
Bioorganic & Medicinal Chemistry Letters 19 (2009) 4441–4445
Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier .com/ locate/bmcl
Design and synthesis of orally bioavailable serum and
glucocorticoid-regulated kinase 1 (SGK1) inhibitors

Marlys Hammond a,*, David G. Washburn a,*, Tram H. Hoang a, Sharada Manns a, James S. Frazee a,
Hiroko Nakamura d, Jaclyn R. Patterson a, Walter Trizna b, Charlene Wu b, Leonard M. Azzarano c,
Rakesh Nagilla c, Melanie Nord c, Rebecca Trejo c, Martha S. Head e, Baoguang Zhao e, Angela M. Smallwood e,
Kendra Hightower f, Nicholas J. Laping b, Christine G. Schnackenberg b, Scott K. Thompson a

a Department of Chemistry, Metabolic Pathways Centre for Excellence in Drug Discovery, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA
b Department of Biology, Metabolic Pathways Centre for Excellence in Drug Discovery, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA
c Department of Drug Metabolism and Pharmacokinetics, Metabolic Pathways Centre for Excellence in Drug Discovery, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of
Prussia, PA 19406, USA
d Metabolic Pathways Centre for Excellence in Drug Discovery, Discovery Medicinal Chemistry, Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, Research Triangle
Park, NC 27709, USA
e Computational and Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA
f Screening and Compound Profiling, Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, Research Triangle Park, NC 27709, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 April 2009
Revised 11 May 2009
Accepted 13 May 2009
Available online 18 May 2009

Keywords:
SGK1
Serum and glucocorticoid-regulated kinase
Kinase inhibitor
Glucuronidation
0960-894X/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.bmcl.2009.05.051

* Corresponding authors. Fax: +1 610 270 6609 (M
E-mail address: marlys.2.hammond@gsk.com (M.
The lead serum and glucocorticoid-related kinase 1 (SGK1) inhibitors 4-(5-phenyl-1H-pyrrolo[2,3-b]pyri-
din-3-yl)benzoic acid (1) and {4-[5-(2-naphthalenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]phenyl}acetic acid
(2) suffer from low DNAUC values in rat, due in part to formation and excretion of glucuronic acid
conjugates. These PK/glucuronidation issues were addressed either by incorporating a substituent on
the 3-phenyl ring ortho to the key carboxylate functionality of 1 or by substituting on the group in
between the carboxylate and phenyl ring of 2. Three of these analogs have been identified as having good
SGK1 inhibition potency and have DNAUC values suitable for in vivo testing.

� 2009 Elsevier Ltd. All rights reserved.
Epithelial sodium channels (ENaCs) are responsible for reab-
sorption of sodium from the distal nephron of the kidney which
contributes to the regulation of sodium homeostasis, extracellular
fluid volume, and blood pressure. Aldosterone is known to activate
ENaCs through intermediary activation of serum and glucocorti-
coid-induced kinase 1 (SGK1), resulting in increased extracellular
fluid volume and blood pressure. SGK1 potentiates ENaC activity,
and consequently sodium retention and increased blood pressure,
by inhibiting Nedd4-2, a ligase that catalyzes the internalization
and degradation of ENaCs.1 Consequently, inhibition of SGK1 is ex-
pected to decrease ENaC activity, which in turn would lead to an
increase in sodium excretion and a reduction in extracellular fluid
volume and blood pressure. In support of this hypothesis, SGK1
knockout mice are known to be aldosterone resistant and have less
ability to retain sodium and maintain blood pressure when given a
reduced-sodium diet.2
ll rights reserved.
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SGK1 IC50 = 40 nM

M-1 SCC IC50 = 1.3 µM

2
SGK1 IC50 = 63 nM

M-1 SCC IC50 = 0.88 µM

As part of a program to study the role of SGK1, an effort to iden-
tify small-molecule SGK1 inhibitors was initiated. Azaindoles 1 and
2 were identified as nanomolar inhibitors of SGK13 with micromo-
lar or lower activity in a whole-cell M-1 short circuit current (SCC)
assay,4 a measure of epithelial Na+ ion transport. The use of 1 or 2
as in vivo tool compounds, however, was limited by poor oral
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Figure 1. Key interactions for the binding of 1 and 2 to SGK1. Enzyme backbone is
cyan, compound 1 is yellow, compound 2 is in green, and selected backbone
residues are shown in the color corresponding to the respective ligands.

