Journal of Medicinal Chemistry

6-Trifluoromethylpyridoxine: Novel ¹⁹F NMR pH Indicator for in Vivo Detection

Jian-Xin Yu,* Weina Cui,[†] Vincent A. Bourke, and Ralph P. Mason

Advanced Radiological Sciences, Department of Radiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States

ABSTRACT: pH plays an important role in tumor proliferation, angiogenesis, metabolic control, and the efficacy of cytotoxic therapy, and accurate noninvasive assessment of tumor pH promises to provide insight into developmental processes and prognostic information. In this paper, we report the design, synthesis, and characterization of two novel pH indicators 6-trifluoromethylpyridoxine 8 and α^4, α^5 -di-O-[3'-O-(β -D-glucopyranosyl)propyl]-6-trifluoromethylpyridoxine 17 and demonstrate 8 as an extracellular ¹⁹F NMR pH probe to assess pH_e of various tumors in vivo.

INTRODUCTION

The pH gradient between the interstitial and intracellular compartments is involved in many cell regulatory processes and strongly influences drug uptake.¹ Tumor pH also influences cell thermosensitivity, radiation sensitivity, proliferation, and the efficacy of cancer therapy.^{2,3} The accurate noninvasive assessment of tumor pH promises to provide insight into the developmental process and prognostic information regarding therapeutic outcome. Previously, we demonstrated that 6-fluoropyridoxine (FPOL, Figure 1) can be used to measure

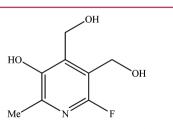
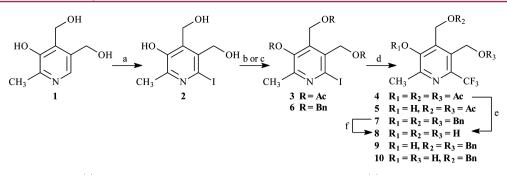


Figure 1. Structure of 6-fluoropyridoxine (FPOL).

both intra- and extracellular pH simultaneously providing exceptional sensitivity to pH changes in whole blood and the perfused rat heart.^{1a,b,4-6} However, its $pK_a = 8.2$ is not ideal for measurements under normal physiological conditions (pH 6.5–7.5). For the continuing work, we report herein another strategy through introduction of a trifluoromethyl (CF₃) group instead of a fluorine atom at the 6-position of vitamin B₆ with the aim of modifying the pK_a to physiological conditions and raising the ¹⁹F signal-to-noise ratio.

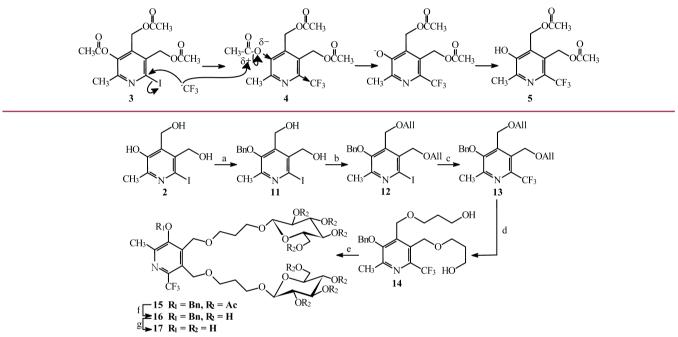
RESULTS AND DISCUSSION

Design and Synthesis. The introduction of a trifluoromethyl (CF_3) group into an organic compound can bring about remarkable changes in its physical, chemical, and biological properties, making it suitable for diverse applications



in pharmaceutics and agrochemistry.^{7,8} We demonstrated that the introduction of a CF_3 group in place of fluorine atom in phenols can enhance the ¹⁹F NMR signal and modify the p K_a value.^{9,10}

A wide variety of methods have been developed for introducing a CF₃ group into organic compounds,¹¹ with (trifluoromethyl)trimethylsilane (Me₃SiCF₃) as a nucleophilic trifluoromethylating reagent becoming the method of choice.^{12,13} In this study we demonstrate a strategy that utilizes the iodination derivative **3** of vitamin B₆ (1) to react with Me₃SiCF₃ for synthesis of target compound 6-trifluoromethyl-pyridoxine **8** (Figure 2).


A three-step procedure for halogenation of vitamin B₆ via 6aminopyridoxine has been reported for the synthesis of the ¹⁹F NMR pH indicator 6-fluoropyridoxine by the modified Schiemann reaction, resulting in ~28% overall yield.^{1,6,14,15} We have now developed a more effective and direct method for obtaining the key intermediate 6-iodopyridoxine (2) in high yield. Reaction of 1 with iodine in 10% aqueous K₂CO₃ solution and avoiding light afforded 2 in 73% yield. For convenient blocking and deprotection, we initially proposed the acetylation as protecting strategy. Acetylation of 2 as the usual workup gave $3,\alpha^4,\alpha^5$ -tri-O-acetyl-6-iodopyridoxine (3) in high yield (93%). However, trifluoromethylation of 3 with Me₃SiCF₃ gave the desired compound $3_{,}\alpha^{4}_{,}\alpha^{5}_{-}$ tri-O-acetyl-6-trifluoromethylpyridoxine (4) in only 40% yield. Further purification separated 12% of α^4, α^5 -di-O-acetyl-6-trifluoromethylpyridoxine (5). Presumably this resulted from the introduction of the highly electron-withdrawing 6-trifluoromethyl group in 4 that makes the para Ac-O₃ bond much polarized and activates its C=O group, which competed against the C_6 -I bond in 3 to consume the trifluoromethylation reagent Me₃SiCF₃. The proposed mechanism is depicted in Scheme 1.

Received: April 11, 2012

Figure 2. Reagents and conditions: (a) I_2 , 10% K_2CO_3 , rt 2–3 h, in the dark; Na_2SO_3 ; HCl, 73%; (b) Ac_2O –pyridine, 0 °C \rightarrow rt, 24 h, 93% (\rightarrow 3); (c) NaH, benzyl bromide (3.3 equiv), DMF, rt, 5–7 h, 100% (\rightarrow 6); (d) Me_3SiCF_3 (1.2 equiv), CuI (1.0 equiv), KF (1.2 equiv), Ar, DMF–NMP (1:1 v/v'), 80 °C, 24 h, 40% (\rightarrow 4) or 96% (\rightarrow 7); (e) NH₃–MeOH, 0 °C \rightarrow rt, 24 h, quantitative yield (\rightarrow 8); (f) H₂ (30 psi), AcOH/EtOH (1:10 v/v'), Pd/C (5% w/w'), rt, 2 days, quantitative yield (\rightarrow 8).

Figure 3. Reagents and conditions: (a) benzyl bromide (1.1 equiv), $CH_2Cl_2-H_2O$, pH 9–10, rt, TBAB, 4–5 h, 74%; (b) NaH, allyl bromide (1.5 equiv), DMF, rt, 4 h, 100%; (c) Me_3SiCF_3 (1.2 equiv), CuI (1.0 equiv), KF (1.2 equiv), Ar, DMF-NMP (1:1 v/v'), 80 °C, 24 h, 92%; (d) 9-BBN (2.0 equiv), Ar, dioxane, 0 °C, 24 h; NaOH, H_2O_2 , rt, 48 h, 86%; (e) 2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranosyl bromide (1.2 equiv), Hg(CN)₂ (1.5 equiv), 4 Å molecular sieves, CH_2Cl_2 , rt, 12 h, 88%; (f) NH₃–MeOH, 0 °C \rightarrow rt, 48 h, quantitative yield; (g) 30 psi of H₂, EtOH, Pd/C (5% w/w'), rt, 12 h, quantitative yield.

To improve the process, we employed benzyl ether as an alternative protecting group for $3, \alpha^4, \alpha^5$ -hydroxyl. Benzylation of 2 with benzyl bromide afforded $3, \alpha^4, \alpha^5$ -tri-O-benzyl-6-iodopyridoxine (6) in quantitative yield, which reacted with Me_3SiCF_3 in a similar procedure for the preparation of 4, giving $3_{,}\alpha^{4}_{,}\alpha^{5}_{-}$ tri-O-benzyl-6-trifluoromethylpyridoxine (7) in excellent yield (96%). Overnight hydrogenation of 7 in ethanolic solution with the catalyst of 5% Pd/C provided the partial debenzylation product $\alpha^4 \cdot \alpha^5 \cdot di \cdot O \cdot benzyl \cdot 6 \cdot trifluoromethylpyridoxine (9) in$ quantitative yield. However, the α^4 , α^5 -di-O-benzyl groups could not be removed even with extended reaction times up to 1 week. Testing various acids as cosolvents and catalysts showed that anhydrous AcOH-EtOH (1:10 v/v') allowed stepwise cleavage of the $3,\alpha^5$ -di-O-benzyl groups in 7, yielding 10 in 1 day and then the α^4 -O-benzyl group in another day, resulting in 8 with total yield of 100%. As expected, 6-trifluoromethylpyridoxine 8 yielded higher signal-to-noise than 6-fluoropyridoxine

(FPOL) and its derivatives.^{1a,b} Importantly, it has an ideal $pK_a = 6.83$ but with much less ¹⁹F NMR sensitivity to pH ($\Delta \delta = 1.61$ ppm) and poorer water solubility ((FPOL) 17.8 mg/mL and (8) 5.8 mg/mL in H₂O at room temperature).

We found that modification of 4- and/or 5-methylenehydroxyl moieties of 6-fluoropyridoxine resulted in changes of the pK_a and ¹⁹F chemical shifts.^{1a,b} Previously, we successfully enhanced the solubility of ¹⁹F NMR and ¹H MRI β galactosidase reporters by conjugating them with carbohydrates.¹⁶ Prompted by these results, we designed another novel molecule 17 with two D-glucoses coupled to the 4- and 5methylenehydroxyl moieties of 6-trifluoromethylpyridoxine **8** (Figure 3).

