)= 289.65 (4.3 nm); MS (ESI, MeOH): m/z (%)=
375.27 (100%, [M+H]+); analysis calcd for C24H24N2O2

(374.48): C 76.98, H 7.00, N 7.48; found: C 76.83, H 7.15,
N 7.31.

4-[Bis(4-dimethylamino)phenyl]methyl-benzoic acid (6)

To a solution of 5 (1.44 g, 9.6 mmol) and ZnCl2 (3.9 g,
28.8 mmol) in ethanol (100 mL) N, N-dimethylaniline
(3.6 mL, 28.8 mmol) was slowly added, and the mixture
was stirred under reflux for 1 day. The mixture was diluted
with methanol (40 mL), the pH value was adjusted to 5 by
adding aq. HCl, and the precipitate was filtered off. Com-
pound 6 (2.45 g, 69%) was obtained as light green/blue
solid; RF= 0.95 (n-hexane/EtOAc, 3:1); m.p. 252 °C
(decomp.) (lit: 250 °C, decomp. (Yang et al. 2007)); 1H
NMR (400MHz, DMSO-d6): δ= 12.76 (s, 1H, 5′-H),
7.88–7.82 (m, 2H, 3′-H), 7.21–7.16 (m, 2H, 2′-H),
6.93–6.85 (m, 4H, 2-H), 5.38 (s, 1H, 5-H), 2.83 (s, 12H,
NMe2) ppm; 13C NMR (400MHz, DMSO-d6): δ= 167.8
(C-5′), 151.1 (C-1′), 149.3 (C-1), 131.9 (C-4), 129.8 (C-2),
129.7 (C-3′), 129.4 (C-2′), 112.8 (C-3′), 54.59 (C-5), 40.7
(NMe2) ppm; IR (KBr): ν= 3447sbr, 2883m, 1683s, 1610s,
1571w, 1519s, 1479w, 1443w, 1428w, 1349w, 1314w,
1293w, 1227w, 1202w, 1177w, 1164w, 1061w, 1017w cm−1;
UV–vis (CHCl3): λmax (log ε)= 270.37 (4.16) nm; MS (ESI,
MeOH): m/z (%)= 375.33 (100%, [M+H]+); anlysis calcd
for C24H24N2O2 (374.48): C 76.98, H 7.00, N 7.48; found:
C 76.77, H 7.19, N 7.29.

3β-Acetyloxy-olean-12-en-28-oic acid (8)

Acetylation of 7 as previously described gave 8 (88%) as
a colorless solid; RF= 0.7 (silica gel, toluene/ethyl acet-
ate/formic acid/heptane, 80:26:5:1); m.p.: 263–265 °C
(lit.: 260–261 °C) (Sommerwerk et al. 2017); [α]D=
+117.7° (c 0.37, CHCl3), (lit.: +119° (c 0.1, CHCl3)
(Sommerwerk et al. 2017); MS (ESI, MeOH): m/z= 497.5
(75%, [M−H]−), 995.2 (100%, [2M –H]−), 1017.7
(29%, [2M− 2H+Na]−).

3β-Acetyloxy-olean-12-en-28-oyl piperazine (9)

Reaction of 8 with oxalyl chloride and piperazine as pre-
viously described gave 9 (49%); RF= 0.46 (silica gel,
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CHCl3/MeOH, 9:1); m.p. 172–176 °C (lit.: 170–176 °C)
(Sommerwerk et al. 2017); MS (ESI, MeOH): m/z= 567.4
(45%, [M+H]+).

N-(4-((4-dimethylamino)phenyl)-3-((4-(3β-acetyloxyolean-
12-en-28-carboxy)piperazin)-1-yl)oxy)-
carbonylphenylmethylencyclohexa-2,5-dien-1-yliden)-N-
methylmethanaminium chloride (10)

