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ABSTRACT: Altering the morphology of electrochemically active
nanostructured materials could fundamentally influence their sub-
sequent catalytic as well as oxygen evolution reaction (OER)
performance. Enhanced OER activity for mixed-metal spinel-type
sulfide (CuCo2S4) nanorods is generally done by blending the material
that has high conductive supports together with those having a high
surface volume ratio, for example, graphitic carbon nitrides (g-C3N4).
Here, we report a noble-metal-free CuCo2S4 nanorod-based electro-
catalyst appropriate for basic OER and neutral media, through a simple
one-step thermal decomposition approach from its molecular
precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and
pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes.
Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized
CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance−Fourier-
transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful
formation of bonds that bridge (Co−N/S−C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are
expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low
overpotential (242 mV) of a current density at 10 mA cm−2 under basic conditions, resulting in very high durability. Moreover,
CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV
and a current density of 10 mA cm−2.

■ INTRODUCTION

Development of methodologies for advancement of energy
resources in sustainable fashion is highly attractive due to its
ability to overcome negative outcomes brought about by the
utilization of conventional fossil fuels. Consequently, an
assortment of energy conversation strategies, for example,
PEC water splitting,1−3 electrocatalytic water splitting,4−7

methanol oxidation,8−10 N2 reduction,11−14 CO2 reduc-
tion,15−17 and rechargeable metal-air batteries,18−21 have
been paid increasingly more consideration inferable from
their extraordinary potential for reducing the concern of energy
needs. Among those, the electrocatalytic water oxidation
reaction to produce oxygen can be regarded as a green and
sustainable approach for generating alternative energy. It is
well established that electrocatalytic OER is engaged with
different energy conversion frameworks and has been broadly
concentrated in ongoing years.22−26 However, the improve-
ment of an effective electrocatalyst toward OER still remains
an overwhelming test, as OER catalysts experience a large
overpotential and poor sustainability. So far, iridium- and
ruthenium-based materials27−31 were considered to be the

most proficient catalysts in electrochemical OER. However, the
significant expense and low abundance of such noble metal
electrocatalysts incredibly hinder their huge scope of
applications. Therefore, it is exceptionally recommendable to
build high-action and noble-metal-free OER catalysts with
more extensive adaptability.
To date, enormous attempts have been devoted to readying

earth-abundant-based electrocatalysts, especially transition
metal oxides,32−35 sulfides,6,36−38 carbides,39−41 hydrox-
ides,42−44 phosphides,45−47 selenides,48−50 etc., for more
energy proficient water splitting. Among them, transition
metal sulfides, so-called thiospinels, provide great advantages
to improve electrochemical execution because they can reveal a
substantial number of active surface sites, fast electron transfer
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pathways, and narrow band gaps and enhance redox
responses.51−54 Because of a suitable electrical configuration,
thiospinels composed of cobalt and copper have indicated
extraordinary assurance for superior OER electrocatalysts
because cobalt has suitable water affinity compared to that of
other metals. Wiltrout et al. have synthesized CuCo2S4
nanoparticles in solution, and they reported that these
thiospinels showed high OER activity in a basic medium.55

Yang et al. have hydrothermally fabricated a hierarchical
CuCo2S4 nanoarray on copper foam and shown that these
nanoarray catalysts exhibit superior activity for OER.56

Recently, the Wang group demonstrated that various
morphologies of CuCo2S4 significantly impacted OER
activity.57 It is also well documented in the literature that
solvent can tune the morphology of CuCo2S4 for both OER
and HER activity.58 Again, material fabrication techniques such
as multinary metal ion incorporation,59,60 surface engineer-
ing,61−63 and morphology-controlled nanostructure57,64,65

design have been utilized effectively to improve the OER
execution of catalysts. Among the various strategies, interfacial
engineering of transition metal sulfide nanomaterials with

conductive templates such as graphene, g-C3N4 etc., via
hybridizing is one of the fundamental and financially savvy
approaches to boosting catalytic OER execution.66−68

However, the development of rod-shaped CuCo2S4 with g-
C3N4 support was not reported to date. Further, homogeneous
inclusion of CuCo2S4 nanostructure into g-C3N4 templates is
not straightforward because of the aggregation of sheets
comprising g-C3N4 that reduces the electrochemical active
surface area and impedes fast electrolyte diffusion, bringing
about aggregation of the CuCo2S4 nanostructure.