Starting with 2 as the initial molecule, the primary challenge was the regioselective protection among its three hydroxyl groups. However, pK_a calculations using the advanced chemistry development software (www.acdlabs.com) indicated

that the 3-phenolic hydroxyl ($pK_a = 9.27 \pm 0.10$) is much more acidic than 4- and 5-methylenehydroxyls (pK_a = 13.31 ± 0.10 and 13.81 ± 0.10 , respectively), which suggests that phasetransfer-catalysis at pH 9-10 could provide regioselective protection of the 3-phenolic hydroxyl. To the well-stirred mixture of 2 in biphasic CH₂Cl₂-H₂O (pH 9-10) at room temperature, which was catalyzed by tetrabutylammonium bromide (TBAB), was added benzyl bromide (1.1 equiv) dropwise over a period of 4-5 h. 3-O-Benzyl-6-iodopyridoxine 11 was isolated as a major product in 74% yield. Its stereochemistry was confirmed by its ¹H NMR spectrum where $\alpha^4_{,\alpha}\alpha^5$ -CH₂ exhibits doublets with coupling constants of $J_{\text{H-4,HO-4}} = 5.6 \text{ Hz}$ at 4.87 ppm and $J_{\text{H-5,HO-5}} = 6.4 \text{ Hz}$ at 4.73 ppm. Treatment of 11 with an excess of allyl bromide gave 3-Obenzyl- α^4 , α^5 -di-O-allyl-6-iodopyridoxine **12** in quantitative yield. It was then subjected to the procedure described for the preparation of 4 and 7, giving 3-O-benzyl- α^4 , α^5 -di-O-allyl-6trifluoromethylpyridoxine 13 in excellent yield (92%). The diallylated derivative 13 underwent with regioselective hydroboration by using 9-borabicyclo-[3.3.1]nonane (9-BBN) and subsequent alkaline oxidation with H2O2, giving 3-O-benzyl- α^4 , α^5 -di-O-(3-hydroxypropyl)-6-trifluoromethylpyridoxine 14 in 86% yield.

Condensation of 14 with 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl bromide gave 3-O-benzyl- α^4 , α^5 -di-O-[3'-O-(2,3,4,6tetra-O-acetyl- β -D-glucopyranosyl)propyl]-6-trifluoromethylpyridoxine 15 in 88% yield. The ESI-MS displayed the expected molecular ion at m/z 1103 and quasimolecular ion at m/z 1104 [M + H], corresponding to the fully adorned derivative with two 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl units. The identity of 15 was established using ¹H and ¹³C NMR based on the anomeric protons H-1' and H-1" of D-glucoses at 4.48 and 4.41 ppm, respectively, with two well resolved doublets $J_{1',2'} = J_{1'',2''}$ ≈ 8.0 Hz and $J_{2',3'} = J_{2'',3''} \approx 10$ Hz, which confirmed both Dglucoses in the β -configuration with ⁴C₁ chair conformation, and the anomeric carbons C-1' and C-1" at 101.02 ppm are in accordance.

Compound **15** was deacetylated with NH₃/MeOH from 0 °C to room temperature, giving 3-O-benzyl- α^4 , α^5 -di-O-[3'-O-(β -D-glucopyranosyl)propyl]-6-trifluoromethylpyridoxine **16** in quantitative yield, followed by hydrogenation catalyzed with 5% Pd/C overnight, affording quantitative yield of target compound α^4 , α^5 -di-O-[3'-O-(β -D-glucopyranosyl)propyl]-6-trifluoromethylpyridoxine **17** with an overall yield of 52%.

Characterization as ¹⁹F **NMR pH Indicator.** The ¹⁹F chemical shifts upon pH changes (pH electrode) were measured with respect to sodium trifluoroacetate (NaTFA, $\delta_{\rm F} = 0$ ppm). Both 8 and 17 exhibited single narrow ¹⁹F NMR signals in 0.9% saline or PBS essentially invariant ($\Delta \delta \leq 0.03$ ppm) with temperatures ranging from 25 to 37 °C. Figure 4 shows the titration curves of 8 and 17 in saline between pH 2 and pH 13 at 25 °C. From the titration curves their pK_a, $\delta_{(acid)}$, and $\delta_{(base)}$ were determined from the Henderson–Hasselbach equation^{14,b} (Table 1).

Given that both 8 and 17 show feasibility as ¹⁹F NMR pH indicators, 8 has a more ideal pK_a for sampling biological system in vivo, making it favored for further evaluation.

¹⁹F NMR pH Assessment in Perfused Heart and Whole Blood. The ¹⁹F NMR spectrum (376 MHz) of 8 in Langendorff perfused rat heart exhibited only a single ¹⁹F resonance at $\delta_F = 16.41$ ppm corresponding to pH 7.39 (Figure 5a). The intra- and extracellular inorganic phosphates of Langendorff perfused rat heart was sampled by ³¹P NMR,

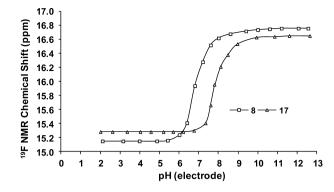


Figure 4. Titration curves of 8 and 17 in saline at 25 °C.

Table 1. Acidities and $^{19}\mathrm{F}$ NMR/pH Properties of 8 and 17 at 25 $^{\circ}\mathrm{C}$

		¹⁹ F NMR				
compd	pK _a	$\delta_{(m acid)},\ m ppm$	$\delta_{ ext{(base)}}, \ ext{ppm}$	Δ <i>δ,</i> ppm	ppm/pH unit	pH range
8	6.83	15.15	16.76	1.61	0.40	5.40-9.40
17	7.84	15.28	16.66	1.38	0.43	6.75-9.93

which provided the intracellular pH_i 7.04 ($\delta_{\rm Pi}$ = 4.88 ppm) and extracellular pH_e 7.42 ($\delta_{\rm Pe}$ = 5.32 ppm).^{1a,b} When the ¹⁹F NMR of **8** is compared to these results, it becomes evident that **8** does not enter cells and reports only the extracellular pH_e. This was confirmed by the ¹⁹F NMR spectrum of **8** in whole rabbit blood which showed a single ¹⁹F peak at $\delta_{\rm F}$ = 16.52 ppm (pH_e = 7.44) (Figure 5b).

In Vivo ¹⁹F NMR pH Measurements in Tumors. Extracellular pH_e in human tumors has been shown to be associated with tumorigenic transformation, chromosomal rearrangements, induction of growth factors and proteases, extracellular matrix breakdown, and increased migration and invasion.^{2c,e} To evaluate the efficacy of this novel ¹⁹F NMR pH_e reporter molecule for sampling the tumor microenvironment, it was directly injected into rats bearing pedicle tumors. First, pH_e reporter 8 (320 mg/kg) and NaTFA (200 mg/kg) in DMSO/ saline (1:3 v/v') were injected ip into an anesthetized (with isoflurane) Copenhagen rat bearing a Dunning R3327-AT1 prostate tumor (tumor size, 2.4 cm × 3.1 cm × 1.8 cm). 8 was detected by ¹⁹F NMR in the tumor 30 min after injection. The single broad ¹⁹F signal centered at $\delta_F = 16.28$ ppm indicated tumor heterogeneity with mean pH_e of 7.20.^{1b}

Similarly, 8 was detected in a 13762NF rat mammary tumor (tumor size, 1.8 cm × 1.0 cm × 2.0 cm) after 8 min following an ip injection of the same doses into a Fisher 344 rat. A broad single ¹⁹F resonance was obtained at $\delta_F = 16.23$ ppm (pH_e 7.14) with biological clearance over 100 min (Figure 6A). This pH was commensurate with microelectrode measurements in three Fisher 344 rats bearing 13762NF breast tumors of 3.2, 7.5, and 9.2 cm³, showing the most frequent pH_e of 7.03 (Figure 6B).

Encouraged by these in vivo measurements of tumor pH_e, we also investigated 6-trifluoromethylpyridoxine 8 in other animal models. After ip injection of 8 (12 mg, 54 μ mol) in DMSO/H₂O (1:3 v/v') into a nude mouse bearing a MatLu rat prostate tumor grown on the thigh (tumor size, 1.6 cm × 1.4 cm × 1.0 cm), a broad, single ¹⁹F peak was observed at $\delta_{F(8)}$ = 15.96 ppm (pH_e 6.48) with an acquisition time of 7 min (Figure 7).

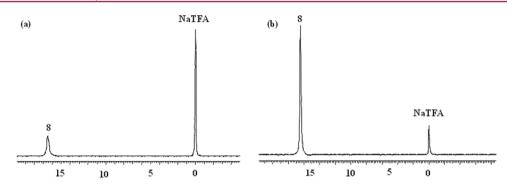


Figure 5. ¹⁹F NMR spectra (376 MHz, 25 °C) of 8 in (a) Langendorff perfused rat heart, $\delta_F = 16.41$ ppm (pH_e 7.39) and (b) whole rabbit blood, $\delta_F = 16.52$ ppm (pH_e 7.44).

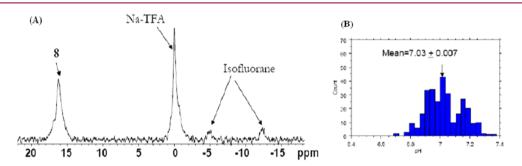
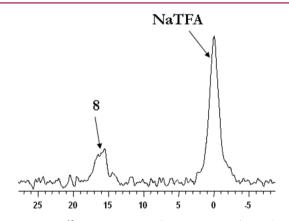



Figure 6. (A) In vivo ¹⁹F NMR spectrum (188 MHz, 37 °C) of 8 (320 mg/kg) in Fisher 344 rat bearing pedicle 13762NF breast tumor: ip injection, tumor size of 1.8 cm \times 1.0 cm \times 2.0 cm, δ_F = 16.23 ppm corresponding to pH_e 7.14, acquisition time of 8 min. (B) Distribution of pH_e values measured in a group of three Fisher 344 rats bearing 13762NF breast tumors using needle electrode: mean pH of 7.03 (arrow).