Table 1
SGK1 inhibition by 3-aryl-5-phenyl-7-azaindoles 1 and 5–9
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exposure in rats, likely due at least in part to the carboxylic acid
moiety found on both. This functionality can contribute to poor
oral PK by either limiting absorption through its polar, hydrogen-
bonding properties, by favoring elimination through mechanisms
such as glucuronic acid conjugation5 or a combination of both. In
fact, rat PK data was suggestive of glucuronidation and included
the presence of secondary input peaks in the rat oral exposure
curves for 1 and 26 and mass spectral identification of glucuroni-
dated parent compound after incubation of 1 in rat hepatocytes.

The SGK-bound crystal structures determined for 1 and 2 show
the azaindole nitrogens of both compounds forming donor-accep-
tor interactions in the hinge region of the enzyme, while their
respective carboxylates are engaged in an interaction with the cat-
alytic lysine (Lys127, Fig. 1).7 In addition, the second carboxylate
oxygen of compound 2 appears to interact with the backbone
nitrogen of Gly107. However, with the significance of the carboxyl-
ates of 1 and 2 to binding interactions perhaps being offset by their
contributions to poor in vivo exposure, a strategy involving
replacement of this functionality with other groups having the po-
tential to form similar interactions without adversely influencing
PK properties was adopted.
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Scheme 1. Reagents and conditions: (a) ArB(OH)2, PdCl2(dppf), K2CO3, 2.5:1 dio-
xane/water, 80 �C; (b) Br2, CHCl3 or NBS, CHCl3; (c) TsCl, Bu4NHSO4, 6 N NaOH/
CH2Cl2, rt, 1 h or (i) LDA, THF, �78 �C, (ii) TsCl, �78 �C?rt; (d) Ar’B(OH)2,
PdCl2(dppf), K2CO3, 2.5:1 dioxane/water, 80 �C, 12 h, or Ar’B(OH)2, PdCl2(dppf),
K2CO3, 2.5:1 dioxane/water, lm, 150 �C, 5 min; (e) 2.5 N NaOH, dioxane, reflux, 1 h,
Bu4NF, THF, 60 �C, 30 min, or NaOH, MeOH, 80 �C, 12 h.
Analogs of the 7-azaindole 1 were prepared as shown in Scheme
1.8,9 Suzuki reaction of 5-bromoazaindole 3 with an arylboronic
acid was followed by selective bromination at the 3-position of
the azaindole to afford intermediate 4. The bromide 4 was con-
verted to 1-tosyl-7-azaindole 5, and Suzuki reaction and subse-
quent removal of the tosyl group afforded the target 3,5-diaryl-7-
azaindoles 1 and 6–9.

Relative to 1, the non-carboxylate-containing analogs prepared
demonstrated significantly reduced potency and further high-
lighted the importance of the carboxylate group (Table 1). The
methyl ester 6 was nearly 80-fold less potent than the parent acid
1, and the ketone 7 and primary amine 8 also suffered from signif-
icantly reduced potency. Tetrazole 9, at 160 nM, was closest in po-
tency to 1, suggesting that the acidic natures of both the tetrazole
of 9 and the carboxylic acid of 1 contributed to their enhanced
inhibition potencies over non-acidic analogs 6–8. In fact, the rela-
tive acidities of tetrazole and benzoic acid (pKa = 4.9 vs pKa = 4.2)
are directly proportional to the SGK inhibition potencies of 9 and
1, which supports a proposed salt bridge interaction between the
acidic group and Lys127. In an attempt to maintain these proposed
electrostatic interactions, strategies that would allow for improve-
ment of in vivo exposure along with retention of the carboxylate
group were considered.

One proposed means of increasing oral exposure while keeping
the carboxylate group was to introduce steric bulk around the car-
boxylate groups of 1 and 2.10 The rationale behind this was two-
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fold: first, obstruction of the carboxylate might suppress any con-
jugate formation; and second, addition of lipophilic substituents
would decrease the overall polarity of the molecule and improve
solubility and permeability. The structure of 1 bound to SGK sug-
gested that introduction of phenyl ring substituents in the position
Table 2
SGK1 in vitro inhibition, and rat pharmacokinetic parameters for azaindoles 1, 2, and 16–22

N N
H

R
3

R
1

R
2

Entry R1 R2 R3 SGK1 IC50

(nM)
M-1 SCC IC50

(lM)
Rat PK parametersa

CLp
(mL/min/kg)

Vdss

(L/kg)
iv t½

b

(min)
Oral AUC0-t

(ng h/mL)
Oral DNAUC0-t

(ng h/mL/mg/kg)

