Synthesis of 20-Hydroxy-, 20-Amino-, and 20-Nitro-14-hydroxy-21-nor-56.146-pregnane C-3 Glycosides and Related Derivatives: Structure-Activity Relationships of Pregnanes That Bind to the **Digitalis Receptor**

John F. Templeton,^{*,†} Yangzhi Ling,[†] Talal H. Zeglam,[†] and Frank S. LaBella[‡]

Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada, and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada

Received July 16, 1992

The preparation of derivatives of 14-hydroxy-21-nor- 5β , 14β -pregnane and 5β , 14β -pregnane C-3 α -L-rhamnosides and tris- β -D-digitoxosides is described. These derivatives, possessing a C-17 β COCH₂OH, CH₂OH, CO₂H, CO₂Me, CH₂NH₂, or CH₂NO₂ group, bind to the digitalis receptor recognition site of heart muscle as measured in a radioligand binding assay. The 21-norpregnane derivatives consistently show greater binding affinity than the corresponding 20α - and 20β -pregnane analogs. The C-20 nitro rhamnoside is comparable to digitoxin in binding affinity. The 17β -CH₂NO₂ group is the most effective replacement for the unsaturated lactone in the binding assay found so far, showing binding affinity comparable to that of the cardiac glycosides.

Among the naturally occurring cardiac glycosides, the unsaturated γ - and δ -lactone rings are traditionally associated with strong receptor binding and positive inotropy.^{1,2} However, strong receptor binding and positive inotropy can also occur on substitution of the lactone with other groups.²⁻⁴ Certain pregnanes bind to the cardiac glycoside recognition site on Na⁺,K⁺-ATPase and inhibit the enzyme (the sodium pump) in membranes, cells, and tissues.⁵ The most potent derivatives identified, thus far, are pregnane C-3 glycosides that are cardiotonic and exert certain potentially useful effects on heart and kidney not shared by the digitalis drugs.⁶ Recently we have reported on the receptor binding of a number of 20α and 20β derivatives of 14-hydroxy-58.148-pregnane C-3 glycosides and their aglycones.⁴ We report here on the synthesis and receptor binding of the corresponding 21-norpregnane C-3 α -L-rhamnoside and β -D-digitoxoside derivatives.

Chemistry

Digitoxigenin α -L-rhamnoside tribenzoate (1) (see Scheme I), prepared as in ref 4, on alkaline hydrolysis yielded evomonoside (digitoxigenin α -L-rhamnoside) (2). Ozonolysis of the rhamnoside 2 and reduction of the

ozonide with zinc and acetic acid followed by mild hydrolysis of the intermediate C-21 ester with KHCO₃ gave the 21-hydroxymethyl ketone 3.7 Similar treatment of the cardenolide tribenzoate 1 followed by lithium tritert-butoxyaluminum hydride (LTBAH) reduction of the hydroxymethyl ketone 4 gave the 20ξ , 21-diols. Cleavage of the diols with NaIO₄ formed the aldehyde tribenzoate 5. Preparation of the 21-hydroxymethyl ketone 3 and the aldehyde 5 was carried out by methods reported for analogous compounds.^{7,8} LTBAH reduction of 5 followed by alkaline hydrolysis of the benzoate esters gave the 20alcohol 6. Treatment of 5 with hydroxylamine yielded the cis/trans oximes 7a, which on ester hydrolysis gave the oximes 7b. Catalytic reduction of 7b with PtO_2/H_2 in the presence of $CHCl_3^9$ gave the amine hydrochloride 8. Dimethyldioxirane oxidation of the amine salt¹⁰ yielded the nitro derivative 9.

The hydroxymethyl ketone trisdigitoxoside 10 was prepared as described in ref 7 and used to synthesize the derivatives shown in Scheme II by analogous methods to those employed in Scheme I. Thus LTBAH reduction followed by oxidative cleavage gave the noncrystalline aldehyde 11. Formation of the oxime followed by reduction with dissolving sodium metal in n-PrOH,¹¹ with concomitant hydrolysis of the acetate esters, yielded the amine 12. Ozonolysis of the amine gave the nitro derivative 13. LTBAH treatment of the aldehyde 11 followed by triacetate hydrolysis gave the alcohol 16. The carboxylic acid 14 was obtained from NaIO₄ oxidation of the hydroxymethyl ketone 10, which on CH_2N_2 treatment yielded the methyl ester 15.