Figure 7. In vivo ¹⁹F NMR spectrum (188 MHz, 37 °C) of 8 (12 mg) in nude mouse bearing MatLu rat prostate tumor on thigh: ip injection, tumor size of 1.6 cm × 1.4 cm × 1.0 cm, $\delta_{F(8)} = 15.96$ ppm corresponding to pH_e 6.48, acquisition time of 7 min.

CONCLUSION

Given the relevance of pH_i/pH_e to tumor development and prognostic outcome, noninvasive techniques to sample cellular pH in vivo have great potential and are increasingly important in therapeutic oncology.^{1–3} As the most electronegative element, fluorine has played a key role in medicinal chemistry; the incorporation of fluorine and/or fluorine-containing groups into an organic molecule often drastically perturbs the properties of the parent compound.^{7,8} ¹⁹F MRS has been widely utilized in in vivo studies on drug absorption, distribution, metabolism, and excretion because of its favorable MR properties, simplicity, and high sensitivity.^{1a,b} In this study, we have successfully synthesized two novel ¹⁹F NMR pH indicators 8 and 17 and identified the following useful characteristics that make them well-suited for the in vivo assessment of pH using ¹⁹F MRS: (a) ideal pK_a (6.83–7.84); (b) sensitivity to pH (~0.40 ppm/pH unit); (c) ¹⁹F chemical shift response to pH ($\Delta\delta_F$ = 1.38–1.61 ppm); (d) ¹⁹F signal enhancement, in which 8 was shown to be capable of in vivo sampling pH_e in various tumor models. Noting these features of 8 as a ¹⁹F MRS pH_e molecular probe, we believe it has promising potential in ¹⁹F MRI investigations of the tumor microenvironment for effective characterization of tumor heterogeneity with spatial and temporal resolution.

Article

EXPERIMENTAL SECTION

General Methods. NMR spectra were recorded on a Varian Inova 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F, 121 MHz for ³¹P). ¹H and ¹³C chemical shifts are referenced to TMS as internal standard with CDCl₃ or DMSO- d_6 as solvents. ¹⁹F shifts are referenced to a dilute solution of NaTFA in a capillary as external standard. Chemical shifts are given in ppm. Mass spectra were obtained by positive and negative ESI-MS using a Micromass Q-TOF hybrid quadrupole/time-of-flight instrument (Micromass UK Ltd.). Microanalyses were performed on a Perkin-Elmer 2400 CHN microanalyser.

Hg(CN)₂ was dried before use at 50 °C for 1 h. CH₂Cl₂ was dried over Drierite, and acetonitrile was dried on CaH₂ and kept over molecular sieves under nitrogen. Solutions in organic solvents were dried with anhydrous sodium sulfate and concentrated in vacuo below 45 °C. 2,3,4,6-Tetra-*O*-acetyl-*α*-D-glucopyranosyl bromide was purchased from the Sigma Chemical Co. Column chromatography was performed on silica gel (200–300 mesh), and silica gel GF₂₅₄ used for TLC was purchased from the Aldrich Chemical Co. Detection was effected by spraying the plates with 5% ethanolic H₂SO₄ (followed by heating at 110 °C for ~10 min) or by direct UV illumination of the plate. The purity of the final products was determined by HPLC with ≥95%. **6-lodopyridoxine 2.** To a solution of pyridoxine 1 (3.4 g, 20.0 mmol) in 10% K₂CO₃ aqueous solution (60 mL) was added iodine (5.04 g, 20.0 mmol). The reaction mixture was vigorously stirred in the dark at room temperature for 2–3 h. After addition of Na₂SO₃ (320 mg), the reaction was quenched with concentrated HCl up to pH 3. Then the precipitate was filtered and dried in vacuo over NaOH to give 2 (4.28 g, 73%) as a yellow powder. ¹H NMR (DMSO-*d*₆), $\delta_{\rm H}$: 9.51 (1 H, s, HO-3), 5.82 (1 H, br, α^5 -OH), 5.15 (1H, br, α^4 -OH), 4.80 (2 H, d, *J* = 2.8 Hz, CH₂-5), 4.57 (2 H, d, *J* = 3.2 Hz, CH₂-4), 2.31 (3 H, s, CH₃-2) ppm. ¹³C NMR (DMSO-*d*₆), $\delta_{\rm C}$: 150.43 (s, Py-C), 148.25 (s, Py-C), 136.21 (s, Py-C), 134.97 (s, Py-C), 112.11 (s, Py-C), 63.99 (s, CH₂-5), 57.05 (s, CH₂-4), 18.93 (s, CH₃-2) ppm. Anal. Calcd for C₈H₁₀NO₃I (%): C, 32.56; H, 3.42; N, 4.75. Found: C, 32.51; H, 3.39; N, 4.71.

3,*α*⁴,*α*⁵-**Tri-O-acetyl-6-iodopyridoxine 3.** A solution of **2** (0.90 g, 3.0 mmol) in pyridine (20 mL) was treated with acetic anhydride (9 mL). After being stirred from 0 °C to room temperature overnight, the mixture was coevaporated with toluene under reduced pressure and the residue purified by flash silica gel column chromatography (eluent, 2:1 cyclohexane–EtOAc) to afford **3** (1.19 g, 93%) as white crystals. *R_f* = 0.50 (3:2 cyclohexane–EtOAc). ¹H NMR (CDCl₃), *δ*_H: 5.18 (2 H, s, CH₂-5), 5.15 (2 H, s, CH₂-4), 2.40 (3 H, s, CH₃-2), 2.05, 2.03, 2.01 (9 H, 3s, 3 × CH₃CO) ppm. ¹³C NMR (CDCl₃), *δ*_C: 173.97, 170.73, 168.43 (3s, 3 × CH₃CO), 152.83 (s, Py-C), 150.33 (s, Py-C), 132.99 (s, Py-C), 129.83 (s, Py-C), 113.02 (s, Py-C), 66.33 (s, CH₂-5), 58.76 (s, CH₂-4), 20.94, 20.88, 19.63 (3s, 3 × CH₃CO), 19.61 (s, CH₃-2) ppm. Anal. Calcd for C₁₄H₁₆NO₆I (%): C, 39.92; H, 3.83; N, 3.33. Found: C, 39.90; H, 3.80; N, 3.30.

 $3_{,}\alpha^{4}_{,}\alpha^{5}$ -Tri-O-acetyl-6-trifluoromethylpyridoxine 4. To a well stirred mixture of 3 (1.0 g, 2.4 mmol), CuI (456 mg, 2.4 mmol, 1.0 equiv), and KF (168 mg, 2.9 mmol, 1.2 equiv) in N,Ndimethylformamide (DMF, 5 mL) and N-methylpyrrolidine (NMP, 5 mL) was added Me₃SiCF₃ (537 µL, 2.9 mmol, 1.2 equiv) under an argon atmosphere in the dark. Then the reaction mixture was stirred at 80 °C in a sealed glass pressure tube (15 mL) for 24 h. The mixture was diluted with CH2Cl2 (120 mL), filtered through Celite, washed with water, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified on a silica gel column (2:1 cyclohexane-EtOAc) to yield 4 (0.35 g, 40%) as a syrup. $R_f = 0.37$ (2:1 cyclohexane-EtOAc). ¹H NMR (CDCl₃), $\delta_{\rm H}$: 5.34 (2 H, s, CH₂-5), 5.16 (2 H, s, CH₂-4), 2.39 (3 H, s, CH₃-2), 2.38, 2.10, 2.02 (9 H, 3s, 3 × CH₃CO) ppm. ^{13}C NMR (CDCl₃), $\delta_{\rm C}$: 170.54, 170.22, 168.41 (3s, 3 × CH₃CO), 145.04 (s, Py-C_{2'}), 137.81 (s, Py-C_{3'}), 154.80 (s, Py-C_{4'}), 133.90 (q, ${}^{3}J_{F-C} =$ 20.6 Hz, Py-C_{5'}), 140.27 (q, ${}^{2}J_{F-C}$ = 32.6 Hz, Py-C_{6'}), 121.53 (q, ${}^{1}J_{F-C}$ = 272.6 Hz, CF₃), 66.27 (s, CH₂-5), 57.39 (s, CH₂-4), 20.89, 20.72, 20.68 (3s, 3 \times CH_3CO), 19.63 (s, CH_3-2) ppm. Anal. Calcd for C15H16NO6F3 (%): C, 49.59; H, 4.44; N, 3.86. Found: C, 49.55; H, 4.43; N. 3.84.

α⁴,**α**⁵-Di-O-acetyl-6-trifluoromethylpyridoxine 5. Yield: 88 mg, 12% as a syrup. $R_f = 0.27$ (2:1 cyclohexane–EtOAc). ¹H NMR (CDCl₃), $\delta_{\text{H}:}$ 5.24 (2 H, s, CH₂-5), 5.06 (2 H, s, CH₂-4), 2.33 (3 H, s, CH₃-2), 2.09, 2.02 (6 H, 2s, 2 × CH₃CO) ppm. ¹³C NMR (CDCl₃), $\delta_{\text{C}:}$ 170.12, 168.38 (2s, 2 × CH₃CO), 144.84 (s, Py-C_{2'}), 137.41 (s, Py-C_{3'}), 154.77 (s, Py-C_{4'}), 133.30 (q, ³J_{F-C} = 18.6 Hz, Py-C_{5'}), 141.67 (q, ²J_{F-C} = 32.8 Hz, Py-C_{6'}), 121.13 (q, ¹J_{F-C} = 272.5 Hz, CF₃), 66.17 (s, CH₂-5), 57.29 (s, CH₂-4), 20.68, 20.57 (2s, 2 × CH₃CO), 19.56 (s, CH₃-2) ppm. Anal. Calcd for C₁₃H₁₄NO₅F₃ (%): C, 48.60; H, 4.39; N, 4.36. Found: C, 48.55; H, 4.36; N, 4.32.

