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Discovery of novel tetrahydroisoquinoline derivatives as
potent and selective factor Xa inhibitors
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Abstract—A series of novel 2,7-disubstituted tetrahydroisoquinoline derivatives were designed and synthesized. Among these deriva-
tives, compounds 1 and 2 (JTV-803) exhibited potent inhibitory activity against FXa and good selectivity with respect to other
serine proteases (thrombin, plasmin, and trypsin). In addition, compound 2 exhibited potent anti-FXa activity after intravenous
and oral administration to cynomolgus monkey, and showed a dose-dependent antithrombotic effect in a rat model of venous
thrombosis.
� 2004 Elsevier Ltd. All rights reserved.
Activation of the intravascular coagulation system is in-
volved in a number of cardiovascular diseases such as
deep vein thrombosis (DVT), disseminated intravascular
coagulation (DIC), pulmonary embolism, ischemic
stroke, and unstable angina. Interruption of the clotting
cascade has been investigated to inhibit clot formation
and for the prevention or treatment of these thrombotic
disorders. Heparin and warfarin are the most widely
used anticoagulants for the prophylaxis and treatment
of thrombus-based diseases. However, these anticoagu-
lants have clinical limitations due to dependence on anti-
thrombin III and antagonism of vitamin K, respectively.
For instance, heparin administration is sometimes asso-
ciated with the development of an antibody to platelet
factor (PF4) that causes thrombocytopenia, while war-
farin requires a longer time for the onset of its action,
needs continual monitoring, and sometimes interacts
with food or other drugs. Factor Xa (FXa) is a tryp-
sin-like serine protease that is an important enzyme in
the clotting cascade, since it represents the confluence
of the intrinsic and extrinsic pathways. Factor Xa forms
the prothrombinase complex, together with nonenzy-
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matic cofactor Va and Ca2+ on the surface phospholi-
pids of platelets or endothelial cells, and this complex
is responsible for the conversion of prothrombin to
thrombin. Then thrombin catalyzes the cleavage of
fibrinogen to fibrin, initiating a process that ultimately
leads to clot formation. Therefore, we have been inter-
ested in achieving inhibition of FXa by the development
of a novel FXa inhibitor.

Since the discovery of compound 3 (DX-9065a),1 a vari-
ety of other compounds have been reported.2 The re-
lease of fondaparin sodium in 2002, which is a
synthetic pentasaccharide, proved the clinical effective-
ness of FXa inhibitors as anticoagulants.3 This situation
prompted us to disclose our experimental results on
novel FXa inhibitors (Fig. 1).

From analysis of the binding of FXa to compound 3,4 it
has been demonstrated that the basic part of both ends
of the compound is important for inhibition of FXa. We
focused on the two basic parts for S1 and S4 sites, and
designed a fundamental skeleton (compound 4) as fol-
lows. At first, we selected an N-amidinotetrahydroiso-
quinoline ring that was expected to completely fill the
S1 pocket of FXa and to interact with Asp 189.5 Then
a 4-piperidinylmethyloxy group was selected for posi-
tion-7 of the tetrahydroisoquinoline ring as a spacer
for the introduction of basic substituents because the
nitrogen atom of the piperidinyl group could be oriented
toward the S4 site.
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We initially prepared compound 4, which showed mod-
erate FXa inhibitory activity (IC50 = 3.0lM),1a demon-
strating that it had sufficient potential for further studies
on structure–activity relationships. Introduction of the
basic substituents on a nitrogen atom of the piperidine
ring was carried out to obtain compounds 6–11 (Scheme
1 and Table 1).6 Among them, compound 10 with a 4-
pyridinyl group showed potent FXa inhibitory activity
(IC50 = 0.06lM) without inhibition of factor IIa
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Scheme 1. Synthesis of compounds 4–11. Reagents and conditions:6 (a) ami