© 1993 American Chemical Society

[†] Faculty of Pharmacy.

[‡] Faculty of Medicine.

⁽¹⁾ Guntert, T. W.; Linde, H. H. A. Chemistry and Structure-Activity Relationships of Cardioactive Steroids. In Cardiac Glycosides; Greeff,

K., Ed.; Springer-Verlag: Berlin, 1981; Part 1, Chapter 2, pp 13-24.
 (2) Thomas, R.; Gray, P.; Andrews, J. Digitalis: Its Mode of Action Receptor, and Structure-Activity Relationships. Adv. Drug Res. 1990, 19. 312-562.

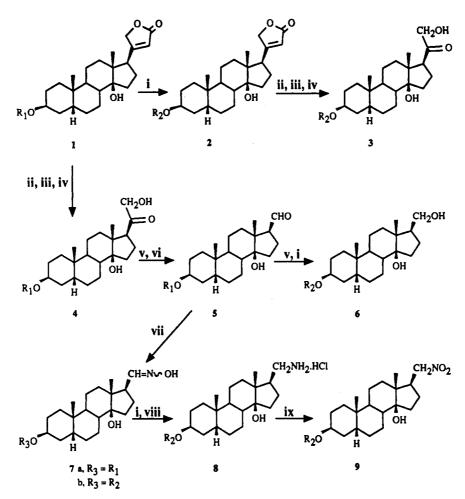
⁽³⁾ Templeton, J. F.; Setiloane, P.; Kumar, V. P. S.; Yan, Y.; Zeglam, T. H.; LaBella, F. S. Pregnanes that Bind to the Digitalis Receptor: Synthesis of 14-Hydroxy-59,148-pregnane Glycosides from Digitoxin and Digitoxigenin. J. Med. Chem. 1991, 34, 2778-2782.
(4) Templeton, J. F.; Ling, Y.; Zeglam, T. H.; Marat, K.; LaBella, F.

S. Synthesis of 20α - and 20β -Acetamido-, Amino-, Nitro- and Hydroxy-Derivatives of 14-Hydroxy-58,148-pregnane 38-Glycosides. J. Chem. Soc., Perkin Trans. 1 1992, 2503-251

⁽⁵⁾ Templeton, J. F.; Kumar, V. P. S.; Bose, D.; LaBella, F. S. Cardiac Glycoside-like Structure and Function of 56,146-Pregnanes. J. Med. Chem. 1989, 32, 1977-1981.

 ⁽⁶⁾ Templeton, J. F.; Kumar, V. P. S.; Bose, D.; Smyth, D. D.; Kim,
 R. S.; LaBella, F. S. Can. J. Physiol. Pharmacol. 1988, 66, 1420-1424. Smyth, D.; Templeton, J. F.; Kumar, V. P. S.; Yan, Y.; Widajewicz, W.; LaBella, F. S. Digitaloid Pregnanes Promote Potassium-Sparing Diuresis in the Guinea Pig. Can. J. Physiol. Pharmacol. 1992, 70, 723-727.

⁽⁷⁾ Templeton, J. F.; Ling, Y.; Jin, J.; Boehmer, M. A.; Zeglam, T. H.; aBella, F. S. Synthesis of 3β,14-Dihydroxy-5β,14β-pregnan-20-one Derivatives: Ozonolysis of Digitoxin and Digitoxigenin and their Derivatives followed by Zinc-Acetic Acid Reduction to the Methyl Ketone. J. Chem. Soc., Perkin Trans. 1 1991, 823-829.


⁽⁸⁾ Rabitzsch, G. Pharmazie 1971, 26, 592-597.

⁽⁹⁾ Secrist, J. A.; Logue, M. W. Amine Hydrochlorides by Reduction in the Presence of Chloroform. J. Org. Chem. 1972, 37, 335-336.
(10) Murray, R. W.; Rajadhyaksha, S. N.; Mohan, L. Oxidation of Primary Amines by Dimethyldioxirane. J. Org. Chem. 1989, 54, 5783-

^{5788.}

⁽¹¹⁾ Spreitzer, H.; Buchbauer, G.; Puringer, C. A Study of Selective Oxime Reduction Methods. Tetrahedron 1989, 6999-7002.