3,*α*⁴,*α*⁵-**Tri-O-benzyl-6-iodopyridoxine 6.** A solution of benzyl bromide (1.43 g, 8.0 mmol) in dry DMF (15 mL) was added dropwise over a period of 1–2 h to a well stirred dry DMF (70 mL) solution of **2** (0.69 g, 2.4 mmol) and NaH (341 mg, 8.6 mmol, 60% dispersion in mineral oil), and the stirring continued for an additional 4–5 h. At the end of the time, TLC (4:1 cyclohexane–EtOAc) showed the reaction to be complete. Then MeOH (15 mL) was added slowly to react with the excess of the NaH. After most of the DMF was removed under reduced pressure at 55 °C, the residue was dissolved in CH₂Cl₂ (125 mL) and washed with water, dried (Na₂SO₄), filtered, and evaporated. The residue was purified by column chromatography on silica gel with 4:1 cyclohexane–EtOAc as the eluent to afford quantitatively **6** (1.32

g) as a syrup. $R_f = 0.56$ (4:1 cyclohexane–EtOAc). ¹H NMR (CDCl₃), $\delta_{\text{H}:}$ 7.38–7.27 (15 H, m, Ph-H), 4.84 (2 H, s, PhCH₂-O₃), 4.64 (2 H, s, α^4 -OCH₂Ph), 4.56 (2 H, s, CH₂-4), 4.54 (2 H, s, CH₂-5), 4.41 (2 H, s, α^5 -OCH₂Ph), 2.48 (3 H, s, CH₃-2) ppm. ¹³C NMR (CDCl₃), $\delta_{\text{C}:}$ 155.28 (s, Py-C), 152.76 (s, Py-C), 140.29 (s, Py-C), 136.24 (s, Py-C), 128.66–128.16 (m, Ph–C), 119.57 (s, Py-C), 76.97 (s, PhCH₂-O₃), 73.68 (s, α^4 -OCH₂Ph), 73.51 (s, α^5 -OCH₂Ph), 71.87 (s, CH₂-4), 63.24 (s, CH₂-5), 19.74 (s, CH₃-2) ppm. Anal. Calcd for C₂₉H₂₈NO₃I (%): C, 61.60; H, 4.99; N, 2.48. Found: C, 61.56; H, 4.96; N, 2.45.

 $3_{,}\alpha^{4}_{,}\alpha^{5}$ -Tri-O-benzyl-6-trifluoromethylpyridoxine 7. Trifluoromethylation of 6 (0.89 g, 1.6 mmol) with Me₃SiCF₃ (356 µL, 1.9 mmol, 1.2 equiv) in the presence of CuI (304 mg, 1.6 mmol, 1.0 equiv) and KF (110 mg, 1.9 mmol, 1.2 equiv) in DMF-NMP (10 mL, 1:1 v/v') under an argon atmosphere in the dark, according to the procedures described for the preparation of 4, furnished $3,\alpha^4,\alpha^5$ -tri-Obenzyl-6-trifluoromethylpyridoxine 7 (0.78 g, 96%) as a syrup. R_f = 0.64 (4:1 cyclohexane–EtOAc). ¹H NMR (CDCl₃), $\delta_{\rm H}$: 7.40–7.28 (15 H, m, Ph-H), 4.89 (2 H, s, PhCH₂-O₃), 4.65 (2 H, s, α^4 -OCH₂Ph), 4.59 (2 H, s, CH₂-4), 4.45 (2 H, s, CH₂-5), 4.40 (2 H, s, α^{5} -OCH₂Ph), 2.54 (3 H, s, CH₃-2) ppm. ¹³C NMR (CDCl₃), δ_{C} : 141.44 (s, Py-C_{2'}), 136.50 (s, Py-C_{3'}), 153.44 (s, Py-C_{4'}), 137.60 (q, ${}^{3}J_{F-C} = 21.4$ Hz, Py-C_{5'}), 142.07 (q, ${}^{2}J_{F-C} = 32.1$ Hz, Py-C_{6'}), 122.36 $(q, {}^{1}J_{F-C} = 273.9 \text{ Hz}, CF_{3}), 128.92-128.10 (m, Ph-C), 73.86 (s, CF_{3}), 128.92-128.10 (m, Ph-C), 128.10 (m, Ph-C),$ PhCH₂-O₃), 73.70 (s, α^4 -OCH₂Ph), 64.08 (s, α^5 -OCH₂Ph), 64.05 (s, CH2-4), 62.63 (s, CH2-5), 20.01 (s, CH3-2) ppm. Anal. Calcd for C₃₀H₂₈NO₃F₃ (%): C, 70.99; H, 5.56; N, 2.76. Found: C, 70.96; H, 5.54; N, 2.73.

6-Trifluoromethylpyridoxine 8. Hydrogenation (H₂, 30 psi) of 7 (0.70 g, 1.4 mmol) in anhydrous AcOH–EtOH (70 mL, 1:10 v/v') catalyzed by Pd/C (5%, 250 mg) for 2 days furnished the target molecule **8** (0.33 g, 100%) as crystals. $R_f = 0.34$ (1:1 cyclohexane–EtOAc). ¹H NMR (DMSO- d_6), δ_{H} : 4.88 (2 H, s, CH₂-5), 4.59 (2 H, s, CH₂-4), 4.50 (3 H, br, 3-OH, α^4 -OH, α^5 -OH), 2.40 (3 H, s, CH₃-2) ppm. ¹³C NMR (DMSO- d_6), δ_C : 132.23 (s, Py-C_{2'}), 134.51 (s, Py-C_{3'}), 153.97 (s, Py-C_{4'}), 145.85 (s, Py-C_{5'}), 133.51 (q, ² J_{F-C} = 31.3 Hz, Py-C_{6'}), 122.94 (q, ¹ J_{F-C} = 272.4 Hz, CF₃), 56.55 (s, CH₂-4), 55.21 (s, CH₂-5), 19.27 (s, CH₃-2) ppm. Anal. Calcd for C₉H₁₀NO₃F₃ (%): C, 45.58; H, 4.25; N, 5.91. Found: C, 45.54; H, 4.23; N, 5.89.

α⁴,**α**⁵-**Di-O-benzyl-6-trifluoromethylpyridoxine 9.** Yield: 0.58 g, 100%, syrup. $R_f = 0.52$ (4:1 cyclohexane-EtOAc). ¹H NMR (CDCl₃), $\delta_{\rm H}$: 8.22 (1 H, s, 3-OH), 7.62–7.55 (10 H, m, Ph-H), 4.91 (2 H, s, α⁴-OCH₂Ph), 4.79 (2 H, s, CH₂-4), 4.73 (2 H, s, CH₂-5), 4.72 (2 H, s, α⁵-OCH₂Ph), 2.66 (3 H, s, CH₃-2) ppm. ¹³C NMR (CDCl₃), $\delta_{\rm C}$: 138.12 (s, Py-C₂), 138.17 (s, Py-C₃'), 149.47 (s, Py-C₄'), 147.26 (s, Py-C₅'), 140.02 (q, ²J_{F-C} = 32.3 Hz, Py-C₆'), 121.54 (q, ¹J_{F-C} = 273.2 Hz, CF₃), 128.50–127.20 (m, Ph-C), 71.96 (s, α⁴-OCH₂Ph), 71.64 (s, α⁵-OCH₂Ph), 67.09 (s, CH₂-4), 62.58 (s, CH₂-5), 19.88 (s, CH₃-2) ppm. Anal. Calcd for C₂₃H₂₂NO₃F₃ (%): C, 66.18; H, 5.31; N, 3.36. Found: C, 66.13; H, 5.30; N, 3.34.

α⁴-O-Benzyl-6-trifluoromethylpyridoxine 10. Yield: 0.46 g, 100%, syrup. $R_f = 0.34$ (4:1 cyclohexane–EtOAc). ¹H NMR (DMSO d_6), $\delta_{\rm H}$: 7.38–7.34 (5 H, m, Ph-H), 5.05 (2 H, s, α^4 -OCH₂Ph), 4.70 (2 H, br, 3-OH, α^5 -OH), 4.63 (2 H, s, CH₂-4), 4.54 (2 H, d, $J_{\rm H-S,HO-5}$ = 6.2 Hz, CH₂-5), 2.52 (3 H, s, CH₃-2) ppm. ¹³C NMR (DMSO- d_6), $\delta_{\rm C}$: 132.03 (s, Py-C₂·), 137.30 (s, Py-C₃·), 153.76 (s, Py-C₄·), 147.93 (s, Py-C₅·), 136.58 (q, ² $J_{\rm F-C}$ = 32.6 Hz, Py-C₆·), 122.54 (q, ¹ $J_{\rm F-C}$ = 272.8 Hz, CF₃), 128.78–128.27 (m, Ph-C), 73.22 (s, α^4 -OCH₂Ph), 64.40 (s, CH₂-4), 61.07 (s, CH₂-5), 18.99 (s, CH₃-2) ppm. Anal. Calcd for C₁₆H₁₆NO₃F₃ (%): C, 58.71; H, 4.93; N, 4.28. Found: C, 58.68; H, 4.90; N, 4.27.

