

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 4759-4762

Discovery of potent and selective β-homophenylalanine based dipeptidyl peptidase IV inhibitors

Jinyou Xu,^{a,*} Hyun O. Ok,^a Edward J. Gonzalez,^a Lawrence F. Colwell, Jr.,^a Bahanu Habulihaz,^a Huaibing He,^a Barbara Leiting,^b Kathryn A. Lyons,^a Frank Marsilio,^b Reshma A. Patel,^b Joseph K. Wu,^b Nancy A. Thornberry,^b Ann E. Weber^a and Emma R. Parmee^a

^aDepartment of Medicinal Chemistry, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA ^bDepartment of Metabolic Disorders, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA

> Received 25 May 2004; revised 21 June 2004; accepted 21 June 2004 Available online 31 July 2004

Abstract—Modification of in-house screening lead β -aminoacyl proline 8 gave an equipotent thiazolidide 9. Extensive SAR studies on the phenyl ring of 9 led to the discovery of a novel series of potent and selective DP-IV inhibitors. Introduction of a fluorine at the 2-position proved to be crucial for the potency of this series. The 2,5-difluoro (22q) and 2,4,5-trifluoro (22t) analogues were potent inhibitors of DP-IV (IC₅₀=270, 119nM, respectively). © 2004 Elsevier Ltd. All rights reserved.

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that is released from the gut during meals and serves as an enhancer of glucose stimulated insulin release from pancreatic β -cells. Chronic infusion of GLP-1 to patients with type 2 diabetes resulted in significant decreases in both blood glucose and hemoglobin A_{1c} levels,¹ however, GLP-1 is rapidly degraded in plasma by the serine protease dipeptidyl peptidase IV (DP-IV). Inhibition of DP-IV increases the levels of endogenous intact circulating GLP-1. Thus, inhibition of DP-IV is rapidly emerging as a novel therapeutic approach to the treatment of type 2 diabetes.²

A range of DP-IV inhibitors have been reported, some of which are illustrated in Figure 1. The (S)-2-cyanopyrrolidine derivatives 1 and 2 are potent inhibitors of DP-IV, but both compounds contain an electrophilic nitrile group.³ A systemic study to improve the chemical stability of such nitrile-containing compounds has been reported recently.⁴ Inhibitors lacking an electrophile, such as 3 and 4, are generally of only modest intrinsic potency.⁵ Earlier reports from our laboratories described 4-amino cyclohexylglycine analogues 5 and 6

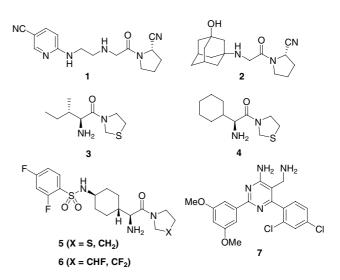


Figure 1. Published DP-IV inhibitors.

as potent DP-IV inhibitors lacking an electrophile.^{6,7} More recently, 4-aminomethylpyrimidine 7 was reported as a very potent DP-IV inhibitor (IC₅₀= 0.1 nM).⁸ In an effort to find novel structural classes, we have identified β -aminoacyl proline 8 (Fig. 2) from the Merck sample collection as a novel lead. It was soon discovered that the right-hand side of 8 could be

Keywords: DP-IV.

^{*} Corresponding author. Tel.: +1-732-594-2217; fax: +1-732-594-5790; e-mail: jinyou_xu@merck.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.06.099

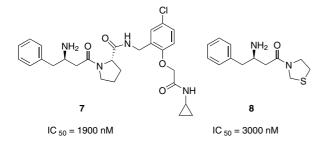
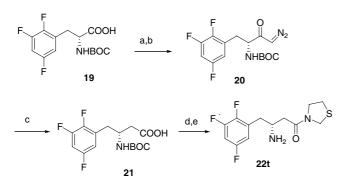



Figure 2. Initial leads.

replaced by a thiazolidine without a significant loss in potency while reducing the molecule weight of the initial lead by half. The work described here summarizes our initial efforts at optimizing the left-hand side of this novel series of β -homophenylalanine based DP-IV inhibitors.

The β -amino acid derived inhibitors were prepared by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)mediated coupling of β -amino acids with thiazolidine. Noncommercially available β -amino acids were readily accessible via the Arndt-Eistert homologation of a-amino acids (Scheme 1), which were either commercially available or prepared using Evans' asymmetric azidation⁹ or Schöllkopf's bis-lactim methodology.¹⁰ A representative example of the synthesis of these inhibitors is shown in Scheme 1. Treatment of α -amino acid **19** with isopropyl chloroformate followed by reaction with an excess of diazomethane afforded diazo ketone 20. Sonication of the diazo ketone in 1,4-dioxane in the presence of silver benzoate resulted cleanly in the formation of β -amino acid 21.¹¹ An EDC-mediated coupling of 21 with thiazolidine followed by deprotection of the tert-butylcarbamate provided the desired compound 22t.12

