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We describe modified Negishi coupling conditions that allow improved access to ortho-nitrophenylala-
nine derivatives. These useful amino acid intermediates can be further elaborated into biologically active
lactams and cyclic hydroxamic acid targets.
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Functionally diverse small molecules that have defined stereo-
centers are ubiquitous in the realm of biochemistry and drug dis-
covery. We are particularly interested in hydroxamic acids 1,
which have recently been disclosed as potential treatments for
neurological disorders1 or bacterial infections.2 The related carbo-
styril derivatives 2 have been evaluated as possible therapeutants
for diseases including diabetes,3 stroke,4 arthritis,5 heart disease,6

and as analgesics.7 Due to these potential applications, we sought
to develop a general route to a key intermediate that can access
both hydroxamic acid 1 and lactam 2. Synthesis of these structures
have been previously reported,8 but herein we describe an im-
proved and scalable sequence that utilizes a key Negishi reaction
to access a broad range of functionally diverse amino ester
derivatives.

Retrosynthetically, it was envisioned that Negishi coupling be-
tween a substituted o-nitroaromatic 4 and iodoserine derivative
5 would furnish the key phenylalanine intermediate 3 (Fig. 1), a
strategy inspired by Jackson’s pioneering efforts.9 At the time these
investigations were initiated, previous reports indicated that o-hal-
ogenated nitrobenzene derivatives coupled in low yields, typically
10–30%, and with variable reproducibility.10 One improvement to
this transformation, recently reported by the Jackson group uti-
lized Pd2(dba)3 and SPhos to couple 2-iodonitrobenzene in 66%
yield.11 To our knowledge, this is the only example of an improved
Negishi coupling on o-halonitrobenzenes. As the nitro group was
ll rights reserved.

uttle).
required for subsequent transformations, we sought to optimize
the Negishi conditions on these substrates and broaden the sub-
strate scope to include additional functional handles and groups
found in bioactive molecules. Herein, we describe the scope and
limitations of our studies.

In the initial optimization 2-iodonitrobenzene 6 was reacted
with the iodoserine derived zincate 7 generated using catalytic
iodine11,12 to provide the desired product 8 (Table 1). Coupling
using conditions reported by the Jackson group9 for 1 h provided
the desired material in low yield (entry 1, 7%). Using similar condi-
tions with lower catalyst and ligand loading, Jackson’s group had
reported a 28% yield of 8. A marked improvement was observed
by increasing the reaction time to 18 h (entry 2, 73%). In addition
to increasing the reaction time, alternative ligands13 were explored
in combination with Pd(OAc)2.13 In the event, use of Ruphos or
SPhos provided the desired product in good yields (entries 3–4,
85%). A slight improvement was found using XPhos (entry 5,
92%).14 Furthermore, a comparable yield was obtained despite
lowering the catalyst and ligand loading to 1 mol % and 2 mol %,
1 R2 = OH 4 5
2 R2 = H

3

Figure 1. A key Negishi coupling on o-nitrohalobenezene.
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Table 2
Nitrobenzene substrate scope

NO2

Br

NO2

CO2Me

NHBoc

R R

NHBoc

CO2Me
IZn

1 mol% Pd(OAc)2
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a Organozincate generated as a 0.1 M solution in DMF.
b Isolated yields.

Table 3
Bromonitropyridine substrate scope
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a Organozincate generated as a 1.0 M solution in DMF.
b Isolated yields.