3-O-Benzyl-6-iodopyridoxine 11. To a well stirred $CH_2Cl_2-H_2O(20 \text{ mL}, 1:1 \text{ v/v'})$ biphasic mixture (pH 9–10) of **2** (1.0 g, 3.4 mmol) and TBAB (0.10 g, 0.31 mmol) as the phase-transfer catalyst was added a solution of benzyl bromide (0.65 g, 3.73 mmol, 1.1 equiv) in CH_2Cl_2 (10 mL) dropwise over a period of 4–5 h at room temperature, and the stirring continued for an additional hour. The mixture was extracted with CH_2Cl_2 (4 × 20 mL), washed free of alkali, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel with 3:2 cyclohexane–EtOAc as the eluent to afford major product **11** (1.31 g, 74%) as a white

crystalline solid. $R_f = 0.68$ (1:2 cyclohexane-EtOAc). ¹H NMR (CDCl₃), δ_{H} : 7.41–7.37 (5 H, m, Ar–H), 4.92 (2 H, s, PhCH₂), 4.87 (2 H, d, $J_{\text{H-4,HO-4}} = 5.6$ Hz, CH₂-4), 4.73 (2 H, d, $J_{\text{H-5,HO-5}} = 6.4$ Hz, CH₂-5), 3.73 (2 H, br, α^4 -OH, α^5 -OH, exchangeable with D₂O), 2.50 (3 H, s, CH₃-2) ppm. ¹³C NMR (CDCl₃), δ_{C} : 155.56 (s, Py-C), 152.03 (s, Py-C), 142.98 (s, Py-C), 136.22 (s, Py-C), 129.04–128.69 (m, Ph-C), 117.97 (s, Py-C), 76.93 (s, PhCH₂-O₃), 67.03 (s, CH₂-4), 57.44 (s, CH₂-5), 19.83 (s, CH₃-2) ppm. Anal. Calcd for C₁₅H₁₆NO₃I (%): C, 46.77; H, 4.19; N, 3.64. Found: C, 46.74; H, 4.17; N, 3.62.

3-O-Benzyl- α^4 , α^5 -di-O-allyl-6-iodopyridoxine 12. To a well stirred dry DMF (80 mL) solution of 11 (1.20 g, 3.1 mmol) and NaH (0.50 g, 12.5 mmol, 60% dispersion in mineral oil) was added allyl bromide (1.13 g, 9.33 mmol) in dry DMF (10 mL) dropwise over a period of 1-2 h, and the stirring continued for an additional 4-5 h. At the end of the time, TLC (4:1 cyclohexane-EtOAc) showed the reaction to be complete. Then MeOH (15 mL) was added slowly to react with the excess of the NaH. After most DMF was removed under reduced pressure at 55 °C, the residue was dissolved in CH₂Cl₂ (150 mL) and washed with water, dried (Na₂SO₄), filtered, and evaporated. The residue was purified by column chromatography on silica gel with 4:1 cyclohexane-EtOAc as the eluent to afford quantitatively 12 (1.45 g) as a syrup. $R_f = 0.58$ (4:1 cyclohexane–EtOAc). ¹H NMR (CDCl₃),
$$\begin{split} & \delta_{H}: 7.43 - 7.36 \ (5 \ H, \ m, \ Ar-H), \ 5.98 \ (1 \ H, \ dq, \ {}^{3}J_{1',2'} = 1.8 \ Hz, \ {}^{3}J_{2',3a'} = \\ & 20.0 \ Hz, \ {}^{3}J_{2',3b'} = 9.0 \ Hz, \ H-2'), \ 5.91 \ (1 \ H, \ dq, \ {}^{3}J_{1',2'} = 1.8 \ Hz, \ {}^{3}J_{2',3a'} = \\ & 22.4 \ Hz, \ {}^{3}J_{2',3b'} = 9.0 \ Hz, \ H-2''), \ 5.35 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = \\ & 2.4 \ Hz, \ H-3''), \ 5.26 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.26 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.96 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.96 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.26 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.96 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.96 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.96 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.96 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{2}J_{3a',3b''} = 2.4 \ Hz, \ H-3''), \ 5.96 \ (1 \ H, \ dt, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{4}J_{1',3'} = 1.0 \ Hz, \ {}^{4}J_{1',3''} = 1.0 \ Hz, \ {}^{4}J_$$
4.89 (2 H, s, PhCH₂), 4.67 (2 H, s, CH₂-4), 4.60 (2 H, s, CH₂-5), 4.11 (2 H, dt, H-1'), 4.02 (2 H, dt, H-1"), 2.49 (3 H, s, CH₃-2) ppm. ¹³C NMR (CDCl₃), δ_{C} : 155.27 (s, Py-C), 152.84 (s, Py-C), 140.40 (s, Py-C) C), 136.65 (s, Py-C), 134.63 (s, α^4 -OCH₂CH=CH₂), 134.26 (s, α^5 -OCH₂CH=CH₂), 128.89-128.14 (m, Ph-C), 119.45 (s, Py-C), 118.25 (s, α^4 -OCH₂CH=CH₂), 118.03 (s, α^5 -OCH₂CH=CH₂), 76.97 (s, PhCH₂-O₃), 72.46 (s, α^4 -OCH₂CH=CH₂), 72.29 (s, α^5 -OCH₂CH=CH₂), 71.96 (s, CH₂-4), 63.29 (s, CH₂-5), 19.76 (s, CH₃-2) ppm. Anal. Calcd for C₂₁H₂₄NO₃I (%): C, 54.20; H, 5.20; N, 3.01. Found: C, 54.16; H, 5.18; N, 3.00.

3-O-Benzyl- α^4 , α^5 -di-O-allyl-6-trifluoromethylpyridoxine 13. Trifluoromethylation of 12 (1.10 g, 2.4 mmol) with Me₃SiCF₃ (537 μ L, 2.9 mmol, 1.2 equiv) in the presence of CuI (456 mg, 2.4 mmol, 1.0 equiv) and KF (168 mg, 2.9 mmol, 1.2 equiv) in DMF-NMP (10 mL, 1:1 v/v') under an argon atmosphere in the dark, according to the procedures described for the preparation of 4 and 7, yielded 13 (0.90 g, 92%) as a syrup. $R_f = 0.71$ (3:1 cyclohexane-EtOAc). ¹H NMR (CDCl₃), $\delta_{\rm H}$: 7.45–7.34 (5 H, m, Ar-H), 5.97 (1 H, dq, ${}^{3}J_{1',2'}$ = 4.8 Hz, ${}^{3}J_{2',3a'} = 20.8 \text{ Hz}, {}^{3}J_{2',3b'} = 9.2 \text{ Hz}, \text{ H-2'}), 5.91 (1 \text{ H, dq}, {}^{3}J_{1'',2''} = 1.8 \text{ Hz},$ ${}^{3}J_{2'',3a''} = 22.0$ Hz, ${}^{3}J_{2'',3b''} = 9.0$ Hz, H-2"), 5.32 (1 H, dt, ${}^{4}J_{1',3'} = 1.2$ Hz, ${}^{2}J_{3a',3b'} = 2.6$ Hz, H-3'), 5.23 (1 H, dt, ${}^{4}J_{1',3'} = 0.8$ Hz, ${}^{2}J_{3a'',3b''} = 2.2$ Hz, H-3"), 4.96 (2 H, s, PhCH₂), 4.71 (2 H, s, CH₂-4), 4.61 (2 H, s, CH₂-5), 4.10 (2 H, dt, H-1'), 4.05 (2 H, dt, H-1"), 2.58 (3 H, s, CH₃-2) ppm. ¹³C NMR (CDCl₃), δ_{C} : 136.50 (s, Py-C_{2'}), 136.12 (s, Py-C_{3'}), ppin. Control (CD 23,) (c) 150:50 (c) (1) (2,) (1) (3, 1) (2, 1) (3, 1) (3, 1) (5, 1) (3, 1) (5, 1) (m, Ph-C), 118.24 (s, α^4 -OCH₂CH=CH₂), 118.21 (s, α^5 -OCH₂CH=CH₂), 78.41 (s, PhCH₂-O₃), 72.69 (s, α^4 -OCH₂CH= CH₂), 72.39 (s, α^{5} -OCH₂CH=CH₂), 71.21 (s, CH₂-4), 64.04 (s, CH₂-5), 20.59 (s, CH₃-2) ppm. Anal. Calcd for C₂₂H₂₄NO₃F₃ (%): C, 64.86; H, 5.94; N, 3.44. Found: C, 64.82; H, 5.91; N, 3.42.