Following the procedure given for the synthesis of 11, from
1 (200 mg, 0.49 mmol) compound 10 (240 mg, 49.8%) was
obtained as a dark green solid; RF (CHCl3/MeOH, 9:1)=
0.35; m.p. 212–215 °C; 1H NMR (400MHz, CDCl3): δ=
8.02 (s, 1H, 37-H), 7.78-7.69 (m, 1H, 39-H), 7.49-7.3 (m,
4H, 2′-H, 7′-H), 7.05–6.91 (d, J= 8.9 Hz, 1H, 40-H), 6.99
(d, J= 8.8 Hz, 4H, 3′-H, 8′-H), 6.72–6.58 (m, 1H, 38-H),
5.21 (t, J= 3.6 Hz, 1H, 12-H), 4.49 (m, 1H, 3-H), 3.72 (q, J
= 7.0 Hz, 4H, 33-H), 3.39 (s, 6H, N-Me2), 3.23 (d, J=
15.5 Hz, 4H, 34-H), 2.96 (s, 1H, 18-H), 2.17 (m, 1H, 16-
Ha), 2.04 (s, 3H, 32-H), 1.94–1.86 (m, 2H, 11-H),
1.63–1.54 (m, 8H, 6-H, 16-Hb, 2-H, 15-Ha, 7-H), 1.53–1.20
(m, 11H, 22-H, 15-Hb, 21-H, 1-H, 19-H, 9-H), 0.79 (m, 1H,
5-H), 0.89–0.80 (m, 12H, 23-H, 24-H, 25-H, 27-H), 0.72 (s,
3H, 30-H), 0.70 (s, 6H, 26-H, 29-H) ppm; 13C NMR
(100MHz, CDCl3): δ= 171.0 (C-28), 171.0 (C-31), 169.3
(C-35), 157.0 (C-1′, C-9′), 143.6 (C-7′), 140.9 (C-8′), 140.8
(C-2′), 138.5 (C-41), 134.9 (C-39), 133.4 (C-37), 131.5 (C-
40), 129.5 (C-38), 125.0 (C-12), 121.9 (C-36), 120.4 (C-6′),
114.3 (C-3′), 81.3 (C-3), 56.0 (C-30), 47.4 (C-9), 46.6 (C-
34), 43.4 (C-33), 41.2 (1-NCH3), 39.4 (C-8), 39.0 (C-5),
38.8 (C-17), 38.6 (C-1), 37.5 (C-4), 36.5 (C-10), 36.0 (C-
18), 34.9 (C-21), 33.3 (C-22), 31.9 (C-14), 30.4 (C-20),
30.3 (C-27), 28.3 (C-24), 23.7 (C-15), 23.6 (C-2), 23.5 (C-
11), 23.4 (C-19), 23.0 (C-16), 21.6 (C-32), 21.2 (C-29),
18.4 (C-6), 17.0 (C-23), 16.1 (C-26), 15.9 (C-25), 8.4 (C-7),
0.89 (C-5′) ppm; IR (KBr): ν= 3447sbr, 2925m, 1618m,
1584m, 1370m, 1247m, 1170m cm−1; UV–vis (CHCl3):
λmax (log ε)= 229.01 (3.56), 244.02 (4.26), 347.2 (3.87),
485.3 (3.71), 731.09 (4.35) nm; MS (ESI, MeOH): m/z (%):
921.73 (100%, [M− Cl]−); C26H81N4O4Cl (957.78): C
75.24, H 8.52, N 5.85; found: C 75.13, H 8.81, N 5.43.

N-(4-((4-dimethylamino)phenyl)-4-((4-(3β-acetyloxyolean-
12-en-28-carboxy)piperazin)-1-yl)oxy)-
carbonylphenylmethylencyclohexa-2,5-dien-1-yliden)-N-
methylmethanaminium chloride (11)

To a solution of 2 (500 mg, 1.23 mmol) in dry dichlor-
omethane (DCM, 50 mL), oxalyl chloride (0.62 mg,
4.92 mmol) and three drops of dry dimethylformamide
(DMF) were added. After stirring for 30 min, the volatiles
were removed under reduced pressure, the residue was
dissolved in dry tetrahydrofuran (THF, 3 × 20 mL), and the

solvents were evaporated DMF. The solid was dissolved in
dry DCM (50 mL), triethylamine (0.2 g, 0.3 mL, 10 mmol),
DMAP (4-dimethylaminopyridine, 15 mg, 0.1 mmol), and a
solution of 9 (849 mg, 1.5 mmol) in dry DCM (20 mL) were
added. The mixture was stirred at 25 °C for 2 h; usual work-
up followed by chromatography (silica gel, CHCl3/MeOH,
9:1) gave 11 (594 mg, 50%) as a dark green solid; RF