Inhibitors were tested for their selectivity profiles against a variety of DP-IV homologues and proline-specific enzymes including quiescent cell proline dipeptidase (QPP/ DPP-II), prolyl endopeptidase (PEP), amino peptidase P (APP), and prolidase. Since significant off-target activity was only observed with QPP (<100,000 nM), inhibition data are presented for DP-IV and QPP only.¹³

Scheme 1. Reagents: (a) Et_3N , *i*-PrO(CO)Cl, THF; (b) CH_2N_2 , ether; (c) $C_6H_5CO_2$ -Ag⁺, H₂O, dioxane, sonication, rt; (d) thiazolidine, EDC, HOBT, DIEA, DMF; (e) trifluoroacetic acid, CH_2Cl_2 , 1 h.

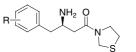

With the goal of finding analogues of thiazolidide 9 (Fig. 2) with increased potency, initially we looked at replacement of the phenyl group in 9 to see if it was essential for the activity in this series. Table 1 summarizes the DP-IV inhibitory properties of these β -amino thiazolidides. Lengthening or shortening the distance between the phenyl group and the amino group was not tolerated (10, 11). Replacement of the phenyl group with a heterocycle usually resulted in a decrease in potency. However, the bioisosteric thiophene 15 was only 2-fold less potent. Replacement of the phenyl group with a cyclopentyl or cyclohexyl group resulted in 10-fold decrease in potency. We also prepared the enantiomer of 9, which was inactive (DP-IV IC₅₀>100,000 nM). At that point, we decided to examine substitution on the phenyl ring in 9.

Table 2 summarizes the SAR of these derivatives. In most cases, mono-substitution on the phenyl ring had little effect or was detrimental to activity. However, addition of a fluorine or methyl group at the 2-position of the phenyl ring increased potency by 3-fold (22a, 22b). The 3,4-difluoro analogue 22n was also very interesting because it was more potent than 3-fluoro analogue 22e and 4-fluoro analogue 22h. We observed the beneficial additive effect of substitution at both the 3- and 4-position on the phenyl ring. Therefore, we

Table 1. Inhibitory property of β -aminoacid thiazolidides

Compd	R	DP-IV IC ₅₀ , nM			
9		3000			
10		>100,000			
11		16,480			
12		39,640			
13	N	44,860			
14	N	51,000			
15	S	5700			
16	0	46,910			
17	\sum	27,470			
18	\bigcirc	33,000			

Table 2. Inhibitory properties of β -aminoacid thiazolidides

		0		
Compds	R	DP-IV IC50, nM	QPP IC50, nM	
9	2-H	3000	>100,000	
22a	2-F	931	49,700	
22b	2-Me	981	92,060	
22c	2-CN	2519	>100,000	
22d	2-CF ₃	2263	82,120	
22e	3-F	2026	48,510	
22f	3-CN	8951	29,750	
22g	3-CF ₃	3611	24,570	
22h	4-F	3279	67,630	
22i	4-C1	3028	36,190	
22j	4-I	10,700	5775	
22k	$4-CF_3$	7688	ND	
221	4-CN	14,860	ND	
22m	$4-NO_2$	1552	24,330	
22n	3-F, 4-F	1700	33,890	
220	2-F, 3-F (rac)	9400	ND	
22p	2-F, 4-F	589	56,050	
22q	2-F, 5-F	270	77,560	
22r	2-F, 6-F (rac)	8476	ND	
22s	3-Cl, 4-Cl	2026	48,510	
22t	2-F, 4-F, 5-F	119	25,380	

decided to look at further effects of disubstitution of fluorine on the phenyl ring. A combination of 2-fluoro and 4-fluoro on the phenyl ring increased potency by 5-fold (**22p**). A 10-fold increase in potency was observed with 2,5-difluoro analogue **22q**. Given the additive beneficial effects of substitution of fluorine at the 3- and 4-position on the phenyl ring, we prepared the corresponding 2,4,5trifluoro analogue **22t**. A dramatic 25-fold increase was observed with **22t** (IC₅₀=119 nM). Both **22q** and **22t** exhibited >200-fold selectivity over QPP.

The pharmacokinetic properties of compounds **22q** and **22t** were determined in rats. These compounds suffered from high clearance, short half-life and poor oral bio-availability, which precluded further development of this series (Table 3).