66 In spite of
these recent advances, plenty of scope is there for the
improvement of the activity, durability, and sustainability of
thiospinels in electrocatalytic OER.
Here, we have carried out a systematic study for the

formation of CuCo2S4 nanorods (NRs) in solution, and then
these CuCo2S4 NRs were incorporated onto g-C3N4 (CN)
sheets (CuCo2S4 NRs/CN) by heat treatment achieving
synergistically improved catalytic activity for OER under
alkaline and neutral conditions. Distinctive starting materials
were tried as precursors for CuCo2S4 NRs synthesis.
Electrochemical investigations were executed on CuCo2S4

Scheme 1. Schematic Representation of Synthesis of PDTC, Co[PDTC]2, and Cu[PDTC]2 Complexes

Scheme 2. Schematic Representation for the Synthesis of CuCo2S4/g-C3N4 Composite Nanostructures
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NRs/CN composites along with their constituents such as
CuCo2S4 NRs, CoS2, Cu2S, g-C3N4, etc. under same
conditions. The results showed that CuCo2S4 NRs/CN
composite catalysts increased the efficiency of oxygen
evolution and revealed excellent durability for OER. The
heterointerfaces of CuCo2S4 NRs/CN structures made out of
CuCo2S4 nanorods and g-C3N4 sheets would enable the well-
exposed active sites of CuCo2S4 and g-C3N4 both.
Furthermore, the hybrid CuCoS4 nanorods with a rough
surface and their straight connection to the conducting g-C3N4
allow effective charge transport pathways during the electro-
catalytic process.

■ RESULTS AND DISCUSSION
Cu[PDTC]2 and Co[PDTC]2 complexes were synthesized
(Scheme 1) as precursors for the fabrication of thiospinel
CuCo2S4 nanorods. In this study, rod-shaped CuCo2S4
nanostructures are produced by the thermal decomposition
of Cu[PDTC]2 and Co[PDTC]2 complexes in the presence of
TOP within a hot solution containing coordinating solvent
oleyl amine under anaerobic conditions (Scheme 2).
The structural information on PDTC was studied using 1H

NMR, 13C NMR, and mass spectroscopic (ESI-MS−TOF)
analysis. 1H NMR (DMSO-d6, 500 MHz, ppm): 1.81 (mt,
4H); 3.64 (mt, 4H) (Figure S1). 13C NMR (DMSO-d6, 125
MHz, ppm): 209.6, 55.3, and 26.1 (Figure S2). ESI-MS TOF
of PDTC: molecular formula, C5H8NNa2S2; calculated mass
[M + Na]+, 191.9894; experimentally found, 191.9893 (ESI-
MS (TOF; Figure S3). The structure of PDTC was further
confirmed by single crystal XRD analysis. In the crystal
structure of PDTC, ellipsoid plots are shown in Figure S4.
Crystal data, data collection, and structure refinement details
for PDTC are summarized in Table S1, and the bond angles
and lengths are shown in Tables S2 and S3, respectively. It has
been found that PDTC crystallized as a monoclinic crystal
having the P21/c space group (CCDC no. 2034050).
Co[PDTC]2: molecular formula, C10H16CoN2S4; calculated
mass, 350.9528; experimentally found, 350.7915 (ESI-MS
(TOF); Figure S5). Cu[PDTC]2: molecular formula,
C10H16CuN2S4; calculated mass, 354.9492; experimentally
found, 354.8520 (ESI-MS (TOF); Figure S6). The structure
of Cu[PDTC]2 was further affirmed by single crystal XRD
study and compared with the literature.69−71 The crystal
structure has been redetermined again to characterize the
structure of the synthesized complex. In addition, crystal
packing analysis has also been performed. The compound
crystallizes in the centrosymmetric space group P1̅ with one
molecule in the unit cell (Table S4). The ORTEP is shown in
Figure S7. The crystal packing is controlled via the formation
of C−H···S intermolecular interactions (involving H7A and
S2) forming chains along the crystallographic a axis (Figure S8,
Table S5). Adjacent chains are stacked and connected via the
formation of C−H···S centrosymmetric dimers (involving H6B
and S2) that provide additional stability to the crystal packing.
Further, to rationalize the formation of PDTC, Cu[PDTC]2,