(CHCl3/MeOH, 9:1)= 0.35; m.p. 192–195 °C; 1H NMR
(400MHz, CDCl3): δ= 7.99 (s, 2H, 37-H), 7.56 (d, J=
8.2 Hz, 2H, 38-H), 7.37 (dd, J= 8.73, 3.5 Hz, 4H, 2′-H, 8′-
H), 6.97 (d, J= 9.2 Hz, 4H, 3′-H, 7′-H), 5.21 (m, 1H, 12-
H), 4.47 (t, J= 8.3 Hz, 1H, 3-H), 3.69 (m, 4H, 33-H), 3.36
(s, 6H, N–Me2), 3.1 (q, J= 14.0, 7.3 Hz, 4H, 34-H), 2.94 (s,
1H, 18-H), 2.12 (m, 1H, 16-Ha), 2.02 (s, 3H, 32-H), 1.89
(m, 2H, 11-H), 1.79–1.54 (m, 8H, 6-H, 16-Hb, 2-H, 15-Ha,
7-H), 1.53–1.25 (m, 8H, 22-H, 21-H, 1-Ha, 19-H, 9-H),
1.22 (s, 3H, 27-H), 1.06 (m, 2H, 1-Hb, 15-Hb), 0.92 (m, 6H,
25-H, 29-H), 0.79 (m, 1H, 5-H), 0.88–0.77 (dd, J= 10.9,
6.2 Hz, 9H, 23-H, 24-H, 30-H), 0.72 (s, 3H, 26-H) ppm; 13C
NMR (100MHz, CDCl3): δ= 171.0 (C-28), 169.3 (C-35),
162.5 (C-31), 157.0 (C-1′, C9′), 143.6 (C-7′), 140.9 (C-8′),
140.8 (C-2′), 140.8 (C-13), 139.3 (C-39), 134.7 (C-36),
127.3 (C-38), 127.2 (C-37), 125.2 (C-12), 119.4 (C-6′),
114.1 (C-3′), 80.9 (C-3), 55.3 (C-30), 47.5 (C-9), 45.9 (C-
34), 42.1 (C-33), 41.2 (1-NMe2), 39.4 (C-8), 38.8 (C-5),
38.7 (C-17), 38.2 (C-1), 37.7 (C-4), 36.9 (C-10), 36.5 (C-
18), 34.4 (C-21), 33.0 (C-22), 31.4 (C-14), 30.4 (C-20),
29.7 (C-27), 28.1 (C-24), 24.1 (C-2), 23.5 (C-15), 23.3 (C-
19), 23.0 (C-16), 21.3 (C-32), 21.2 (C-29), 18.2 (C-6), 16.9
(C-23), 16.7 (C-26), 15.5 (C-25), 8.6 (C-7), 0.98 (C-5′)
ppm; IR (KBr): ν= 3445sbr, 2956w, 1636m, 1584m,
1371m, 1170w cm−1; UV–vis (CHCl3): λmax (log ε)= 242
(3.16), 345 (3.83), 475 (3.61), 617.15 (1.79), 732.12 nm
(3.22) nm; MS (ESI, MeOH): m/z (%)= 921.80 (100%, [M
− Cl]−); analysis calcd for C26H81N4O4Cl (957.78): C
75.24, H 8.52, N 5.85; found: C 75.02, H 8.76, N 5.39.

3β-Acetyloxy-urs-12-en-28-oic acid (13)

Acetylation of 12 as previously described (Sommerwerk
et al. 2017) gave 13 (64%) as a colorless solid; RF= 0.7
(silica gel, toluene/ethyl acetate/formic acid/heptane,
80:26:5:1); m.p. 242–244 °C (lit.: 242.7–244.1 °C); [α]D=
+69.89° (c 0.86, CHCl3), (lit.: +71.2° (c 1.0, CHCl3); MS
(ESI, MeOH): m/z= 497.5 (64%, [M−H]−), 542.9 (30%,
[M+HCO2]

−), 995.1 (68%, [2M−H]−), 1017.5 (100%,
[2M− 2H+Na]−).