(cat.), AcOH, rt; (d) HBr aq, reflux; (e) Boc2O, NaOH, dioxane-H2O, rt; (f

THE, rt; (g) NaOH, DMSO, rt; (h) H2 (3atm), 7.5% Pd/C (cat.), THF–EtOH

nitro-benzyl bromide, diisopropylethylamine (DIPEA),THF–DMF, rt, then H

rt for 8 and 9; (j) TFA, CHCl3, rt, then HCl–MeOH; (k) diisopropyl azod

pyrazole-1-carboxamidine hydrochloride, DIPEA, DMF, rt, then HCl–MeO
(thrombin) (>10lM). The potent activity of compound
10 might be explained by the interaction of protonated
pyridine ring with S4 site which favors positive charge7

and by hydrogen bonding of protonated nitrogen atom
of pyridine with Glu 97, as expected from the docking
simulation of the compounds with FXa.

However, most of the compounds listed in Table 1
showed fatal acute toxicity. When these compounds
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Table 1. Inhibitory activity for FXa and FIIa (Thrombin),1a and acute toxicity in mice (mortality)

N
O

NH

H2N
R2

N
R1

n HCl

1

2 7
a

Compounda R1 R2 FXa IC50 (lM)b FIIa IC50 (lM)b Mortality (10mg/kg, iv)

4 H H 3.0 >10b NTc

5 C(@NH)Me H 0.5 >10 3/3d

6 2-Aminobenzyl H 3.0 >10 NT

7 3-Aminobenzyl H 4.0 >10 NT

8 Pyridin-2-ylmethyl H 1.0 >10 NT

9 Pyridin-4-ylmethyl H 0.8 >10 3/3

10 Pyridin-4-yl H 0.06 >10 3/3

11 Quinolin-4-yl H 0.4 >10 3/3

12 (3–CO2Me)pyridin-4-yl H 0.2 >10 3/3

13 (3–CO2H)pyridin-4-yl H 2.0 >10 0/3

14 (3–(CH2)2CO2Et)pyridin-4-yl H 0.2 >10 3/3

15 (3–(CH2)2CO2H)pyridin-4-yl H 0.2 >10 0/3

16 Pyridin-4-yl CO2Et 0.08 >10 3/3

1 Pyridin-4-yl CO2H 0.03 >10 0/3

17 2-Methylpyridin-4-yl CO2H 0.2 >10 0/3

18 1,3-Pyrimidin-4-yl CO2H 0.1 >10 0/3

19 4-(1-Methylpyridinium)chloride CO2H 1.0 >10 NT

a Compounds 1, 4, 5, 10–18: 2HCl salt, compounds 6–9: 3HCl salt, compound 19: HCl salt.
b n = 2 (number of animals).
c Not tested.
d Number of deaths/number of animals tested.
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Scheme 2. Synthesis of compounds 1 and 12–16. Reagents and conditions:6 (a) NaH, DMF, rt; (b) H2 (3atm), 7.5% Pd/C (cat.), THF–EtOH, rt; (c)

4-chloro-3-formylpyridine, Et3N, EtOH, reflux; (d) MnO2, NaCN (cat.), CHCl3–MeOH, rt; (e) (EtO)2POCH2CO2Et, NaH, THF, rt; (f) H2 (1atm),

7.5% Pd/C (cat.), THF–EtOH, rt; (g) TFA, CHCl3, rt; (h) 1H-pyrazole-1-carboxamidine hydrochloride, DIPEA, DMF, rt; (i) NaOH, MeOH–H2O,

rt, then HCl aq; (j) ClCH2SMe, NaH, DMF, rt; (k) SO2Cl2, CH2Cl2, 0 �C; (1) LDA, THF, �70�C rt; (m) 30% HCl–EtOH, 85�C; (n) 1H-pyrazole-1-

carboxamidine, NaHCO3 aq, acetone, rt; (o) c-HCl, reflux.
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Figure 3. Percent inhibition of human factor Xa after intravenous and