3-O-Benzyl- α^4 , α^5 -**di-O-(3-hydroxypropyl)-6-trifluoromethylpyridoxine 14.** To a solution of 13 (0.41 g, 1.0 mmol) in dry dioxane (10 mL) was added 9-BBN (8 mL, 4 mmol, 0.5 M solution in THF) dropwise at 0 °C under argon. The reaction mixture was stirred at room temperature for 24 h and cooled to 0 °C. Aqueous NaOH (3 M, 8 mL) and 30% H₂O₂ (1.3 mL) were added. The reaction mixture was stirred at room temperature for 2 days. The aqueous phase was extracted with ethyl acetate (4 × 50 mL). The combined organic phases were washed with saturated NaCl solution and dried (Na₂SO₄). The solution was filtered and the filtrate concentrated in vacuo to give an almost colorless syrup, which was purified by column chromatography on silica gel with 1:3 cyclohexane–EtOAc as the eluent to afford 14 (0.38 g, 86%) as a syrup. $R_f = 0.35$ (1:4 cyclohexane–EtOAc). ¹H NMR (CDCl₃), $\delta_{\rm H}$: 7.42–7.36 (5 H, m, Ar-H), 4.93 (2 H, s, PhCH₂), 4.86 (2 H, s, CH₂-4), 4.62 (2 H, s, CH₂-5), 3.74–3.60 (8 H, m, α^{4} -OCH₂CH₂CH₂OH, α^{5} -OCH₂CH₂CH₂OH), 2.55 (3 H, s, CH₃-2), 2.92 (2H, br, α^4 -O(CH₂)₃OH, α^5 -O(CH₂)₃OH), 1.86–1.76 (4 H, m, α^4 -OCH₂CH₂CH₂OH, α^5 -OCH₂CH₂CH₂OH) ppm. ¹³C NMR (CDCl₃), $\tilde{\delta}_{C}$: 135.70 (s, Py- $C_{2'}$), 130.81 (s, Py- $C_{3'}$), 153.36 (s, Py- $C_{4'}$), 136.34 (q, ${}^{3}J_{F-C} = 8.3$ Hz, Py-C_{5'}), 141.59 (q, ${}^{2}J_{F-C}$ = 32.0 Hz, Py-C_{6'}), 122.22 (q, ${}^{1}J_{F-C}$ = 273.9 Hz, CF₃), 129.00-127.84 (m, Ph-C), 76.85 (s, PhCH₂-O₃), 72.66 (s, CH₂-4), 69.57, 69.56 (2s, α^4 -OCH₂(CH₂)₂OH, α^5 -OCH₂(CH₂)₂OH), 63.72 (s, CH₂-5), 60.79, 60.63 (2s, α^4 -O- $(CH_2)_2CH_2OH$, α^5 -O(CH₂)₂CH₂OH), 32.36, 32.27 (2s, α^4 -OCH₂CH₂CH₂OH, α⁵-OCH₂CH₂CH₂OH), 19.78 (s, CH₃-2) ppm. Anal. Calcd for C₂₂H₂₈NO₅F₃ (%): C, 59.59; H, 6.36; N, 3.16. Found: C, 59.56; H, 6.34; N, 3.14.

3-O-Benzyl- α^4 , α^5 -di-O-[3'-O-(2,3,4,6-tetra-O-acetyl- β -Dglucopyranosyl)propyl]-6-trifluoromethylpyridoxine 15. A solution of 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide (0.75 g, 1.45 mmol, 1.2 equiv) in anhydrous CH₂Cl₂ (5 mL) was added dropwise into a solution of 14 (0.34 g, 0.75 mmol) and Hg(CN)₂ (0.52 g, 1.21 mmol) as a promoter in dry acetonitrile (10 mL) containing powdered molecular sieves (4 Å, 1.3 g) with vigorous stirring at room temperature under an argon atmosphere in the dark for 12 h. The mixture was diluted with CH2Cl2 (60 mL), filtered through Celite, washed with water, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified on a silica gel column (1:1 cyclohexane-EtOAc) to yield the title compound 15 (0.73 g, 88%) as a syrup. $R_f = 0.50$ (1:1 cyclohexane–EtOAc). ¹H NMR (CDCl₃), δ_{H} : 7.45-7.39 (5 H, m, Ar-H), 4.94 (2 H, s, PhCH₂), 4.68 (2 H, s, CH₂-4), 4.64 (2 H, s, CH₂-5), 4.15–4.09 (4 H, m, α^4 -OCH₂(CH₂)₂O-, α^5 -OCH₂(CH₂)₂O-), 3.62-3.54 (4 H, m, α^4 -O(CH₂)₂CH₂O-, α^5 - $O(CH_2)_2CH_2O_2$, 2.57 (3 H, s, CH_3-2), 1.94–1.84 (4 H, m, α^4 -OCH₂CH₂CH₂O-, α⁵-OCH₂CH₂CH₂O-), 4.48 (1 H, d, J_{1',2'} = 8.0 Hz, H-1'), 4.41 (1 H, d, $J_{1',2''}$ = 7.6 Hz, H-1"), 5.00 (1 H, dd, $J_{2',3'}$ = 10.0 Hz, H-2'), 4.96 (1 H, dd, $J_{2'',3''}$ = 9.8 Hz, H-2"), 5.20 (1 H, dd, $J_{3',4'}$ = 3.2 Hz, H-3'), 5.17 (1 H, dd, $J_{3^{''},4^{''}}$ = 3.6 Hz, H-3"), 5.10 (1 H, dd, $J_{4',5'}$ = 5.6 Hz, H-4'), 5.04 (1 H, dd, $J_{4',5'}$ = 5.4 Hz, H-4"), 3.70 (1 H, m, H-5'), 3.68 (1 H, m, H-5"), 4.26 (1 H, dd, $J_{5',6a'}$ = 4.8 Hz, $J_{6a',6b'}$ = 13.6 Hz, H-6a'), 4.23 (1 H, dd, $J_{5'',6a''}$ = 4.4 Hz, $J_{6a'',6b''}$ = 12.4 Hz, H-6a''), 3.93 (1 H, dd, $J_{5',6b'}$ = 5.6 Hz, H-6b'), 3.90 (1 H, dd, $J_{5'',6b''}$ = 4.8 Hz, H-6b"), 2.06–1.99 (24 H, 8s, $8 \times CH_3CO$) ppm. ¹³C NMR (CDCl₃), $\delta_{\rm C}$: 171.23–169.37 (8s, 8 × CH₃CO), 136.37 (s, Py-C_{2'}), 131.00 (s, $\begin{array}{l} Py-C_{3'}), 153.41 \ (s, Py-C_{4'}), 141.18 \ (q, {}^{3}J_{F-C}=11.5 \ Hz, Py-C_{5'}), 141.82 \\ (q, {}^{2}J_{F-C}=32.8 \ Hz, Py-C_{6'}), 122.27 \ (q, {}^{1}J_{F-C}=274.0 \ Hz, CF_{3}), \\ \end{array}$ 129.00-127.88 (m, Ph-C), 76.88 (s, PhCH₂-O₃), 71.49 (s, CH₂-4), 68.14 (s, α^4 -OCH₂(CH₂)₂O-), 68.02 (s, α^5 -OCH₂(CH₂)₂O-), 67.07 (s, α^4 -O(CH₂)₂CH₂O-), 67.01 (s, α^5 -O(CH₂)₂CH₂O-), 63.52 (s, CH₂-5), 30.00 (s, α^4 -OCH₂CH₂CH₂O-), 29.13 (s, α^5 -OCH₂CH₂CH₂O-), 20.10 (s, CH₃-2), 101.02 (s, C-1', C-1"), 68.58 (s, C-2'), 68.51 (s, C-2"), 71.95 (s, C-3'), 71.87 (s, C-3"), 67.76 (s, C-4'), 67.66 (s, C-4"), 73.01 (s, C-5'), 72.92 (s, C-5"), 61.60 (s, C-6'), 61.50 (s, C-6"), 21.14–20.63 (8s, 8 \times CH₃CO) ppm. ESIMS: m/z1103 [M⁺] (40%), 1104 [M + 1] (28%). Anal. Calcd for $\rm C_{50}H_{64}NO_{23}F_3$ (%): C, 54.40; H, 5.84; N, 1.27. Found: C, 54.36; H, 5.83; N, 1.25.

3-O-Benzyl-α⁴, α⁵-di-O-[3'-O-(β-D-glucopyranosyl)propyl]-6trifluoromethylpyridoxine 16. A solution of 15 (0.70 g) in anhydrous MeOH (20 mL) containing 0.5 M NH₃ was vigorously stirred from 0 °C to rt for 2 days until TLC showed the reaction to be complete. The mixture was then evaporated to dryness in vacuo. Chromatography of the crude syrup on silica gel with EtOAc–MeOH (4:1) afforded 16 (0.49 g) as a syrup in quantitative yield. R_f = 0.36 (1:4 MeOH–EtOAc). ¹H NMR (CDCl₃), δ_{H} : 7.52–7.39 (5 H, m, Ar–H), 5.00 (2 H, s, PhCH₂), 3.60 (2 H, s, CH₂-4), 3.49 (2 H, s, CH₂-5), 3.69–3.63 (4 H, m, α⁴-OCH₂(CH₂)₂O-, α⁵-OCH₂(CH₂)₂O-), 2.52 (3 H, s, CH₃-2), 1.83–1.78 (4 H, m, α⁴-OCH₂CH₂CH₂CH₂O-), 2.52 (3 H, s, CH₃-2), 4.29 (2 H, d, J_{H-2,OH-2} = 7.6 Hz, HO-2', 2"), 4.61 (1 H, d, J_{H-3',OH-3'} = 5.2 Hz, HO-3'), 4.54 (1 H, d, J_{H-3',OH-3'} = 5.2 Hz, HO-3"), 4.95 (1 H, d, $J_{\text{H-4',OH-4'}}$ = 4.6 Hz, HO-4'), 4.91 (1 H, d, $J_{\text{H-4",OH-4"}} = 4.4 \text{ Hz}, \text{HO-4"}), 4.44 (2 \text{ H}, \text{br}, \text{HO-6'}, 6"), 4.11 (1 \text{ H}, \text{d}, J_{1',2'} = 8.0 \text{ Hz}, \text{H-1'}), 4.08 (1 \text{ H}, \text{d}, J_{1',2''} = 7.6 \text{ Hz}, \text{H-1''}), 2.96 (1 \text{ H}, \text{dd}, \text{dd})$ $J_{2',3'} = 10.1$ Hz, H-2'), 2.91 (1 H, dd, $J_{2'',3''} = 9.6$ Hz, H-2"), 3.08 (1 H, dd, $J_{3',4'} = 3.0$ Hz, H-3'), 3.05 (1 H, dd, $J_{3',4''} = 3.4$ Hz, H-3"), 3.84 (1 H, dd, $J_{4',5'} = 6.4$ Hz, H-4'), 3.80 (1 H, dd, $J_{4'',5''} = 6.4$ Hz, H-4"), 3.47 (1 H, m, H-5'), 3.43 (1 H, m, H-5''), 3.67 $(1 \text{ H}, \text{ dd}, J_{5',6a'} = 4.6 \text{ Hz}$, $J_{6a',6b'} = 11.2 \text{ Hz}, \text{ H-6a'}), 3.64 (1 \text{ H}, \text{ dd}, J_{5',6a''} = 4.8 \text{ Hz}, J_{6a'',6b''} = 9.6 \text{ Hz}, \text{ H-6a''}), 3.58 (1 \text{ H}, \text{ dd}, J_{5',6b''} = 5.2 \text{ Hz}, \text{ H-6b'}), 3.54 (1 \text{ H}, \text{ dd}, J_{5',6b''} = 4.4 \text{ Hz}, \text{ H-6b''}) \text{ ppm.}^{-13}\text{C} \text{ NMR} (\text{CDCl}_3), \delta_{\text{C}}: 136.50 \text{ (s}, \text{ Py-C}_2),$ 131.27 (s, Py-C_{3'}), 153.16 (s, Py-C_{4'}), 141.36 (q, ${}^{3}J_{F-C} = 16.0$ Hz, Py-C_{5'}), 140.25 (q, ${}^{2}J_{F-C} = 32.1$ Hz, Py-C_{6'}), 122.32 (q, ${}^{1}J_{F-C} = 273.9$ Hz, CF₃), 128.80-128.53 (m, Ph-C), 76.88 (s, PhCH₂-O₃), 72.07 (s, CH₂-4), 68.04 (s, α^4 -OCH₂(CH₂)₂O-), 67.82 (s, α^5 -OCH₂(CH₂)₂O-), 66.00 (s, α^4 -O(CH₂)₂CH₂O-), 65.89 (s, α^5 -O(CH₂)₂CH₂O-), 63.98 (s, CH₂-5), 32.66 (s, α^4 -OCH₂CH₂CH₂O-), 29.76 (s, α^5 -OCH₂CH₂CH₂O-), 22.57 (s, CH₃-2), 103.11 (s, C-1'), 103.04 (s, C-1"), 68.18 (s, C-2'), 67.96 (s, C-2"), 70.38 (s, C-3'), 70.15 (s, C-3"), 65.98 (s, C-4'), 65.89 (s, C-4"), 73.52 (s, C-5'), 73.15 (s, C-5"), 61.30 (s, C-6'), 61.16 (s, C-6") ppm. ESIMS: m/z 767 [M⁺] (30%), 768 [M + 1] (18%). Anal. Calcd for C₃₄H₄₈NO₁₅F₃ (%): C, 53.19; H, 6.30; N, 1.82. Found: C, 53.14; H, 6.28; N, 1.80.