and Co[PDTC]2 complexes, we studied the ATR-FTIR
spectroscopy, and the results are shown in Figure 1. In ATR-
FTIR spectra of as-synthesized PDTC (Figure 1a), the peaks
appearing at 2932 and 2867 cm−1 are due to pyrrolidine−CH2
stretching vibrations in an asymmetric and symmetric
manner.72 The C−N stretching vibration bands of the NCS
were observed at 1465 and 1328 cm−1.73−76 Peaks at 978 cm−1

can be correlated with CS of the −CSS− group,73,75−77

whereas the C−S vibration band was found to be centered at
887 cm−1. Further, the characteristic peaks at 549 and 483
cm−1 due to the stretching vibration of the Cu−S bond
strongly support the formation of the Cu[PDTC]2 complex
(Figure 1c). From the literature survey, it has been found that
the stretching vibration frequency of the metal sulfur (M−S)
bond (such as Zn−S,73 Co−S,78 Sn−S,77 etc.) appears
between 475 and 580 cm−1. The peaks appearing at 554 and
489 cm−1 (Figure 1b) can be attributed to the stretching
vibration of the Co−S bond78 and hence confirm the
formation of the Co[PDTC]2 complex. Both Cu[PDTC]2
and Co[PDTC]2 complexes show the characteristic peaks
corresponding to −CH2, C−N, and CS stretching vibrations
(Table S6). It is noteworthy that the stretching frequency of
CS and C−S bonds of both Cu[PDTC]2 and Co[PDTC]2
complexes are observed at a lower range compared to PDTC,
which further confirms the formation of Cu−S and Co−S
bonds in Cu[PDTC]2 and Co[PDTC]2 complexes, respec-
tively. Again, to further confirm the formation of PDTC,
Cu[PDTC]2, and Co[PDTC]2 complexes and their optical
properties, we have investigated using UV−visible absorbance
spectroscopy. Figure 2 exhibits the UV−vis absorbance spectra

Figure 1. ATR-FTIR spectra of (a) PDTC, (b) Co[PDTC]2, and (c)
Cu[PDTC]2.

Figure 2. UV−vis absorbance spectra of (a) PDTC, (b) Co[PDTC]2,
and (c) Cu[PDTC]2.
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of as-synthesized PDTC, Cu[PDTC]2, and Co[PDTC]2
complexes. Here, peaks at 253 nm were attributed to π →
π* transitions related to the N−CS group where the
absorption band at 286 nm was associated with transitions of
the S−CS group present in PDTC (Figure 2a).79 The UV−
vis spectra of Cu[PDTC]2 show an additional peak at 432 nm
which is due to the electronic transition from CS π* orbitals
to 3d orbitals of Cu(II) (Figure 2c), whereas the electronic
transition from CS π* orbitals to the 3d orbital of Co(II)
leads to an absorption band at 394 nm for the Co[PDTC]2
complex (Figure 2b). To get the information regarding the
thermal stability and thermal behavior of Cu[PDTC]2 and
Co[PDTC]2 complexes, we have studied the thermogravi-
metric analysis (TGA), shown in Figure S9. There was no loss
of weight % up to 100 °C, indicating the absence of water
molecules in both complexes. However, the TGA plot of
Cu[PDTC]2 and Co[PDTC]2 complexes exhibited a 75%
weight loss at 255 and 273 °C, respectively, whereas a 50%
weight loss occurred only at 287 and 302 °C for Cu[PDTC]2
and Co[PDTC]2 complexes, respectively. The sharp thermal
decomposition of Cu[PDTC]2 and Co[PDTC]2 complexes
occurring from 180 to 308 °C and 206−320 °C was associated
with the loss of the organic moiety along with the
dithiocarbamate unit of the complexes, respectively.75 Steady
state weight loss was observed above 308 °C for Cu[PDTC]2
and 320 °C for the Co[PDTC]2] complex, which corre-
sponded to the formation of Cu2S and CoS2 due to the
pyrolysis of Cu[PDTC]2 and Co[PDTC]2 complexes,
respectively.
Without size sorting, the as-prepared one-dimensional

