

Tetrahedron Letters 39 (1998) 5571-5574

TETRAHEDRON LETTERS

## New enantiodivergent procedure for the syntheses of chiral $\alpha$ -substituted serines from $\alpha$ -alkyl- $\alpha$ -aminomalonates utilizing enzymatic hydrolysis

Shigeki Sano, Kazuhiko Hayashi, Toshio Miwa, Takahiro Ishii, Michiho Fujii, Hiromi Mima, and Yoshimitsu Nagao\*

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan

Received 27 April 1998; accepted 28 May 1998

## Abstract

Porcine liver esterase (PLE)- or rabbit liver esterase (RLE)-catalyzed hydrolysis of the pro-S ester group of diethyl  $\alpha$ -alkyl- $\alpha$ -(benzyloxycarbonylamino)malonates **2a**-c afforded (*R*)-ethyl  $\alpha$ -alkyl- $\alpha$ -(benzyloxycarbonylamino)malonates **3a**-c each in excellent enantiomeric excess. Enantiodivergent reductions of these acid esters **3a**-c readily furnished both the corresponding enantiomeric  $\alpha$ -substituted serines (*R*)- and (*S*)-**5a**-c. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: amino acids and derivatives; asymmetric synthesis; enzymes and enzyme reactions; reduction

 $\alpha$ -Substituted  $\alpha$ -amino acids moieties have been found in natural products, and a number of synthetic methods for them have been developed.<sup>1</sup> Particularly, the synthesis of  $\alpha$ -substituted serines has been of major interest in recent years. Natural products such as ISP-I,<sup>2,3</sup> (+)-lactacystin,<sup>4,5</sup> and (+)-conagenin<sup>6,7</sup> bearing the chiral  $\alpha$ -substituted serine moiety have attracted our attention because of their biological activities. As part of our own contribution to this area, we achieved an asymmetric total synthesis of ISP-I (a potent immunosuppressive principle in the *Isaria sinclairii* metabolite) in 1995.<sup>8,9</sup>



\* Corresponding author. Fax: +81-886-33-9503, E-mail: ynagao@ph.tokushima-u.ac.jp

Herein we wish to describe a new elaborated procedure for enantiodivergent construction of chiral  $\alpha$ -substituted serines as shown in Scheme 1.  $\sigma$ -Symmetric prochiral diethyl  $\alpha$ -aminomalonate 1 was protected by treatment with benzyloxycarbonyl (Z) chloride in the presence of NaHCO<sub>3</sub> in 97% yield followed by alkylation using alkyl halides and sodium hydride to afford  $\alpha$ -alkyl- $\alpha$ -(Z-amino)malonates **2a-d** in 77 - 83% yields (Scheme 2). Their enantioselective enzymatic hydrolyses with porcine liver esterase (PLE) [Sigma, suspension in 3.2 M ( $NH_4$ )<sub>2</sub>SO<sub>4</sub> solution, pH 8] or rabbit liver esterase (RLE) [Sigma, crystalline suspension in 3.2 M (NH<sub>4</sub>),SO<sub>4</sub>, 0.01 M Tris, pH 8.5] were undertaken as follows. The diesters 2a-d were dissolved in 1/15M phosphate buffer solution (pH 7.0) and MeCN (10:1). After adding enzyme (PLE or RLE), the mixture was stirred at room temperature (ca. 23 °C) for the required time. The reaction mixture was treated with 5% HCl and then extracted with AcOEt. After evaporation of the extract in vacuo, the residue was purified on a silica gel column with CH<sub>2</sub>Cl<sub>2</sub>-MeOH as the eluent to give the corresponding carboxylic acid esters **3a-c** as a colorless oil. The enantiomeric excess (ee) values of **3a-c** were determined to be 97, 95, and 90%, respectively, by exploiting HPLC equipped with a chiral column after methylation of 3a-c with diazomethane (Table 1, entries 1, 3, and 6). Unfortunately, the enzymatic hydrolysis of 2d only gave a trace amount of acid ester 3d employing PLE or RLE. All results are summarized in Table 1.



The absolute configuration of acid ester **3a** was determined to be *R* by its chemical conversion to the known compound<sup>10</sup> and in comparison of the specific rotation with the literature value<sup>10</sup> as shown in Scheme 3. Namely, reduction of **3a** with LiBH<sub>4</sub> in Et<sub>2</sub>O under reflux gave (*S*)-Z- $\alpha$ -methylserine [(*S*)-**4a**], which was submitted to hydrogenolytic debenzyloxycarbonylation to obtain (*S*)- $\alpha$ -methylserine {[ $\alpha$ ]<sub>D</sub><sup>28</sup> +5.4 (*c* 0.85, H<sub>2</sub>O), lit.<sup>10</sup> [ $\alpha$ ]<sub>D</sub><sup>22</sup> +6.5 (*c* 1.01, H<sub>2</sub>O)}, a fragment of (+)-conagenin.<sup>6.7</sup> The absolute configurations of acid esters **3b,c** were similarly determined to be *R* by their chemical conversions to the known compounds.<sup>11</sup> These enantioselectivities in the PLE-catalyzed hydrolysis may be explained in accordance with the Jones active-site model by regarding the Z-amino group as accommodating to a large hydrophobic pocket of the PLE active-site.<sup>12,13</sup>