3β-Acetyloxy-olean-12-en-28-oyl piperazine (14)

Reaction of 13 with oxalyl chloride and piperazine as pre-
viously (Sommerwerk et al. 2017) described gave 14 (57%);
RF= 0.44 (silica gel, CHCl3/MeOH, 9:1); m.p. 158–161 °C
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(lit.: 158–161 °C); MS (ESI, MeOH): m/z= 567.4 (61%,
[M+H]+).

N-(4-((4-dimethylamino)phenyl)-3-((4-(3β-acetyloxyurs-12-
en-28-carboxy)piperazin1-1-yl)oxy)-
carbonylphenylmethylencyclohexa-2,5-dien-1-yliden)-N-
methylmethanaminium chloride (15)

Following the procedure given for the synthesis of 11 from
1 (200 mg, 0.49 mmol) and 14 (333 mg, 0.59 mmol) com-
pound 15 (200 mg, 50%) was obtained as a dark green
solid; RF (CHCl3/MeOH, 9:1)= 0.35; m.p. 214–218 °C; 1H
NMR (400MHz, CDCl3): δ= 8.00 (s, 1H, 37-H), 7.70 (d, J
= 3.8 Hz, 1H, 39-H), 7.62 (t, J= 3.7 Hz, 1H, 38-H), 7.44-
7.28 (m, 5H, 2′-H, 7′-H, 40-H), 7.01 (d, J= 5.4 Hz, 4H, 3′-
H, 8′-H), 5.23 (t, J= 3.7 Hz, 1H, 12-H), 4.47 (t, J= 7.9 Hz,
1H, 3-H), 3.70 (m, 4H, 33-H), 3.38 (s, 12H, NMe2), 3.14
(m, 4H, 34-H), 2.94 (m, 1H, 18-H), 2.12 (m, 1H, 16-Ha),
2.02 (s, 3H, 32-H), 1.97–1.79 (m, 2H, 11-H), 1.78–1.45 (m,
16H, 19-H, 6-H, 16-Hb, 2-H, 15-H, 7-H, 22-H, 21-H, 1-H),
1.44–1.28 (m, 1H, 20-H); 1.19 (m, 2H, 5-H, 9-H), 1.11 (s,
3H, 23-H), 0.89 (s, 12H, 27-H, 25-H, 24-H), 0.84 (s, 6H,
26-H, 30-H), 0.69 (s, 3H, 29-H) ppm; 13C NMR (100MHz,
CDCl3): δ= 175.1 (C-28), 171.0 (C-31), 169.1 (C-35),
157.0 (C-1′, C-9′), 144.6 (C-13), 144.5 (C-36), 140.7 (C-2′,
C7′), 140.0 (C-5′), 135.8 (C-41),132.8 (C-40), 131.2 (C-
39), 129.0 (C-38), 127.3 (C-4′, C6′), 121.6 (C-12), 114.2
(C-3′, C8′), 80.9 (C-3), 55.3 (C-5), 47.7 (C-9), 47.6 (C-17),
47.6 (C-34), 46.3 (C-33), 43.7 (C-18), 43.6 (C-14), 41.9 (C-
19), 41.3 (C-10), 39.3 (C-8), 39.1 (C-22), 38.2 (C-1), 38.1
(C-7), 37.8 (C-4), 37.7 (C-21), 36.9 (C-15), 33.0 (C-20),
30.3 (C-16), 28.0 (C-11), 27.9 (C-27), 24.0 (C-2), 23.5 (C-
30), 23.4 (C-32), 21.3 (C-6), 18.2 (C-29), 16.9 (26C), 16.7
(C-23), 15.4 (C-25) ppm; IR (KBr): ν= 3447sbr, 2990w,
1636w, 1584w, 1371w, 1169w cm−1; UV–vis (CHCl3): λmax

(log ε)= 220.98 (3.54), 346.19 (3.87), 484.15 (3.76),
682.69 (4.11), 746.26 (4.32) nm; MS (ESI, MeOH): m/z
(%)= 921.73 (100%, [M− Cl]−); C26H81N4O4Cl (957.78):
C 75.24, H 8.52, N 5.85; found: C 75.11, H 8.69, N 5.49.