Scheme I⁴

 $R_1 = \alpha$ -L-rhamnoside tribenzoate

 $R_2 = \alpha - L$ -rhamnoside

^a Reagents: i, NH₃/MeOH; ii, O₃/CH₂Cl₂; iii, Zn/HOAc; iv, KHCO₃/H₂O/MeOH; v, LTBAH; vi, NaIO₄/EtOH; vii, HONH₂·HCl/NaOAc/ pyridine; viii, PtO₂/H₂/CHCl₃/MeOH; ix, dimethyldioxirane/Me₂CO.

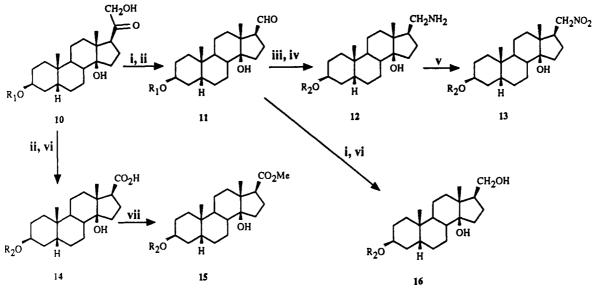
Condensation of the aldehyde 5 with nitromethane in the presence of KF^{12} gave the C-20 epimeric alcohols 17 (see Scheme III) which on acetylation and treatment with NaBH₄ followed by alkaline hydrolysis of the glycoside esters gave the 21-nitropregnane 18.

Structures for the 21-norpregnane derivatives were established from the ¹H and ¹³C NMR spectra and are in agreement with published data.^{3,4,13,14} Structures are consistent with the 17β and not the 17α stereochemistry.¹⁵

Results and Discussion

We have reported⁴ on the synthesis and radioligand binding affinity of 20α and 20β hydroxy, amino, nitro, and related derivatives possessing at C-3 either an α -Lrhamnoside or β -D-digitoxoside.⁴ The 20 β derivatives proved to have greater binding affinity than the corresponding 20α derivatives in a radioligand binding assay (RBA).^{4,16} Similarly the rhamnoside derivatives showed greater binding affinity than the digitoxosides.⁴ Comparison of the RBA results (see Table I) for the 21norpregnane derivatives with the corresponding pregnane analogs⁴ showed that they had greater binding affinity than either the 20α or 20β derivatives. Assuming that the polar C-20 group is of major importance for receptor binding affinity the most stable rotamer around the C-17 to C-20 bond can determine the optimum receptor interaction. The 20-methyl group in the pregnanes either restricts rotation about the bond, thereby obstructing optimum interaction of the polar group with the receptor, and/or the 20-methyl group itself sterically hinders receptor binding. Our recent report¹⁵ on the conformation of 20α , 20β , and 21-nor C-20 hydroxy, amino, and nitro pregnane derivatives shows that the polar substituents in 21-nor derivatives take up a conformation closer to that of the less potent 20α rather than the more potent 20β analogs. This inconsistency may result from a lower rotational energy in the 21-norpregnanes, compared with the pregnanes, allowing the C-17 group to take up the 20β orientation with little energy loss compared with the

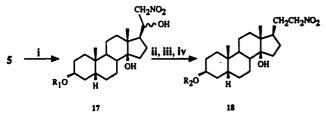
⁽¹²⁾ Wollenberg, R. H.; Miller, S. J. Nitroalkane Synthesis. A Convenient Method for Aldehyde Reductive Nitromethylation. Tetrahedron Lett. 1978, 3219-3222.


 ⁽¹³⁾ Habermehl, G. G.; Hamman, P. E.; Wray, V. ¹³C NMR Spectra of 5β,14β-Hydroxysteroids. Magn. Reson. Chem. 1985, 23, 959–963.
 (14) Drakenberg, T.; Brodelius, P.; McIntyre, D. D.; Vogel, H. J. Structural Studies of Digitoxin and Related Cardenolides by Two-Dimensional NMB Const. Chem. 1020, 63, 620, 6720. Dimensional NMR. Can. J. Chem. 1990, 68, 272-277. (15) Marat, K.; Templeton, J. F.; Ling, Y. An NMR Study of

Conformation and Configuration in C-20 Substituted 56,146-Pregnanes, 5β-Pregn-14-enes and 21-Nor-5β,14β-pregnanes. Magn. Reson. Chem., in pre

⁽¹⁶⁾ Bose, D.; Elliot, D.; Kobayashi, T.; Templeton, J. F.; Kumar, V. P. S.; LaBella, F. S. 143-Hydroxyprogesterone Binds to the Digitalis Receptor, Inhibits the Sodium Pump and Enhances Cardiac Contractility. Br. J. Pharmacol. 1979, 67, 345-352.