 α^4, α^5 -Di-O-[3'-O-(β -D-glucopyranosyl)propyl]-6-trifluoromethylpyridoxine 17. Hydrogenation (H_2 , 30 psi) of 16 (0.45 g) in anhydrous EtOH (30 mL) catalyzed by Pd/C (5%, 125 mg) for 1 day furnished the target molecule 17 (0.40 g, 100%) as a syrup. $R_f = 0.30$ (1:2 MeOH-EtOAc). ¹H NMR (DMSO- d_6), δ_{H} : 4.78 (2 H, s, CH₂-4), 4.54 (2 H, s, CH₂-5), 4.94–4.85 (4 H, m, α^4 -OCH₂(CH₂)₂O-, α^5 -OCH₂(CH₂)₂O-), 3.40-3.15 (4 H, m, α^4 -O(CH₂)₂CH₂O-, α^5 - $O(CH_2)_2CH_2O_2$, 2.38 (3 H, s, CH_3-2), 1.89–1.80 (4 H, m, α^4 - $OCH_2CH_2CH_2O$, α^5 - $OCH_2CH_2CH_2O$ -), 4.40 (1 H, d, $J_{1',2'}$ = 7.6 Hz, H-1'), 4.07 (1 H, d, $J_{1'',2''}$ = 8.8 Hz, H-1"), 3.06 (1 H, dd, $J_{2',3'}$ = 10.0 Hz, H-2'), 3.02 (1 H, dd, $J_{2'',3''}$ = 9.6 Hz, H-2"), 3.18 (1 H, dd, $J_{3',4'}$ = 2.8 Hz, H-3'), 3.10 (1 H, dd, $J_{3'',4''}$ = 3.4 Hz, H-3"), 3.85 (1 H, dd, $J_{4',5'}$ = 5.4 Hz, H-4'), 3.81 (1 H, dd, $J_{4',5'}$ = 5.6 Hz, H-4"), 3.57 (1 H, m, H-5'), 3.54 (1 H, m, H-5"), 3.77 (1 H, dd, $J_{5',6a'}$ = 4.6 Hz, $J_{6a',6b'}$ = 11.4 Hz, H-6a'), 3.62 (1 H, dd, $J_{5'',6a''} = 4.4$ Hz, $J_{6a'',6b''} = 9.8$ Hz, H-6a''), 3.56 (1 H, dd, $J_{5',6b'} = 5.0$ Hz, H-6b'), 3.52 (1 H, dd, $J_{5'',6b''} = 4.4$ Hz, H-6b") ppm. ¹³C NMR (DMSO- d_6), δ_C : 148.05 (s, Py- C_2), 132.81 (s, Py-C_{3'}), 154.84 (s, Py-C_{4'}), 130.25 (q, ${}^{3}J_{F-C} = 12.6$ Hz, Py-C_{5'}), 135.45 (q, ${}^{2}J_{F-C} = 32.1$ Hz, Py-C₆'), 123.71 (q, ${}^{1}J_{F-C} = 273.6$ Hz, CF₃), 78.15 (s, CH₂-4), 74.37 (s, α^{4} -OCH₂(CH₂)₂O-), 74.14 (s, α^{5} -OCH₂(CH₂)₂O-), 71.13 (s, α^4 -O(CH₂)₂CH₂O-), 71.08 (s, α^5 - $O(CH_2)_2CH_2O_2$, 77.27 (s, CH_2-5), 30.92 (s, α^4 - $OCH_2CH_2CH_2O_2$), 29.44 (s, α⁵-OCH₂CH₂CH₂O-), 21.48 (s, CH₃-2), 103.73 (s, C-1', C-1"), 68.97 (s, C-2'), 68.55 (s, C-2"), 70.98 (s, C-3'), 70.89 (s, C-3"), 67.23 (s, C-4′), 67.18 (s, C-4″), 73.09 (s, C-5′), 72.29 (s, C-5″), 62.17 (s, C-6′), 62.02 (s, C-6″) ppm. ESIMS: m/z 677 [M⁺] (25%), 678 [M + 1] (12%). Anal. Calcd for $C_{27}H_{42}NO_{15}F_3$ (%): C, 47.86; H, 6.25; N, 2.07. Found: C, 47.81; H, 6.23; N, 2.04.

¹⁹**F NMR.** The ¹⁹**F** NMR data versus pH were measured in NMR tubes using a combination pH electrode (Wilmad, Buena, NJ) attached to a pH meter (Corning 220, Sudbury, U.K.), and for titration curves the pH was altered by addition of NaOH or HCl aqueous solutions. In vivo ¹⁹F NMR data were acquired using a 4.7 T horizontal bore magnet with a Varian INOVA Unity system (Palo Alto, CA, U.S., 188 MHz ¹⁹F).

Blood. Fresh whole blood was drawn from the lateral ear of New Zealand white rabbits and stored chilled in the presence of heparin prior to ¹⁹F NMR studies.

Heart Perfusion. Langendorff retrograde perfusion was performed with recycled phosphate-free, modified Kres–Henseleit buffer oxygenated with carbogen at 37 °C under a pressure of 100 cmH₂O, as described in detail previously.^{4–6}

Animal Studies. Animal studies were performed in accordance with protocols approved by the UT Southwestern Institutional Animal Care and Use Committee. Dunning prostate tumor R3327-AT1 and rat mammary tumor 13762NF were implanted in a skin pedicle on the fore-back of a Copenhagen—Fisher 344 rat, and Dunning prostate tumor Mat-Lu cells were implanted subcutaneously in thighs of nude mice. Anesthesia was induced in an induction chamber with isoflurane and maintained during the surgery with a nose cone at 1.3% isoflurane/air (1.0 dm³/min). Once the tumor had grown to the requisite sizes, animals were anesthetized (isoflurane/air), injected ip with a solution of pH indicator 8 and NaTFA, then placed on a platform with a 2 cm diameter home-built volume coil around the tumor. The animal bed was inserted into the bore of the MR scanner, and ¹⁹F NMR spectra were acquired immediately after tuning the coil to the ¹⁹F resonance frequency. Animal temperature was maintained at 37 °C by a warm pad with circulating water during acquisition.

Tumor Microelectrode Studies. Measurement of pH_e was accomplished with the 20G combination needle electrode (model 818, Diamond General, Ann Arbor, MI) and digital pH meter (Model 820A, Orion Research). Spatial pH_e was mapped in three 13762NF breast tumor bearing female Fisher 344 rats. After anesthetizing the animal, the tumor was gently clamped into a fixed position. The pH electrode was clamped to a microcaliper insertion device and inserted along the central track of the central plane of the tumor until the needle reached the opposing side of the tumor wall. The pH needle was withdrawn in 0.5 mm steps and allowed to stabilize for 2 min prior to measurement. The pH response was recorded at each step, and the electrode was stepped backward until withdrawn. This process was repeated along two additional parallel tracks, 0.5 cm anterior and 0.5 cm posterior to the central track.

AUTHOR INFORMATION

Corresponding Author

*Phone: 214-648-2716. Fax: 214-648-4538. E-mail: Jian-Xin. Yu@UTSouthwestern.edu.

