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Abstract—Optimization of a benzyl piperazine pharmacophore produced N-acyl-4-indanyl-piperazines that bind with high affinity
to melatonergic MT2 receptors. (R)-4-(2,3-dihydro-6-methoxy-1H-inden-1-yl)-N-ethyl-1-piperazine-carboxamide fumarate (13) is a
water soluble, selective MT2 agonist, which produces advances in circadian phase in rats at doses of 1–56 mg/kg that are no dif-
ferent from those of melatonin at 1 mg/kg. Unlike melatonin, 13 produced only weak contractile effects in rat tail artery.
# 2003 Elsevier Science Ltd. All rights reserved.

The secretion of melatonin in the pineal gland plays a
major role in the regulation of circadian and seasonal
behavior in mammals.1 The MT1 (formerly Mel1A) and
the MT2 (formerly Mel1B) melatonin receptors were
cloned2 from human hypothalamus in 1994–1995. While
the MT1 melatonin receptor was previously thought to
mediate the entrainment of circadian rhythms, melato-
nin shows phase shifting activity in knock-out mice
lacking the MT1 receptor,3 and the MT2 selective
antagonist, 4-P-PDOT,4 blocks the phase shifting activ-
ity of melatonin.5 This evidence supports the involve-
ment of MT2 melatonin receptors in the entrainment of
circadian rhythms.

In previous work, the 4-benzyl piperazine moiety was
identified as a new 5-HT1A pharmacophore.6 Further
optimization of this pharmacophore identified the
2-fluoro-5-methoxy substituent pattern as potentiating
binding and giving a compound with sub-nanomolar
affinity for the 5-HT1A receptor.7 Since melatonin is
structurally related to serotonin, we chose to investigate
whether this serotonergic pharmacophore could be
modified into a melatonergic pharmacophore by simple
acylation. We now report that while the N-acyl-4-ben-
zylpiperazines possess modest melatonergic affinity,
adding an element of structural rigidity by ring fusion

gives N-acyl-4-indanylpiperazines8 that bind with high
affinity to MT2 melatonergic receptors. Two other MT2
selective agonists have been described in the literature:
N-butanoyl-2-(2-methoxy-6H-isoindolo[2,1-a]indol-11-
yl)ethyl amine,9 and N-[2-(7-methoxy-1-naphthyl)-
ethyl]cyclobutylcarboxamide.10

4-(2-Fluoro-5-methoxybenzyl)piperazines, 1-3, were
prepared by the method shown in Scheme 1. 4-Fluoro-
anisole was lithiated11 and reacted with DMF to give
the benzaldehyde. Reductive amination with piper-
azine12 and subsequent acylation gave the benzyl
piperazines 1–3. Compounds 1–3 were weakly active at
MT2 receptors, and we sought to improve their affinities
by conformational constraint. While (2,3-dihydro-6-
methoxy-1H-inden-1-yl) piperazine was previously pre-
pared by alkylation of piperazine with 1-chloro-6-
methoxyindane,13 this method could not be reproduced
in our hands and gave only dehydrochlorination. A tita-
nium(IV) isopropoxide reductive amination procedure14
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was modified15 as shown in Scheme 1 to give the desired
6-methoxyindanyl piperazine (80% yield), which was
resolved16 using camphorsulfonic acid and absolute ste-
reochemistry was determined by X-ray crystallography
of (�)-(10R)-(2,3-dihydro-6-methoxy-1H-inden-1-yl)pi-
perazine, (1S)-10-camphor-sulfonic acid salt.17 The tet-
ralin homologue was prepared in a similar manner from
7-methoxy-1-tetralone, and 7-methoxy-naphthyl-piper-
azine was prepared by literature methods.18 The sub-
stituted piperazines were acylated using acid chlorides
or isocyanates to give the desired amide and urea pro-
ducts (1–20).19