CuCo2S4 nanorods showed uniform size dispersion. It is
observed from TEM images that the synthesis of CuCo2S4
nanorods was accomplished with high yield (Figure 3a,b). In-
plane and out-of-plane HRTEM images of CuCo2S4 NRs are
collected to verify the exposed lattice planes. Clear lattice
fringes were observed with the lattice spacing of approximately
0.33 and 0.23 nm (Figure 3c), corresponding to the (022) and
(004) planes of the cubic phase of spinel-type CuCo2S4
(JCPDS-42-1450) nanorods. Clear lattice fringes were also
observed from an in-plane HRTEM image (Figure 3c). The

single-crystalline nature of a CuCo2S4 nanorods was
unambiguously proved from the FFT pattern (Figure 3d)
and HRTEM image (Figure 3c). In order to understand the
mechanism of growth of CuCo2S4 nanorod formation, we
carried out detailed TEM studies to investigate the influence of
reaction conditions and growth stages associated with
formation of the CuCo2S4 nanorods. First, we have taken
fractions of our reaction mixture over time for CuCo2S4
nanorods. At 5 min, we found very tiny nanorods (length
7.6 ± 0.4 nm and diameter 0.8 ± 0.1 nm; Figure S10). After 10
min, CuCo2S4 nanorods are wider and longer (length 15.2 ±
0.6 nm and diameter 2.5 ± 0.3 nm; Figure S11). However, at
15 min, we again find larger nanorods (length 38.4 ± 0.8 nm
and diameter 6.1 ± 0.4; Figure S12). Thus, it can be believed
that the CuCo2S4 nanorods’ growth increases as the reaction
proceeds. This might indicate that monomer growth is taking
place. Further, we studied the effect of reaction temperature on
the growth of the CuCo2S4 nanorods. Figures S13 and S14
show the TEM images of the CuCo2S4 nanorods prepared at
200 and 230 °C, respectively, while other conditions were kept
constant. The result demonstrated that CuCo2S4 nanorods also
form at lower temperatures, only the growth rate is slower.
Spherical Cu2S nanoparticles (Figure 3e) were generated in the
absence of the Co[PDTC]2 complex under the same
conditions. We also observed that, in the absence of complex
Cu[PDTC]2 in the reaction mixture under similar reaction
conditions, spherical CoS2 nanoparticles were obtained (Figure
3f). To know the role of oleyl amine and TOP for CuCo2S4
nanorod formation, we prepared CuCo2S4 nanorods in the
presence and absence of oleyl amine and TOP. Using only
TOP as a solvent without varying other conditions, a mixture
of small nanorods and nanoparticles was achieved. (Figure
S15) However, in the absence of TOP, aggregated nanorods
were obtained under identical conditions (Figure S16). Thus,
it is assumed that chelating ligands oleyl amine and TOP used
in the synthesis directed the growth of the one-dimensional
CuCo2S4 nanorod structures. Additionally, further investiga-
tion was done to understand the different morphologies and
microstructures of the g-C3N4 and CuCo2S4/g-C3N4 compo-
site. It is observed that g-C3N4 formed a layered structure, and

Figure 3. (a and b) TEM images with corresponding diameter distribution (inset) for CuCo2S4 nanorods in different magnifications, (c) HRTEM
images of CuCo2S4 nanorods, (d) FFT pattern, (e) TEM image of Cu2S nanoparticles, and (f) TEM image of CoS2 nanoparticles.

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.1c01566
Inorg. Chem. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01566/suppl_file/ic1c01566_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01566?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01566?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01566?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01566?fig=fig3&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.1c01566?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


it remains present as a thin sheet having irregular morphology
(Figure 4a). It is seen from Figure 4b that the combination of

g-C3N4 and CuCo2S4 resulted in the formation of rod-shaped
CuCo2S4 uniformly dispersed on the surfaces of g-C3N4, which
eventually created the composite CuCo2S4/g-C3N4 nanostruc-
ture.
An X-ray diffraction (XRD) study was performed to confirm

the crystallographic structure, phase composition, and purity of
as-synthesized samples (Figure 5). XRD diffraction peaks