⁽¹⁷⁾ Seeman, J. I. Effect of Conformational Change on Reactivity in Organic Chemistry. Evaluations, Applications, and Extensions of Curtin-Hammett/Winstein-Holness Kinetics. Chem. Rev. 1983, 83, 83-134.



 $R_1 = tris-\beta-D$ -digitoxoside tetraacetate $R_2 = tris-\beta-D$ -digitoxoside

^a Reagents: i, LTBAH; ii, NaIO₄/EtOH; iii, HONH₂·HCl/NaOAc/pyridine/EtOH; iv, Na/n-PrOH; v, O₃/CH₂Cl₂; vi, NaOH/MeOH; vii, CH₂N₂.

Scheme III^a

$R_1 = \alpha$ -L-rhamnoside tribenzoate $R_2 = \alpha$ -L-rhamnoside

^a Reagents: i, CH₃NO₂/KF/*i*-PrOH; ii, Ac₂O/pyridine/DMAP; iii, NaBH₄/EtOH; iv, NH₃/MeOH.

 Table I.
 [3 H]Ouabain Radioligand Assay Potency of

 14-Hydroxy-21-nor-5 β , 14 β -pregnanes and -5 β , 14 β -pregnanes^{a,b}

no.	3β	17β	IC ₅₀ , nM ⁴
3	α-L-rhamnoside	COCH ₂ OH	1070
6	α -L-rhamnoside	CH₂OH	360
8	α -L-rhamnoside	CH ₂ NH ₂ ·HCl	99
9	α -L-rhamnoside	CH_2NO_2	12
12	β -D-digitoxoside	CH_2NH_2	270
13	β -D-digitoxoside	CH ₂ NO ₂	88
14	β -D-digitoxoside	COOH	36000
15	β -D-digitoxoside	COOMe	15000
16	β -D-digitoxoside	CH₂OH	610
18	α -L-rhamnoside	CH ₂ CH ₂ NO ₂	45

 a IC₅₀ represents the concentration that inhibits binding of [³H]ouabain by 50%. b Digitoxigenin IC₅₀ 8 nM. c Average of three to four values.

receptor binding energy in agreement with the Curtin-Hammett principle.¹⁷

Comparison of the binding affinity of the hydroxymethyl ketone 3 with the hydroxymethyl derivative 6 shows that the hydroxymethyl ketone is less important for binding than the hydroxymethyl group. The C-20 trisdigitoxoside carboxylic acid 14 and its methyl ester 15 were considerably less potent than the hydroxy, amino, and nitro derivatives. The 21-norpregnane hydroxy, amino, and nitro derivatives increase in potency in this order both in the rhamnoside and digitoxoside derivatives. Thus compound 9 > 8 > 6 and compound 13 > 12 > 16. The nitro rhamnoside 9 (IC₅₀ 12 nM) shows receptor binding potency comparable

with that of digitoxin (IC₅₀ 8 nM). The nitro group therefore is the most effective substitute discovered for the lactone ring of the cardiac glycoside as determined in the RBA. Extension of the C-17 side chain in the nitro derivative by one carbon unit to form the 21-nitropregnane 18 retained high potency (18, IC₅₀ 45 nM).

Experimental Section

Reactions were monitored by TLC on silica gel (Merck type 60H) and plates developed in EtOAc/PE, acetone/PE, and ether/ PE (genins) or 5–10% MeOH/CH₂Cl₂ (glycosides) and visualized by dipping in 5% sulfuric acid/EtOH followed by heating. PE refers to the hydrocarbon fraction bp 35–60 °C. Flash chromatography was carried out on silica gel (Merck type 60 for column chromatography). Elemental analyses for carbon and hydrogen are within $\pm 0.3\%$ of theoretical values. Melting points are uncorrected. RBA measurements were carried out as described in ref 16.