| Esterase-catalyzed hydrolysis of diethyl α-alkyl-α-(Z-amino)malonates 2a-d |           |                                        |      |         |              |                         |
|----------------------------------------------------------------------------|-----------|----------------------------------------|------|---------|--------------|-------------------------|
| Entry                                                                      | Substrate | Esterase<br>(units/mmol) <sup>a)</sup> | Time | Product | Yield<br>(%) | Ee<br>(%) <sup>b)</sup> |
| 1                                                                          | 2a        | PLE (800)                              | 12 h | 3a      | 96           | 97                      |
| 2                                                                          | 2a        | PLE (400)                              | 13 h | 3a      | 97           | 96                      |
| 3                                                                          | 2b        | PLE (800)                              | 3 d  | 3b      | 86           | 95                      |
| 4                                                                          | 2ь        | PLE (400)                              | 12 d | 3b      | 80           | 92                      |
| 5                                                                          | 2c        | PLE (400)                              | 2 d  | 3c      | 90           | 60                      |
| 6                                                                          | 2c        | RLE (200)                              | 10 d | 3c      | 83           | 90                      |
| 7                                                                          | 2d        | PLE (400)                              | 3 d  | 3di     | 6            | c)                      |
| 8                                                                          | 2d        | RLE (200)                              | 3 d  | 3d      | 12           | c)                      |

| Table 1                                                                  |   |
|--------------------------------------------------------------------------|---|
| Esterase-catalyzed hydrolysis of diethyl a-alkyl-a-(Z-amino)malonates 2a | - |

a) PLE: porcine liver esterase, RLE: rabbit liver esterase. b) HPLC analysis (CHIRALCEL OD) after methylation of acid esters **3a-c** with diazomethane. c) Not determined.

Enantiodivergent transformation of (R)-**3a-c** to (R)- or (S)- $\alpha$ -alkylserine derivatives **5a-c** was performed as shown in Scheme 3.<sup>14,15</sup> Fluorination of (R)-**3a-c** [(R)-**3a**: 96% ee, (R)-**3b**: 92% ee, (R)-**3c**: 90% ee] with cyanuric fluoride<sup>16</sup> in the presence of pyridine, followed by reduction of the resultant acyl fluorides with NaBH<sub>4</sub> in THF, then addition of MeOH, gave the corresponding (R)-Z- $\alpha$ -alkylserine ethyl esters **5a-c** in 72-84% overall yields. On the other hand, reduction of (R)-**3a-c** [(R)-**3a**: 96% ee, (R)-**3b**: 92% ee, (R)-**3c**: 90% ee] with LiBH<sub>4</sub> in Et<sub>2</sub>O afforded the corresponding (S)-Z- $\alpha$ -alkylserines **4a-c** in 31-56% yields. Esterification of **4a-c** gave the (S)-Z- $\alpha$ -alkylserine ethyl esters **5a-c** in 53-74% yields, respectively. The ee values of (R)- and (S)-**5a-c** were confirmed to be almost the same as those of the corresponding acid esters (R)-**3a-c** as shown in Table 2.

| Z-HN CO <sub>2</sub> Et a, I<br>R <sup>V</sup> OH | $ \begin{array}{c} b  Z\text{-}HN  CO_2Et  c \\ (R)  (R)  CO_2H \\ R^{W}  CO_2H \end{array} $ | Z-HN OH d<br>R <sup>V</sup> CO <sub>2</sub> H | + Z-HN −OH<br>R <sup>V</sup> (S)<br>R <sup>V</sup> CO <sub>2</sub> Et | <b>a</b> : R = Me,<br><b>b</b> : R = PhCH <sub>2</sub> ,<br><b>c</b> : R = CH <sub>2</sub> =CHCH <sub>2</sub> |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ( <i>R</i> )-5a-c                                 | ( <i>R</i> )-3a-c                                                                             | (S)-4a-c                                      | (S)-5a-c                                                              |                                                                                                               |

Scheme 3 a) cyanuric fluoride / pyridine /CH<sub>2</sub>Cl<sub>2</sub> / 0 °C, b) NaBH<sub>4</sub> / MeOH / 0 °C, c) LiBH<sub>4</sub> / Et<sub>2</sub>O / reflux, d) Etl / K<sub>2</sub>CO<sub>3</sub> / acetone / reflux