oral administration of compound 2 to cynomolgus monkeys.10 Data

represent the mean ± SEM (n = 6).
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were administered intravenously at a bolus dose of
10mg/kg, severe convulsions occurred immediately,
and the mice died in a few minutes. Such fatal acute toxi-
city was also observed in our previous research on other
FXa inhibitors, and was avoided by introduction of an
acidic functional group.8 Hence, we tried to introduce
a carboxyl group to the most active compound 10, as
shown in Scheme 2 and Table 1 (compounds 13, 15,
and 1). As expected, acute toxicity was suppressed when
the compounds were given carboxyl groups, while the
corresponding esters still showed severe toxicity. Loss
of toxicity after introduction of a carboxyl group at dif-
ferent positions suggested that one reason for severe toxi-
city might be the strong basicity of the compound.
Similar to compound 10, compound 1 exhibited potent
inhibitory activity for FXa (IC50 = 0.03lM). This find-
ing was explained by conformational analysis of com-
pounds 10 and 1. That is, introduction of the carboxyl
group at the tertiary carbon of the piperidinyl group
did not influence the conformation of compound 10
and the introduced hydrophilic group was oriented to-
wards the aqueous area. (Fig. 2).9 On the other hand,
the introduction of substituents (R1) at the position-3
of pyridine ring causes the change of the torsional angle
between the pyridine ring and the piperidine ring. The
loss in activity of compounds 12–15 might be due to this
fact.

For further pharmacological evaluation, compound 2
(MsOH salt) was used instead of compound 1 because
stable crystals could be obtained. As shown in Table
Figure 2. Complex model of factor Xa (green) and compound 1

(orange).

Table 2. Selectivity of compound 2 for serine proteases; inhibitory activity (

Compound Factor Xa Thro

2 0.019 ± 0.001lM >100

3 (ref.) 0.041 ± 0.002lM >100

The Ki values for each enzyme were determined from Dixon�s plot construc
(n = 3).
2, there was selectivity of 2 for FXa relative to other ser-
ine proteases (thrombin, plasmin, and trypsin). The anti-
FXa activity of compound 2 was evaluated after intrave-
nous and oral administration to cynomolgus monkey
based on inhibition of human FXa in plasma (see Fig.
3).10 After oral administration of compound 2 at a dose
of 10mg/kg, inhibition increased to a maximum of
41 ± 4% at 120min and then gradually declined.
The plasma concentration (Cmax) was 0.39lg/mL at
120min.11 Thus, compound 2 showed anti-FXa activity
after intravenous and oral administration to cynomol-
gus monkey. Subsequently, the antithrombotic effect of
2 was examined in a rat venous thrombosis model.12

As shown in Figure 4, compound 2 had a dose-depend-
ent antithrombotic effect at doses of 0.1–1mg/kg/h, and
the effect was statistically significant at 0.3 or 1mg/kg/h.
Low molecular weight heparin (LMWH) also showed a
dose-dependent antithrombotic effect in this model at
doses of 30–300U/kg/h.

In conclusion, a series of tetrahydroisoquinoline deriva-
tives were designed and synthesized. Among them, com-
pounds 1 and 2 exhibited the most potent inhibition of
FXa. The selectivity of compound 2 (JTV-803) for
FXa relative to other serine proteases (thrombin, plas-
min, and trypsin) was demonstrated. Moreover, com-
pound 2 showed good efficacy when pharmacological
evaluation was done in a rat venous thrombosis model,
and it displayed oral activity in cynomolgus monkeys.
After further evaluation of toxicology and physical
properties, compound 2 was finally selected as a candi-
date of FXa inhibitor for clinical studies.
Ki value: lM) for Factor Xa, Thrombin, Plasmin, and Trypsin

mbin Plasmin Trypsin

78.2 ± 2.8 13.6 ± 1.8

23.0 ± 0.8 0.62 ± 0.08

ted at two substrate concentrations. Data represent the mean ± SEM
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Figure 4. Effect of compound 2 and LMWH on venous thrombosis in rats. (Data represent the mean ± SEM, **P < 0.01, *P < 0.05, Dunnett�s test,
n = 5–7).12
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