Evomonoside (2). Evomonoside tribenzoate (1) (1 g), prepared from digitoxigenin as described in ref 4, was treated with MeOH (50 mL) and 10% NH₃/MeOH (25 mL) at room temperature for 16 h. After evaporation the residue gave 2 (470 mg, 75%), mp 234-238 °C (lit.¹⁸ mp 238-240 °C) from MeOH/water.

14,21-Dihydroxy- 3β -(α -L-rhamnopyranosyloxy)- 5β ,14 β pregnan-20-one (3). Treatment of 2 (200 mg, 0.39 mmol) in MeOH (5 mL) and CH₂Cl₂ (15 mL) with ozone at -70 °C followed by Zn powder (2 g) and HOAc (2 mL) as described below for 4 gave a residue which was treated with MeOH (20 mL) and KHCO₃ (25 mg) in water (6 mL) under Ar for 14 h. Flash chromatographic separation gave on elution with 10% MeOH/CH₂Cl₂ compound 3 (70 mg, 37%), mp 197-201 °C. Anal. (C₂₇H₄₄O₈·0.5H₂O) C, H.

14,21-Dihydroxy- 3β -[(tri-O-benzoyl- α -L-rhamnopyranosyl)oxy]- 5β ,14 β -pregnan-20-one (4). Treatment of 1 (350 mg, 0.42 mmol) in CH₂Cl₂ (100 mL) with ozone at -70 °C for 1 h, when excess ozone was removed by a stream of Ar, and Zn powder (1.75 g) and HOAc (10 mL) were added and the mixture stirred for 2 h while the mixture came to room temperature. The mixture was filtered and the filtrate washed with water and saturated NaHCO₃. The residue from evaporation (TLC showed two components) was treated in MeOH (38 mL) with KHCO₃ (50 mg in 12 mL of water) and stirred for 14 h when HOAc (2 mL) was added. The residue from evaporation was flash chromato-

⁽¹⁸⁾ Hauenstein, H.; Hunger, A.; Reichstein, T. L. Evomonoside from the seeds of Evonymus europaea L. Helv. Chim. Acta 1953, 36, 87-90.

SAR of Pregnanes Binding to Digitalis Receptor

graphed. Elution with 40% acetone/PE gave 4 (228 mg, 68%), mp 198–202 °C from MeOH/water. Anal. ($C_{49}H_{56}O_{11}$) C, H.

14-Hydroxy-3 β -[(tri-O-benzoyl- α -L-rhamnopyranosyl)oxy]-21-nor-5 β ,14 β -pregnane-20-carboxaldehyde (5). Ketol 4 (150 mg, 0.185 mmol) in dry ether (20 mL) was stirred with LTBAH (188 mg, 0.74 mmol) under Ar for 1 h. Saturated NaHCO₃ (20 mL) was added and the mixture extracted with CH₂Cl₂. Evaporation of the solvent gave a crude product (130 mg, TLC showed one major component) which was dissolved in EtOH (10 mL) and treated with NaIO₄ (158 mg, 0.74 mmol) in water (1 mL) for 1 h. Water (50 mL) was added and the mixture extracted with CH₂Cl₂ to give a residue which was separated by flash chromatography on elution with 20% acetone/PE to give 5 (58 mg, 40%), mp 242-246 °C from acetone/PE. Anal. (C₄₇H₅₄O₁₀·1.5H₂O) C, H.

14,20-Dihydroxy- 3β -(α -L-rhamnosopyranosyloxy)-21-nor-5 β ,14 β -pregnane (6). The aldehyde 5 (400 mg, 0.5 mmol) in anhydrous ether (40 mL) was treated with LTBAH (508 mg, 2.6 mmol) for 1 h. Saturated NaHCO₃ (40 mL) was added and the mixture extracted with CH₂Cl₂ to give on evaporation a residue which was dissolved in MeOH and treated with 10% NH₃/MeOH (15 mL) at 0 °C for 14 h. After evaporation the residue was flash chromatographed on silica gel to give 6 on elution with 10% MeOH/CH₂Cl₂ (40 mg, 17%), mp 155–157 °C from acetone/PE. Anal. (C₂₈H₄₄O₇·0.5H₂O) C, H.