Present Address

[†]Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street SE, Minneapolis, Minnesota 55455, United States.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by grants from the DOD Breast Cancer Initiative IDEA Award DAMD17-99-1-9381, the DOD Prostate Cancer New Investigator Award W81XWH-05-1-0593, and the Small Animal Imaging Research Program, which is supported in part by NCI Grants U24 CA126608 and P30 CA142543. NMR experiments were conducted at the Advanced Imaging Research Center, an NIH BTRP facility, No. P41-RR02584. We are also grateful to Dr. Anca Constantinescu and Jennifer McAnally for expert technical assistance and Dr. Pieter Otten for sharing ideas and initial observations.

ABBREVIATIONS USED

FPOL, 6-fluoropyridoxine; CF₃, trifluoromethyl; Me₃SiCF₃, (trifluoromethyl)trimethylsilane; 9-BBN, 9-borabicyclo[3.3.1]nonane; NaTFA, sodium trifluoroacetate; pH_e, extracellular pH value; pH_i, intracellular pH value; DMSO, dimethyl sulfoxide; MRS, magnetic resonance spectroscopy; NMR, nuclear magnetic resonance; MRI, magnetic resonance imaging; TLC, thin layer chromatography; DMF, *N*,*N*-dimethylformamide; NMP, *N*-methylpyrrolidine

REFERENCES

(1) (a) Mason, R. P. Transmembrane pH gradients in vivo: measurements using fluorinated vitamin B6 derivatives. *Curr. Med. Chem.* **1999**, *6*, 533–551. (b) Yu, J.-X.; Kodibagkar, V. D.; Cui, W.; Mason, R. P. ¹⁹F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. *Curr. Med. Chem.* **2005**, *12*, 819–848. (c) Song, C. W.; Griffin, R.; Park, H. J. Influence of Tumor

Journal of Medicinal Chemistry

pH on Therapeutic Response. In *Cancer Drug Discovery and Development: Cancer Drug Resistance, Influence of Tumor pH on Therapeutic Response;* Teicher, B., Ed.; Humana Press: Totowa, NJ, 2006, pp 21–42. (d) Hashim, A. I.; Zhang, X.; Wojtkowiak, J. W.; Martinez, G. V.; Gillies, R. J. Imaging pH and metastasis. *NMR Biomed.* 2011, 24, 582–591.

(2) (a) Tannock, I. F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. *Cancer Res.* 1989, 49, 4373-74384.
(b) Gerweck, L. E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. *Cancer Res.* 1996, 56, 1194-1198. (c) Gatenby, R. A.; Gawlinski, E. T. A reaction-diffusion model of cancer invasion. *Cancer Res.* 1996, 56, 5745-5753. (d) Gerweck, L. E. Tumor pH: implications for treatment and novel drug design. *Semin. Radiat. Oncol.* 1998, 8, 176-182. (e) Gerweck, L. E.; Vijayappa, S.; Kozin, S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. *Mol. Cancer Ther.* 2006, 5, 1275-1279.

(3) (a) Guerquin-Kern, J. L.; Leteurtre, F.; Croisy, A.; Lhoste, J. M. pH dependence of 5-fluorouracil uptake observed by in vivo ³¹P and ¹⁹F nuclear magnetic resonance spectroscopy. *Cancer Res.* **1991**, *51*, 5770–5773. (b) Raghunand, N.; He, X.; van Sluis, R.; Mahoney, B.; Baggett, B.; Taylor, C. W.; Paine-Murrieta, G.; Roe, D.; Bhujwalla, Z. M.; Gillies, R. J. Enhancement of chemotherapy by manipulation of tumor pH. *Br. J. Cancer* **1999**, *80*, 1005–1011. (c) Rofstad, E. K.; Mathiesen, B.; Kindem, K.; Galappathi, K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. *Cancer Res.* **2006**, *66*, 6699–6707. (d) Zhang, X.; Lin, Y.; Gillies, R. J. Tumor pH and its measurement. *J. Nucl. Med.* **2010**, *51*, 1167–1170.

(4) Hunjan, S.; Mason, R. P.; Mehta, V. D.; Kulkarni, P. V.; Aravind, S.; Arora, V.; Antich, P. P. Simultaneous intra- and extra- cellular pH measurement using ¹⁹F NMR of 6-fluoropyridoxol. *Magn. Reson. Med.* **1998**, *39*, 551–556.

(5) Mehta, V. D.; Kulkarni, P. V.; Mason, R. P.; Constantinescu, A.; Aravind, S.; Goomer, N.; Antich, P. P. 6-Fluoropyridoxol: a novel probe of cellular pH using ¹⁹F NMR spectroscopy. *FEBS Lett.* **1994**, 349, 234–238.

(6) He, S.; Mason, R. P.; Hunjan, S.; Mehta, V. D.; Arora, V.; Katipally, R.; Kulkarni, P. V.; Antich, P. P. Development of novel ¹⁹F NMR pH indicators: synthesis and evaluation of a series of fluorinated vitamin B6 analogs. *Bioorg. Med. Chem.* **1998**, *6*, 1631–1639.

(7) For the use of organofluorine compounds in medicinal and biomedical chemistry, see the following: (a) *Biomedical Frontiers of Fluorine Chemistry*; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; ACS Symposium Series 639; American Chemical Society: Washington, DC, 1996. (b) Filler, R.; Kirk, K. Biological Properties of Fluorinated Compounds. In *Chemistry of Organic Fluorine Compounds II: A Critical Review*; Hudlicky, M., Pavlath, A. E., Eds.; ACS Monograph 187; American Chemical Society: Washington, DC, 1995. (c) Elliot, A. J. Fluorinated Pharmaceuticals. In *Chemistry of Organic Fluorine Compounds II*; ACS Monograph 187; American Chemical Society: Washington, DC, 1995. (d) Sholoshonok, V. A., Ed. *Enantiocontrolled Synthesis of Organo-fluorine Compounds: Stereochemical Challenge and Biomedical Targets*; Wiley: New York, 1999.

(8) For the use of organofluorine compounds in agrosciences, see the following: (a) Cartwright, D. Recent Developments in Fluorine-Containing Agrochemicals. In *Organofluorine Chemistry: Principles and Commercial Applications*; Banks, R. E., Smart, B. E., Tatlow, J. C., Eds.; Plenum: New York, 1994. (b) Lang, R. W. Fluorinated Agrochemicals. In *Chemistry of Organic Fluorine Compounds II*; ACS Monograph 187; American Chemical Society: Washington, DC, 1995.

(9) Yu, J.-X.; Otten, P.; Ma, Z.; Cui, W.; Liu, L.; Mason, R. P. A novel NMR platform for detecting gene transfection: synthesis and evaluation of fluorinated phenyl β -D-galactosides with potential application for assessing *lacZ* gene expression. *Bioconjugate Chem.* **2004**, *15*, 1334–1341.

(10) Yu, J.-X.; Liu, L.; Kodibagkar, V. D.; Cui, W.; Mason, R. P. Synthesis and evaluation of novel enhanced gene reporter molecules: detection of β -galactosidase activity using ¹⁹F NMR of trifluoromethy-

lated aryl β -D-galactopyranosides. Bioorg. Med. Chem. 2006, 14, 326–333.

(11) For general discussion on the synthesis of organofluorine compounds, see the following: (a) Olah, G. A.; Prakash, G. K. S.; Chambers, R. D. Synthetic Fluorine Chemistry; Wiley: New York, 1992.
(b) Furin, G. G. Synthetic Aspects of the Fluorination of Organic Compounds; Harward Academic: London, 1991. (c) McClinton, M. A.; McClinton, D. A. Trifluoromethylations and related reactions in organic chemistry. Tetrahedron 1992, 48, 6555–6666.

(12) (a) Prakash, G. K. S.; Yudin, A. K. Perfluoroalkylation with organosilicon reagents. *Chem. Rev.* **1997**, *97*, 757–786. (b) Singh, R. P.; Shreeve, J. M. Nucleophilic trifluoromethylation reactions of organic compounds with (trifluoromethyl)trimethylsilane. *Tetrahedron* **2000**, *56*, *76*13–7632. (c) Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V.-D.; Roy, S. Trifluoromethylation of aryl and heteroaryl halides. *Tetrahedron* **2011**, *67*, 2161–2195.

(13) (a) Blazejewski, J. C.; Anselmi, E.; Wilmshurst, M. P. Extending the scope of Ruppert's reagent: trifluoromethylation of imines. *Tetrahedron Lett.* **1999**, 40, 5475–5478. (b) Urata, H.; Fuchikami, T. A novel and convenient method for trifluoromethylation of organic halides using $CF_3SiR'_3/KF/Cu(I)$ system. *Tetrahedron Lett.* **1991**, 32, 91–94.

(14) Korytnyk, W.; Srivastava, S. C. Chemistry and biology of vitamin B6. 31. Synthesis and physicochemical and biological properties of 6-halogen-substituted vitamin B6 analogs. *J. Med. Chem.* **1973**, *16*, 638–642.

(15) Koch, V.; Schnatterer, S. Chemistry of 3-hydroxypyridine part 1: bromination and iodination of 3-hydroxypyridine. *Synthesis* **1990**, 497–500.

(16) (a) Yu, J.-X.; Mason, R. P. Synthesis and characterization of novel *lacZ* gene reporter molecules: detection of β -galactosidase activity using ¹⁹F NMR of polyglycosylated fluorinated vitamin B₆. J. Med. Chem. **2006**, 49, 1991–1999. (b) Yu, J.-X.; Gulaka, P. K.; Liu, L.; Kodibagkar, V. D.; Mason, R. P. Novel Fe³⁺-based ¹H MRI β -galactosidase reporter molecules. ChemPlusChem **2012**, 70, 370–378.