|                                    | ( <i>R</i> )-enantiomer |                                                     | (S)-enantiomer       |                                                     |
|------------------------------------|-------------------------|-----------------------------------------------------|----------------------|-----------------------------------------------------|
|                                    | Ee (%) <sup>a)</sup>    | [α] <sub>D</sub> <sup>26</sup> (CHCl <sub>3</sub> ) | Ee (%) <sup>a)</sup> | [α] <sub>D</sub> <sup>26</sup> (CHCl <sub>3</sub> ) |
| 5a [from ( <i>R</i> )-3a (96% ee)] | 97                      | -2.7 ( <i>c</i> 1.04)                               | 96                   | +3.0 ( <i>c</i> 1.24)                               |
| 5b [from ( <i>R</i> )-3b (92% ee)] | 93                      | +51.1 ( <i>c</i> 1.65) <sup>b)</sup>                | 92                   | -52.0 ( <i>c</i> 1.27) <sup>c)</sup>                |
| 5c [from ( <i>R</i> )-3c (90% ee)] | 91                      | -3.0 ( <i>c</i> 1.03) <sup>b)</sup>                 | 90                   | +3.6 ( <i>c</i> 0.39)                               |

a) HPLC analysis (CHIRALCEL OD or CHIRALPAK AD). b) 27 °C. c) 25 °C.

Table 2

Among chiral  $\alpha$ -substituted serines 5a-c, Z- $\alpha$ -allylserine ethyl ester 5c can be useful for the further  $\alpha$ -substituted serine syntheses based on the chemical modification of the double bond. Scheme 4 illustrates a chemical conversion of (R)-5c to  $\alpha$ -substituted serine derivatives (R)-7 and (R)-8. (R)-5 c was protected by treatment with AcCl in the presence of pyridine in 88% yield. Ozonolysis with (R)-6 furnished (R)-7 (100% yield), which was submitted to the Horner-Wadsworth-Emmons reaction with methyl bis(trifluoroethyl)phosphonate to give  $\alpha,\beta$ -unsaturate esters (R)-8 in 77% yield (E : Z = 1 : 9).<sup>17</sup> Further synthetic applications of this convenient approach to various chiral  $\alpha$ substituted serines are currently being under study.



## **References and notes**

- [1] Wirth T. Angew. Chem. Int. Ed. Engl. 1997;36:225-277 and references cited therein.
- [2] Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Chiba K, Hoshino Y, Okumoto T. J. Antibiotics 1994;47:208-215.
- [3] Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Yoneta M, Chiba K, Hoshino Y, Okumoto T. J. Antibiotics 1994;47:216-224.
- [4] Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y. J. Antibiotics 1991;44:113-116.
- [5] Omura S, Matsuzaki K, Fujimoto T, Kosuge K, Furuya T, Fujita S, Nakagawa A. J. Antibiotics 1991;44:117-118.
- [6] Yamashita T, Iijima M, Nakamura H, Isshiki K, Naganawa H, Hattori S, Hamada M, Ishizuka M, Takeuchi T. J. Antibiotics 1991;44:557-559.
- [7] Kawatsu M, Yamashita T, Ishizuka M, Takeuchi T. J. Antibiotics 1995;48:222-225.
- [8] Sano S, Kobayashi Y, Kondo T, Takebayashi M, Maruyama S, Fujita T, Nagao Y. Tetrahedron Lett. 1995;36:2097-2100.
- [9] Sano S, Liu X-K, Takebayashi M, Kobayashi Y, Tabata K, Shiro M, Nagao Y. Tetrahedron Lett. 1995;36:4101-4104.
- [10] Moon S-H, Ohfune Y. J. Am. Chem. Soc. 1994;116:7405-7406.
- [11] Decarbobenzoxylation of acid esters 5b and 5c afforded  $\alpha$ -alkylserine ethyl esters 9b {[ $\alpha$ ]<sub>D</sub><sup>24</sup> -4.3 (c 0.41, MeOH)} and 9c {[ $\alpha$ ]<sub>D</sub><sup>24</sup> +2.3 (c 1.02, MeOH)]. The absolute configurations of these two compounds were determined to be R in comparison of their specific rotations with those of (S)-9b,c. Details of asymmetric syntheses of (S)-9b,c will be published as part of a forthcoming paper.

$$EtO_{2}C \longrightarrow N \\ R \longrightarrow H \\ FtO \longrightarrow H \\ FtO \longrightarrow H \\ FtO \longrightarrow H \\ R \longrightarrow CO_{2}Et \\ R \longrightarrow CO_{2}Et \\ (S)-9b: R = PhCH_{2}, [\alpha]_{D}^{24} + 4.5 \circ (c \ 0.69, MeOH) \\ (S)-9b: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}^{21} - 2.2 \circ (c \ 0.46, MeOH) \\ (S)-9c: R = CH_{2}=CHCH_{2}, [\alpha]_{D}$$

- [12] Toone EJ, Werth MJ, Jones JB. J. Am. Chem. Soc. 1990;112:4946-4952.
- [13] Breznik M, Kikelj D. Tetrahedron: Asymmetry 1997;8:425-434.
- [14] Canet J-L, Fadel A, Salaün J. J. Org. Chem. 1992;57:3463-3473.
- [15] Fadel A, Garcia-Argote S. Tetrahedron: Asymmetry 1996;7:1159-1166.
- [16] Kokotos G, Noula C. J. Org. Chem. 1996;61:6994-6996.
- [17] Diastereomer ratios were confirmed by <sup>1</sup>H NMR analysis (200 MHz, CDCl<sub>3</sub>).