Table 1
Optimization of the Negishi coupling conditions

NO2

I

NHBoc

CO2Me
IZn

NO2

CO2Me

NHBoc

catalyst
ligand

6, 1.5 mmol 7 8

DMF

Entry Catalyst
(mol %)

Ligand
(mol %)

Time
(h)

Equiv
zincatea

Yield
(%)b

1 Pd2(dba)3(5) P(o-tol)3(20) 1 1.5 7c

2 Pd2(dba)3(5) P(o-tol)3(20) 18 1.5 73c

3 Pd(OAc)2(5) RuPhos(10) 18 1.5 85
4 Pd(OAc)2(5) SPhos(10) 18 1.5 85
5 Pd(OAc)2(5) XPhos(10) 18 1.5 92
6 Pd(OAc)2(1) XPhos(2) 18 1.5 92
7 Pd(OAc)2(1) XPhos(2) 18 1.25 83
8 Pd(OAc)2(1) XPhos(2) 18 1.05 68

a Organozincate generated as a 1 M solution in DMF.
b Isolated yields after silica gel chromatography.
c Used TMSCI to activate the Zn to generate 7.
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respectively, (entry 6, 92%). The yield of this transformation di-
rectly correlated to the amount of zincate with higher loadings
providing increased yields (compare entries 6–8). Having opti-
mized these conditions, we sought to expand the substrate scope.

In order to broaden the substrate scope, a variety of o-nitrob-
romobenzenes were coupled using 1.25 equiv of the organozincate
with 1 mol % Pd(OAc)2 and 2 mol % XPhos (Table 2).15 In addition to
aryl bromides, suitably activated aryl chlorides coupled efficiently
under these optimized conditions (entry 1, X = Cl, 87%; X = I, 92%
yield). Consistent with the previous reports, a diverse number of
functional groups were tolerated even in the presence of an acti-
vating nitro group under these conditions. For example, aldehydes,
esters, and fluorides were coupled in good yields (Table 2, entries,
2–3 and 5–6) to provide useful functional group handles for further
diversification. Additionally, the tolerance of fluoro groups as well
as trifluoromethyl substituents allows access to pharmacologically
useful final products (Table 2, entries 4–6). Even sterically hin-
dered substrates coupled albeit in moderate yield (entry 7, 41%
vs entry 1, 92%). Regioselective coupling was achieved using 2-bro-
mo-5-chloronitrobenzene to provide the desired material in mod-
erate yield (Table 2, entry 8, 42%).

Initial forays into Negishi couplings with related nitrobromo-
pyridines (Table 3) indicated that the coupling was less efficient
than for the aryl systems as has been reported for other bromopyri-
dines.16 For example, 3-bromo-2-nitropyridine and 3-bromo-5-flu-
oro-2-nitropyridine coupled with equal efficiency (entries 1 and 3).
The relative position of the nitrogen did not affect the yield in the
coupling (compare entries 2 and 3). Furthermore, coupling of 6-
methyl-5-fluoro-3-bromo-2-nitropyridine proceeded in a slightly
improved yield (Table 3, entry 4, 29%).

Having demonstrated the scope of the improved Negishi cou-
pling conditions, the utility and practicality of this protocol for
multi-gram scale-up of hydroxamic acids 1 was assessed on a
number of o-bromonitrobenzene targets. As a representative
example, coupling of nitrobromide 8 on a 40 g scale afforded phen-
ylalanine derivative 9 in good yield (Fig. 2, 36 g, 63% yield).17 Sub-
sequent reductive cyclization using 5% Pt/C under H2 atmosphere
in pyridine, followed by removal of the Boc group furnished the de-
sired hydroxamic acid 10 in 47% yield over these two steps.18 This
scale-up sequence was effective for a broad range of substituted 2-
nitrohalobenzenes.

In summary, optimized conditions have been developed for a
Negishi cross coupling between an iodoserine derived zincate
and a broad range of functionally diverse 2-bromonitroaromatic
derivatives to furnish useful intermediates that provide access to
biologically active small molecules. These conditions have been
successfully utilized on a large scale to provide gram quantities
of trifluoromethoxy phenylalanine 9, an important intermediate
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Figure 2. Utilizing the Negishi coupling as the key step in scale-up sequence.
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in the synthesis hydroxamic acid derivative 10. Future efforts will
focus on optimizing this chemistry for heterocyclic substrates.
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