In summary, modification of an in-house screening lead β -aminoacyl proline **8**, gave an equipotent thiazolidide **9**. SAR studies on the phenyl ring of **9** led to the discov-

Table 3. Pharmacokinetic properties (1 mpk IV, 2 mpk PO) of selectedDP-IV inhibitors in rats

Compds	R	Clp (mL/min/kg)	<i>t</i> _{1/2} (h)	F (%)
22q	H	110	0.5	2
22t	F	120	1.1	3

ery of a novel series of potent and selective DP-IV inhibitors. Introduction of a fluorine at the 2-position of the phenyl ring proved to be crucial for the potency of these compounds. The 2,5-difluoro (**22q**) and 2,4,5-trifluoro (**22t**) analogues were the most potent DP-IV inhibitors, exhibiting DP-IV IC₅₀s of 270 and 119 nM, respectively. Incorporation of the fluorine containing β -homophenylalanine derivatives described herein into a novel series of piperazine containing DP-IV inhibitors will be described in the following paper.¹⁴

References and notes

- Zander, M.; Madsbad, S.; Madsen, J. L.; Holst, J. J. The Lancet 2002, 359, 824.
- (a) Holst, J. J.; Deacon, C. F. Diabetes 1998, 47, 1663; (b) Augustyns, K.; Bal, G.; Thonus, G.; Belyaev, A.; Zhang, X. M.; Bollaert, W.; Lambeir, A. M.; Durinx, C.; Goossens, F.; Haemers, A. Curr. Med. Chem. 1999, 6, 311; (c) Villhauer, E. B.; Coppola, G. M.; Hughes, T. E. Ann. Rep. Med. Chem. 2001, 36, 191; (d) Drucker, D. J. Exp. Opin. Investig. Drugs 2003, 12, 87; (e) Wiedeman, P. E.; Trevillyan, J. M. Curr. Opin. Investig. Drugs 2003, 4, 412; (f) Augustyns, K.; Van der Veken, P.; Senten, K.; Haemers, A. Expert Opin. Ther. Patents 2003, 13, 499.
- (a) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Dunning, B. E.; Mangold, B. L.; Mone, M. D.; Russell, M. E.; Weldon, S. C.; Hughes, T. E. *J. Med. Chem.* 2002, 45, 2362; (b) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Burkey, B. F.; Dunning, B. E.; Prasad, K.; Mangold, B. L.; Russell, M. E.; Hughes, T. E. *J. Med. Chem.* 2003, 46, 2774.
- Magnin, D. R.; Robl, J. A.; Sulsky, R. B.; Augeri, D. J.; Huang, Y.; Simpkins, L. M.; Taunk, P. C.; Betebenner, D. A.; Robertson, J. G.; Abboa-Offei, B. E.; Wang, A.; Cap, M.; Xin, L.; Tao, L.; Sitkoff, D. F.; Malley, M. F.; Gougoutas, J. Z.; Khanna, A.; Huang, Q.; Han, S.; Parker, R. A.; Hamann, L. G. J. Med. Chem. 2004, 47, 2587.
- Ashworth, D. M.; Atrash, B.; Baker, G. R.; Baxter, A. J.; Jenkins, P. D.; Jones, D. M.; Szelke, M. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1163.
- Parmee, E. R.; He, J.; Mastracchio, A.; Edmondson, S. D.; Colwell, L.; Eiermann, G.; Feeney, W. P.; Habulihaz, B.; He, H.; Kilburn, R.; Leiting, B.; Lyons, K.; Marsilio, F.; Patel, R. A.; Petrov, A.; Di Salvo, J.; Wu, J. K.; Thornberry, N. A.; Weber, A. E. *Bioorg. Med. Chem. Lett.* 2004, 14, 43.
- Caldwell, C. G.; Chen, P.; He, J.; Parmee, E. R.; Leiting, B.; Marsilio, F.; Patel, R. A.; Wu, J. K.; Eiermann, G. J.; Petrov, A.; He, H.; Lyons, K.; Thornberry, N. A.; Weber, A. E. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 1265.
- Peters, J.; Weber, S.; Kritter, S.; Weiss, P.; Wallier, M. B.; Hennig, M.; Kuhn, B.; Loeffler, B.-M. *Bioorg. Med. Chem. Lett.* 2004, 14, 1491.
- Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112, 4011.
- 10. Deng, C.; Groth, U.; Schöllkopf, U. Angew. Chem., Int. Ed. Engl. 1981, 21, 798.
- 11. Muller, A.; Vogt, C.; Sewald, N. Synthesis 1998, 837.
- 12. Final compounds were characterized by ¹H NMR, mass spectrometry. This work was reported in part; Xu, J. 227th National Meeting of the ACS, Anaheim, CA, March 2003; Abstr. 101.
- 13. (a) For assay conditions for DP-IV and QPP inhibition, see: Leiting, B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.;

Patel, N. A.; Craik, C. S.; Ellman, J. A.; Cummings, R. T.; Thornberry, N. A. *Biochem. J.* **2003**, *371*, 525; (b) All multiple determinations of the DP-IV IC₅₀ values were within 1.4-fold of the reported average; All QPP values were within 1.3-fold of the reported average.

 Brockunier, L. L.; He, J.; Colwell, L. F., Jr.; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R. A.; Teffera, Y.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R. *Bioorg. Med. Chem. Lett.* 2004, 14, following paper. doi:10.1016/j.bmcl.2004.06.065.