related to 2θ = 16.21°, 26.41°, 31.39°, 38.01°, 46.05°, 50.46°,
and 54.77° may be attributed to the (111), (022), (113),
(004), (224), (115), and (044) planes of the cubic phase of
CuCo2S4 (JCPDS card no. 42-1450; Figure 5e). The weak
peak around 27.68° indicated the presence of g-C3N4 in the
composite nanostructures (Figure 5e). This result reveals that
the as-obtained sample was constructed with g-C3N4 and
CuCo2S4 NRs. The absence of any other peaks indicates that
the prepared nanocomposites did not contain any impurities.
XRD analysis of the CuCo2S4/g-C3N4 was also compared to
pure CuCo2S4, Cu2S, CoS2, and g-C3N4. Figure 5d shows the
XRD pattern of pure CuCo2S4 nanorods, and the characteristic
peaks appeared at 2θ = 16.17°, 26.34°, 31. 42°, 37.97°, 46.08°,
50.41°, and 54.78°. XRD patterns of Cu2S were found at 2θ =
27.82°, 29.37°, 32.22°, 37.02, 38.91°, 46.24°, 47.39°, 51.35°,
54.81°, and 69.98° (Figure 5b) and confirmed the formation of

cubic phase Cu2S (JCPDS no. 84-1770). Peaks at 26.44°,
31.63°, 37.21°, 40.15°, 45.79°, and 55.14° correspond to pure
CoS2 (Figure 5c; JCPDS card no. 65-3322).80,81 XRD analysis
of pure g-C3N4 showed two characteristic peaks at 13.11 and
27.52°, which could be indexed by the (002) and (110) plane
of hexagonal g-C3N4 (JCPDS no. 87-1526; Figure 5a).82

Further, an XPS study was done to obtain detailed information
regarding the chemical composition and bonding of CuCo2S4/
g-C3N4 composite nanorods. Figure 6 depicts XPS spectra of
CuCo2S4/g-C3N4 composite nanorods. The Cu 2p spectra can
be fitted into two different chemical states (Figure 6a). The
binding energies at 932.14 and 952.12 eV are attributed to
Cu+, and the binding energies at 935.16 and 953.4 eV are
assigned to Cu2+.57,83,84 Peaks located in the Cu 2p spectra at
932.14 and 935.16 eV are assigned to Cu 2p3/2, and the peaks
at the binding energies of 952.12, and 553.4 eV may be
attributed to the Cu 2p1/2.

83 Two satellite peaks are also
observed at the binding energies of 943.91 and 460.37 eV
corresponding to Cu 2p3/2 and Cu 2p1/2, respectively. Due to
the spin−orbit doublet of 2p1/2 and 2p3/2 of Co3+ ions83

(Figure 6b), binding energies at 793.53 and 778.36 eV are
showm in the XPS. Peaks appearing at 796.22 and 780.47 eV
are ascribed to the spin−orbit doublet of 2p1/2 and 2p3/2 of
Co2+ ions.57,84 Additionally, satellite peaks of Co 2p3/2 and Co
2p1/2 were observed at the binding energy values of 784.89 and
804.77 eV, respectively. These studies proved CuCo2S4 has
Co2+ and Co3+ valence states, and the results are consistent
with other cobalt-based spinel structures reported. The S 2p
spectrum was divided into one shakeup satellite and two
prominent peaks. The binding energies at 162.45 and 161.34
eV (Figure 6c) in the S 2p fine spectrum correspond to the
spin−orbit doublet of 2p1/2 and 2p3/2 peaks, which can be
attributed to S2

2− and S2−, respectively.84,85 It is noteworthy to
mention that sulfur valence states coexist with −1 and −2
states, which is due to the 2p1/2 peak of the S2− ions, partially
overlapped with the low-coordinated sulfur ions at the surface
or the presence of S2

2− ions. A binding energy of 168.95 eV57

corresponds to shakeup of the satellite peak. Notably, the peak
at 165.26 eV can be attributed to the C−S−C bond, which
indicates the incorporation of S into the g-C3N4 sheet. Figure
6d presents the corresponding high-resolution spectra of C 1s,
which could be fitted to three distinct peaks at binding energies
of 284.61, 285.53, and 288.28 eV. These peaks are assigned to
pure graphitic sites present in the carbon nitride matrix C−C
bonds, an aromatic ring that has a C−NH2 bond formed by sp2

hybridized carbon atoms bonded to N and triazine having sp2

hybridized C atoms, respectively.82,85 Figure 6e shows the N 1s
spectra where it is clearly observed that N 1s spectra are
asymmetrical and broad in feature. This may be due to the
presence of distinguishable nitrogen models. The N 1s peak
could be deconvoluted into three peaks located at the binding
energy values of 398.55, 399.21, and 400.43 eV, which can be
attributed to pyridine nitrogen (CN−C) having sp2-
hybridization, tertiary nitrogen (N−C3), and a C−NH2
functional group, respectively.82,85,86 XRD, XPS, and TEM
results confirmed the successful formation of CuCo2S4/g-C3N4
composite nanorods.
To gain insight into structural and development information,

we carried out an ATR-FTIR spectroscopic study of g-C3N4,
and CuCo2S4/g-C3N4 composite nanorods, and the corre-
sponding ATR-FTIR spectra are depicted in Figure 7a. In the
FTIR spectrum of g-C3N4 (Figure 7a,i), two main bonds in the
products are correlated to the absorption peaks between 1200