20-Amino-14-hydroxy-3β-(α-L-rhamnosopyranosyloxy)-21-nor-5\$,14\$-pregnane Hydrochloride (8). The aldehvde 5 (200 mg, 0.25 mmol), HONH₂·HCl (52 mg, 0.75 mmol), NaOAc·3H₂O (50 mg, 0.37 mmol) and pyridine (1 mL) in EtOH (10 mL) was refluxed for 2 h, poured into icewater, and extracted with CH_2Cl_2 . Evaporation gave the cis/trans oximes 7a [¹H NMR $(CHCl_3) \delta 7.51 (d, J = 9 Hz (cis)); 6.81 (d, J = 8 Hz (trans));$ cis:trans (2:1)]. The cis/trans oximes, obtained as described above (300 mg, 0.61 mmol), were treated with MeOH (20 mL) and 10% $NH_3/MeOH$ (10 mL) for 14 h to give on evaporation 7b. The oximes 7b (50 mg, 0.10 mmol) in MeOH (5 mL) containing CHCl₃ (0.3 mL) was hydrogenated at 1 atm with PtO₂ (25 mg) as catalyst for 16 h.⁹ The mixture was filtered through a Celite pad and evaporated at room temperature. The residue was triturated with ether to give 8 (33 mg, $65\,\%$), mp 217–218 °C from MeOHether. Anal. (C₂₆H₄₆O₆NCl·0.5H₂O) C, H, N, Cl.

20-Nitro-14-hydroxy- 3β -(α -L-rhamnosopyranosyloxy)-21nor- 5β ,14 β -pregnane (9). To the amine-HCl 8 (60 mg, 0.12 mmol) in MeOH (1 mL) was added 0.1 M dimethyldioxirane in acetone (8 mL), prepared as reported by Adam et al.,¹⁹ and the mixture was stirred for 30 min.¹⁰ On evaporation the residue was flash chromatographed by elution with 50% acetone/PE to give 9 (42 mg, 71%), mp 265-268 °C from MeOH/PE. Anal. (C₂₈H₄₃O₈N·H₂O) C, H, N.

20-Amino-14-hydroxy-3 β -(tris- β -D-digitoxosyloxy)-21-nor-5 β ,14 β -pregnane (12). To a stirred solution of 10 (600 mg, 0.81 mmol), prepared from digitoxin as described in ref 7, in tetrahydrofuran (100 mL) was added LTBAH (1.36 g, 5.35 mmol). After 15 min the mixture was concentrated, excess aqueous 10% NaOH added, and extracted with CH₂Cl₂ to give a residue which was dissolved in 95% EtOH (30 mL) and NaIO₄ (600 mg, 2.8 mmol, in 5 mL of water) added with stirring. After 1 h the mixture was concentrated, diluted with water, and extracted with CH₂-Cl₂ to give after flash chromatography on silica gel on elution with 3% MeOH/CH₂Cl₂ the noncrystalline aldehyde 11: ¹H NMR (CHCl₃) δ 9.72 (d, J = 3.8 Hz (CHO)). The aldehyde 11 (300 mg, 0.43 mmol) in 95% EtOH (20 mL) containing HONH₂·HCl (600 mg) and NaOAc·3H₂O (430 mg in 5 mL of water and 7.5 mL of pyridine) was refluxed for 2 h. Extraction with CH_2Cl_2 gave on evaporation the oximes which were dissolved in *n*-PrOH (20 mL) and Na metal (1.2 g) added in portions over 2.5 h to the refluxing solution. Extraction with CH_2Cl_2 gave the amine 12 (86 mg, 37%), mp 239–243 °C from ether/MeOH. Anal. ($C_{38}H_{65}NO_{11}$) C, H, N.

20-Nitro-14-hydroxy-3 β -(tris- β -D-digitoxosyloxy)-21-nor-5 β ,14 β -pregnane (13). A stream of ozone was passed through the amine 12 (142 mg, 0.20 mmol) in CH₂Cl₂ (50 mL) cooled in an solid CO₂ bath at -70 °C for 2.5 h. Excess ozone was removed in a stream of N₂ and the residue from evaporation flash chromatographed on silica gel. Elution with 3% MeOH/CH₂Cl₂ gave 13 (50 mg, 34%), mp 246-249 °C from ether. Anal. (C₃₈H₆₃-NO₁₃) C, H.