1 Ph –CO2H H 40 1.30 64.4c,f 8.8c,f 564c,f 392 (74)c,f 154 (28)c,f

16 Ph –CO2H CH3
20 0.71 9.4 (1.2)d 0.43 (0.15)d 97 (9)d 1499 (188)d 600 (80)d

17 Ph –CO2H
CH3

H3C
5 0.58 21.9 (4.2)d 0.62 (0.20)d 70 (29)d 373 (105)d 176 (48)d

18 Ph –CO2H 13 0.58 25.7 (4.7)d 0.77 (0.29)d 95 (54)d 313 (113)d 134 (43)d

2 b-Naphthyl –CH2CO2H H 63 0.88 21.3c,f 1.3c,f 253c,f 467 (304)c,f 225 (143)c,f

19 b-Naphthyl
OH

O
H 125 NT NT

20 b-Naphthyl
OH

O
H 63 0.87 4.32 (0.57)e 0.67 (0.21)e 264 (81)e 4173 (1075)e 2100 (550)e

21 Ph
OH

O
H 50 1.46 NT

22 3-CN–Ph
OH

O
H 40 2.0 6.56e,f 2.5e,f 488e,f 1913 (316)e,f 905 (143)e,f

a Values are means of three experiments, standard deviation is given in parentheses.
b Terminal half life unless indicated.
c Discrete study.
d Part of a cassette study conducted on a mixture of five compounds.
e Part of a cassette study conducted on a mixture of four compounds.
f Average of two values. NT = not tested.
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ortho to the carboxylate might be accommodated; while that of 2
indicated that the a-carbon would also tolerate substitution with-
out disrupting binding. Boronic acid intermediates needed for the
synthesis of ortho-substituted analogs of 1 were accessed as shown
in Scheme 2.11 The starting 4-bromo-2-fluorobenzoic acid 10 was
treated with Grignard reagents to afford the 2-alkyl-4-bromoben-
zoic acid intermediates,12 which were converted to boronic acids
11 using a protocol involving metal-halogen exchange, trapping
with triisopropyl borate and hydrolysis with aqueous HCl. For
the latter approach, two boronates, 13 and 15 were prepared as
shown in Scheme 3. Phenylacetic acid boronate 12 was esterified
to its methyl ester 13,13 while the bromide 14 was converted to
its boronate ester 15.14 The boronic acids 11, 13, and 15 were then
utilized in the syntheses of target azaindoles 16–22 as detailed in
Scheme 1.15

The ortho-substituted analogs of 1 behaved very favorably in
the SGK1 in vitro assays, having improved inhibition potencies rel-
ative to 1 (Table 2, compounds 16–18). In general, increasing the
size of the substituent trended toward a corresponding increase
in isolated SGK1 inhibition and whole-cell potency. Phenylacetic
acid derivatives 19–22 also demonstrated good in vitro potencies.
These analogs appeared to be relatively insensitive to methyl sub-
stitution at the a-position of the phenylacetic acid, with potency
against the isolated enzyme for compounds 2, 19, and 20 all within
twofold of each other. In addition, the whole-cell potency re-
mained unchanged across the set. Compound 21 was essentially
equipotent to its direct analog 1, and substitution of the phenyl
ring in the 5-position with a meta-cyano group (22) also did not
significantly change either isolated enzyme or whole-cell potency.

As hypothesized, steric obstruction of the carboxylate group
also resulted in significantly different rat pharmacokinetic proper-
ties (Table 2). The ortho-substituted azaindoles 16–18 showed sig-
nificantly lower plasma clearances, reduced volumes of
distribution, and shorter iv half-lives. The parameters for com-
pound 16 were sufficiently improved such that the DNAUC follow-
ing oral dosing was nearly fourfold improved over that for 1.
Although the rat oral plasma concentration versus time plot for
16 indicated a secondary input peak, it was significantly smaller
than that for 1. Interestingly, the DNAUC values for 17 and 18 were
very similar to that of 1 and significant secondary input peaks were
observed for both after oral dosing (data not shown). The most
marked improvement in rat oral exposure was observed for ana-
logs with substitution inserted in between the carboxylate and
the phenyl ring. Plasma clearance values for compounds 20 and
22 were at least threefold lower and the DNAUC values were as
much as 10-fold higher than those of 2 and no secondary input
peaks were observed in either of their oral exposure curves.

In summary, inhibitors of SGK1 were designed to address the
poor rat PK properties of lead azaindoles 1 and 2. Improvement
of oral exposure while maintaining SGK1 inhibition potency
proved to be the key challenge, as the carboxylate moiety was be-
lieved to be good for the latter but detrimental for the former. Rat
PK could be improved by addition of alkyl substituents ortho to the
carboxylate of 1 or by introducing geminal dimethyl groups a to
the carboxylate of 2. Ultimately, several of the azaindoles de-
scribed were determined to meet the criteria set forth for in vivo
testing in pharmacological models.16
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