Figure 4. TEM images of (a) g-C3N4 and (b) CuCo2S4/g-C3N4
composite nanostructures.

Figure 5. XRD patterns of (a) g-C3N4, (b) Cu2S, (c) CoS2, (d)
CuCo2S4, and (e) CuCo2S4/g-C3N4 composite nanostructure.
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to 1640 cm−1. The peak due to sp2 CN stretching vibration
is observed at 1638 cm−1, whereas the peaks at 1242, 1324,
1365, 1411, and 1464 cm−1 were attributed to the aromatic sp3

C−N bonds.87−89 Additionally, the peaks at 887 and 808 cm−1

were due to the deformation mode of N−H bonds and
breathing modes of the triazine ring, respectively.90 Moreover,
all characteristic peaks of g-C3N4 were also observed in the
composite CuCo2S4/ g-C3N4 nanorods (Figure 7a,ii and Table
S7). It is worth mentioning that the stretching vibration of the
CN bond slightly shifted toward a lower wavenumber in the
CuCo2S4/g-C3N4 composite nanorods compared to pure g-
C3N4, which further confirmed that close interfacial contact
between g-C3N4 and CuCo2S4 was formed. Peaks observed at
547 and 478 cm−1 were attributed to stretching vibrations of
metal sulfide bonds present in the CuCo2S4/g-C3N4 composite
nanostructures (Figure 7a,ii).78 We have also studied the
Raman spectroscopy to further confirm the formation of the
CuCo2S4/g-C3N4 composite nanostructure. Figure 7b shows
the Raman spectra of pure g-C3N4 and CuCo2S4/g-C3N4
composite nanostructures. Raman spectra of pure g-C3N4
exhibited two prominent peaks at 1341 and 1598 cm−1

which are associated with the D and G bands of the graphitic
nitrogen-bonded carbon structure, respectively (Figure
7b,i).91−93 The CuCo2S4/g-C3N4 composite nanostructure
also displayed the D and G bands corresponding to g-C3N4 at
1347 and 1602 cm−1, with an intensity ratio of 1.02 (ID/IG;

Figure 7b,ii), which is greater with respect to pure g-C3N4 (ID/
IG = 1.01). Notably, the shifting of the D band from 1341 to
1347 cm−1 and G band from 1598 to 1602 cm−1 confirmed the
formation of the CuCo2S4/g-C3N4 composite nanostructure by
combining g-C3N4 with CuCo2S4 nanorods.

■ OER ACTIVITY
The working electrode was prepared by dissolving the catalyst
(3 mg) in double distilled water (680 μL) and ethanol (400
μL) and was kept in a 1.5 mL microcentrifuge tube to form a
homogeneous ink. The resulting mixture was sonicated for half
an hour prior to the addition of 20 μL of 5% Nafion solution.
After that, the solution was again sonicated for another 20 min.
Prepared catalyst ink (5 μL) was drop-casted onto a glassy
carbon (GC) electrode, and the electrode was kept overnight
in a vacuum desiccator for drying. Thus, the dried electrode
prepared was used as a working electrode (WE) in the
experiment, keeping the mass loading of the catalyst as 0.19 mg
cm−2 to study the OER activity. All the experiments were
carried out at room temperature in an electrochemical cell.
A Metrohm Autolab (Multichannel-204) connected to a

standard three-electrode system using Nova 2.1.4 software was
used to perform the electrochemical measurements. In order to
characterize the electrochemical reactions, Ag/AgCl (3 M
KCl) and platinum (Pt) electrodes were used as reference and
counter-electrodes, respectively. Additionally, the working

Figure 6. XPS patterns of CuCo2S4/g-C3N4 composite nanostructure: (a) Cu 2p, (b) Co 2p, (c) S 2p, (d) C 1s, and (e) N 1s.