14-Hydroxy-3 β -(tris- β -D-digitoxosyloxy)-21-nor-5 β ,14 β pregnane-20-carboxylic Acid (14). To a stirred solution of 10 (515 mg, 0.70 mmol), prepared from digitoxin as described in ref 7, in 95% EtOH (20 mL) was added NaIO₄ (1.06 g, 5.0 mmol, in 8 mL of water). After 1 h the mixture was concentrated, diluted with water, and extracted with CH₂Cl₂ to give a product which was dissolved in 0.235 M methanolic NaOH (20 mL), refluxed for 1 h, cooled, neutralized with HOAc, and extracted with CH₂-Cl₂ to give the acid 14 (228 mg, 55%), mp 235–237 °C from CHCl₃/ acetone. Anal. (C₃₈H₆₂O₁₃) C, H.

14,20-Dihydroxy-3 β -(tris- β -D-digitoxosyloxy)-21-nor-5 β , 14 β -pregnane-20-carboxylic Acid Methyl Ester (15). To the acid 14 (183 mg, 0.25 mmol) in MeOH (20 mL) was added ethereal CH₂N₂ until a yellow color persisted followed by evaporation and recrystallization from CHCl₃/acetone to give the methyl ester 15 (153 mg, 82%), mp 254-257 °C. Anal. (C₃₉H₆₄O₁₃) C, H.

14,20-Dihydroxy-3 β -(tris- β -D-digitoxosyloxy)-21-nor-5 β , 14 β -pregnane (16). To 11 (140 mg, 0.20 mmol) in tetrahydrofuran (20 mL) was added LTBAH (318 mg, 1.25 mmol). After 15 min the solution was diluted with water and extracted with CH₂Cl₂ to give a residue which was dissolved in 0.1 M methanolic NaOH (20 mL) and refluxed for 1 h. CH₂Cl₂ extraction gave the alcohol 16 (65 mg, 46%), mp 247-249 °C from CHCl₃/acetone. Anal. (C₃₈H₆₄O₁₂) C, H.

14,20-Dihydroxy-21-nitro-3β-(α-L-rhamnopyranosyloxy)-56,146-pregnane (18). The aldehyde 5 (1.1 g, 1.3 mmol), nitromethane (400 mg, 6.4 mmol, freshly distilled), and KF (94 mg, 1.0 mmol) were stirred in dry 2-PrOH (20 mL) for 14 h.¹¹ After evaporation the residue was flash chromatographed on silica gel. Elution with 20% acetone/PE gave 17, as a noncrystalline fraction (460 mg). Compound 17 (250 mg, 0.30 mmol), acetic anhydride (1 mL), and 4-(dimethylamino)pyridine (DMAP) (10 mg) in dry ether (5 mL) was stirred for 14 h. Ether (50 mL) and excess aqueous NaHCO₃ was added to give on evaporation a residue which was dissolved in MeOH (4 mL), and NaBH₄ (80 mg) was added. After stirring for 1 h, water was added and the mixture extracted with CH₂Cl₂ to give a residue which was treated with MeOH (5 mL) and 10% NH₃/MeOH (5 mL) for 14 h. After evaporation of the solvent, the residue was flash chromatographed. Elution with 7.5% MeOH/CH₂Cl₂ gave the 21-nitro derivative 18 (32 mg, 21%), mp 227-229 °C from acetone/ether/ PE. Anal. $(C_{27}H_{45}O_8N)$ C, H, N.

Acknowledgment. We thank the Medical Research Council of Canada and the Manitoba Heart and Stroke Foundation for financial assistance. NMR spectra were recorded by T. Foniak, Department of Chemistry, University of Manitoba. F.S.L. is a Career Investigator of the Medical Research Council of Canada.

⁽¹⁹⁾ Adam, W.; Chan, Y. Y.; Cremer, D.; Gauss, J.; Schentzow, D.; Schindler, M. Spectral and Chemical Properties of Dimethyldioxirane as Determined by Experiment and ab Initio Calculations. J. Org. Chem. 1987, 52, 2800-2803.

Supplementary Material Available: Tables containing ¹H and ¹³C NMR spectral data (5 pages). Ordering information is given on any current masthead page.