N-(4-((4-dimethylamino)phenyl)-4-((4-(3β-acetyloxyurs-12-
en-28-carboxy)piperazin)-1-yl)oxy)-
carbonylphenylmethylencyclohexa-2,5-dien-1-yliden)-N-
methylmethanaminium chloride (16)

Following the procedure given for the synthesis of 11, from
2 (200 mg, 0.49 mmol) and 14 (333 mg, 0.59 mmol) 16
(164 mg, 41%) was obtained as a green solid; RF (CHCl3/
MeOH, 9:1)= 0.35; m.p. 212–215 °C; 1H NMR (400MHz,
CDCl3): δ= 8.01 (d, J= 7.3 Hz, 2H, 37-H), 7.56 (d, J=
7.7 Hz, 2H, 38-H), 7.38 (d, J= 7.7 Hz, 2H, 3′-H), 7.08 (d, J
= 9.2 Hz, 2H, 2′-H), 6.99 (d, J= 8.2 Hz, 2H, 7′-H), 6.61 (d,
J= 9.2 Hz, 2H, 8′-H), 5.25 (t, J= 3.5 Hz, 3H, 12-H), 4.46

(t, J= 8.0 Hz, 1H, 3-H), 3.74 (m, 4H, 33-H), 3.38 (s, 6H,
1′–NMe2), 3.10 (q, 7.5 Hz, 5H, 34-H, 18-H), 2.15 (s, 1H,
16-Ha), 2.02 (s, 3H, 32-H), 1.96–1.46 (m, 4H, 11-H, 6-Ha,
16-Hb), 1.39 (m, 8H, 2-H, 15-Ha, 19-H, 7-H, 9-H, 21-Ha),
1.28–1.14 (m, 9H, 20-H, 6-Hb, 22-H, 21-Hb, 1-H, 15-Hb, 5-
H), 1.12 (s, 3H, 27-H), 0.90 (s, 3H, 30-H), 0.89 (s, 3H, 25-
H), 0.85 (s, 3H, 29-H), 0.83 (s, 3H, 24-H), 0.71 (s, 3H, 23-
H), 0.65 (s, 3H, 26-H) ppm; 13C NMR (100MHz, CDCl3):
δ= 175.3 (C-28), 171.0 (C-31), 169.2 (C-35), 157.0 (C-1′,
C-9′), 144.7 (C-13), 144.5 (C-7′), 140.9 (C-8′), 140.8 (C-
2′), 139.4 (C-36), 134.7 (C-37), 127.2 (C-38), 121.6 (C-12),
114.1 (C-3′), 80.9 (C-3), 55.3 (C-30), 52.5 (C-18), 47.7 (C-
17), 47.6 (C-9), 47.6 (C-34), 45.9 (NMe2), 43.6 (C-33),
43.5 (C-14), 41.9 (C-8), 41.3 (9′-NMe2), 39.1 (C-5), 38.1
(C-20), 37.6 (C-1), 36.9 (C-4), 33.9 (C-10), 33.0 (C-22),
30.4 (C-21), 29.9 (C-15), 28.0 (C-24), 27.8 (C-16), 25.9 (C-
11), 24.1 (C-27), 23.5 (C-2), 23.4 (C-19), 21.3 (C-32), 18.2
(C-29), 16.9 (C-23), 16.6 (C-26), 15.4 (C-25), 8.7 (C-7), 0.9
(C-5′) nm; IR (KBr): ν= 3442sbr, 2940m, 2678m, 1618m,
1584m, 1371m, 1248w, 1171m cm−1; UV–vis (CHCl3):
λmax (log ε)= 226.9 (3.9), 256.0 (4.1), 486.2 (3.98), 682
(4.21), 737.0 (4.6) nm; MS (ESI, MeOH): m/z (%)= 921.73
(100%, [M− Cl]−); C26H81N4O4Cl (957.78): C 75.24, H
8.52, N 5.85; found: C 74.99, H 8.68, N 5.44.
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