Compounds 1–20 were evaluated for MT1 and MT2

binding using published assay methods (Table 1).2 The
initial group of benzyl piperazine amides failed to
demonstrate potent affinity for melatonergic receptors.
Acetamide, 1, lacked affinity for either melatonergic
receptor, while the cyclopropylcarboxamide (2), and
isobutyramide, (3), had only modest affinity for the
MT2 receptor and no affinity for the MT1 receptor. In
contrast, the conformationally restricted indanyl piper-

azines (4–10), had good to excellent affinity for the MT2

receptor with little affinity for the MT1 receptor. MT2

binding was optimal with butyramide 6, cyclopropane
carboxamide 8, isobutyramide 9, and ethyl urea 10. MT2

affinity was attenuated with smaller amides 4 and 5, or
with larger amides, e.g., 7. MT2 and MT1 affinities were
found only in the R-enantiomers (11–13), while the
S-enantiomers (14–16), are inactive at both receptors.
The larger tetralin homologues (17–18), showed a
reduced level of MT2 affinity, while in the naphthyl ana-
logues (19–20), MT2 affinity was even further reduced.

A structurally similar series of amides, for example, 21,
has been described in the literature20 which have the
amide side chain in the same orientation as the indanyl
piperazines (11–13). Unlike the piperazine amides, 11–13,
which are MT2 selective, compound 21 binds with high
affinity to both MT1 and MT2 receptors.

21

These binding studies identified 13 as a potent and
selective ligand for the MT2 receptor. Both MT1 and
MT2 are G-protein-coupled receptors and are negatively
linked to adenylyl cyclase by pertussis toxin sensitive
G-proteins.23 Compound 13 was further tested for
functional activity in a MT2 adenylyl cyclase assay24

(Fig. 1) and found to be a full agonist (EC50: 2.4�1.6
nM; intrinsic activity: 0.98�0.12).

In vascular tissue, melatonin potentiates the contractile
responses to serotonin.25 It has been proposed that MT2

receptors mediate relaxation and that the contractile
effects of melatonin may be mediated via MT1 recep-
tors.26 Supporting this hypothesis, the MT2 agonist, 13,

Figure 1. Agonist effects of melatonin and 13 on forskolin-induced
cAMPproduction inNIH3T3 cells expressing the nhumanMT2 receptor.

Scheme 1. (a) Piperazine, NaBH3CN; (b) acylation; (c) NaBH4; (d)
SOCl2; (e) piperazine; (f) piperazine, Ti(OiPr)4, NaBH4, EtOH; (g)
resolution; (h) acylation with either an acid chloride, anhydride, or
isocyanate.

Table 1. Melatonin MT1 and MT2 receptor binding22 of Melatonin

(Mel) and Compounds 1–20

Compd R n Chirality MT1 IC50 (nM) MT2 IC50 (nM)

Mel — — 0.6 0.3
1 Me — >1000 >1000
2 cPr — >1000 270
3 iPr — >1000 224
4 Me 1 � >1000 44
5 Et 1 � >1000 32
6 nPr 1 � >1000 2.3
7 nBu 1 � >1000 103
8 cPr 1 � 156 3.0
9 iPr 1 � 160 1.5
10 NH-Et 1 � >1000 3.1
11 cPr 1 R 44.5 1.6
12 iPr 1 R 116 1.5
13 NH-Et 1 R 200 1.7
14 cPr 1 S >1000 >1000
15 iPr 1 S >1000 >1000
16 NH-Et 1 S >1000 >1000
17 cPr 2 � >1000 75
18 NH-Et 2 � >1000 94
19 cPr — >1000 90
20 NH-Et — >1000 >1000
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produced only weak contractile effects in rat tail artery
(0.24 relative to melatonin).27

The effects of the selective MT2 agonist, 13, on circadian
phase advance28,29 were investigated (Fig. 2). Both
vehicle injection and no injection gave no significant
phase advance, while melatonin (1 mg/kg) gave a sig-
nificant phase advance of 28 min. Compound 13 at
doses from 1 to 56 mg/kg produced phase advances that
were not significantly different from that produced by
melatonin. This data further supports the involvement
of the MT2 receptor in the entrainment of circadian
rhythms.

The present studies have identified the water-soluble30

compound, 13, as a potent MT2 agonist that produces
advances in circadian phase similar to those produced
by melatonin. Unlike melatonin, 13 produces only weak
contractile effects in vitro in rat tail artery. These studies
provide further support for the hypothesis that MT2

receptors mediate the entrainment of circadian rhythms
and not vasoconstriction.
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