Figure 7. (a) ATR-FTIR spectra and (b) Raman spectra of (i) pure g-C3N4 and (ii) Cu2CO2S4/g-C3N4 composite nanostructure.
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electrode was a GC (3 mm diameter) electrode, which was
loaded with the catalyst. A potential range from 0 to 1 V vs the
reference potential with a 10 mV s−1 scan rate was set for
carrying out a linear sweep voltammetry (LSV) experiment.
Further, a potential range of 0.05 to 0.15 V with a scan rate
varying from 20 mV s−1 to 100 mV s−1 was used in cyclic
voltammetry (CV) experiments. A chronoamperometric
method was used to test the durability of the catalyst by
applying a constant overpotential of 242 mV for 12 h in an
alkaline medium. Further, the stability of the CuCo2S4/g-C3N4
composite was evaluated by calculating the change in
overpotential after 2000 LSV cycles at a constant scan rate
of 10 mV s−1 under both alkaline and neutral conditions. The
electrochemical impedance spectroscopy (EIS) was done
between 100 kHz and 0.1 Hz frequencies at 350 mV (vs
Ag/AgCl) under alkaline conditions. All of the potentials were
calibrated versus RHE, and the Nernst equation given below
was followed:

E E E0.059 pH(RHE) (Ag/AgCl) Ref= + + (1)

The oxygen evolution reaction (OER) performance was
evaluated using a conventional three-electrode configuration
for the synthesized CuCo2S4/g-C3N4 catalyst in a 1 M KOH

solution. For comparison, the OER activities of CuCo2S4,
CoS2, Cu2S, and g-C3N4 were also investigated under identical
conditions. For the correlation of OER activity of as-
synthesized catalysts, commercially available IrO2 was used
for a reference catalyst. Figure 8a shows the linear sweep
voltammetry (LSV) curves of CuCo2S4/g-C3N4, CuCo2S4,
CoS2, Cu2S, and g-C3N4 catalysts. CuCo2S4/g-C3N4 composite
nanorods indicate that a current density of 10 mA cm−2 was
achieved at an overpotential of only 242 mV, whereas for
generating a current density of 10 mA cm−2, commercial IrO2

requires 354 mV overpotential. Moreover, CuCo2S4/g-C3N4

shows premier OER activity over achieving the current density
of 10 mA cm−2, whereas CuCo2S4, CoS2, Cu2S, and g-C3N4

catalysts require overpotentials of 307, 385, 425, and 472 mV,
respectively. It is well established that in order to access the
reaction kinetics, the Tafel slope is an important parameter in
the electrocatalytic OER process. The Tafel slope of CuCo2S4/
g-C3N4 composite nanorods was found to be 57 mV dec−1,
whereas the commercial IrO2 exhibited a Tafel slope of 76 mV
dec−1 (Figure 8b). However, CuCo2S4, CoS2, Cu2S, and g-
C3N4 possessed Tafel slopes of 69, 124, 143, and 173 mV
dec−1, respectively. Analysis of the LSV study as well as the

Figure 8. (a) Polarization curves (LSV) plot. (b) Corresponding Tafel plots of g-C3N4, Cu2S, CoS2, IrO2, CuCo2S4, and CuCo2S4/g-C3N4
composite. (c) EIS at 350 mV (vs Ag/AgCl). (d) Variation of Rs and Rct of g-C3N4, Cu2S, CoS2, CuCo2S4, and CuCo2S4 /g-C3N4 composite
catalyst.

Table 1. Summary of OER Performance of CuCo2S4/g-C3N4, CuCo2S4, Commercial IrO2, CoS2, Cu2S, and g-C3N4 Catalysts

system overpotential at 10 mA cm−2 Tafel slope (mV dec−1) Rct (Ω) Rs (Ω) Cdl (mFcm−2) ECSA (cm2) surface area (m2 g−1)

g-C3N4 472 mV 173 281.7 1.5 0.256 6.4 19.67
Cu2S 425 mV 143 263.4 1.3 0.381 9.5 22.45
CoS2 385 mV 124 97.6 1.3 0.574 14.35 33.89
IrO2 354 mV 76
CuCo2S4 307 mV 69 47.3 1.2 0.738 18.4 41.72
CuCo2S4/g-C3N4 242 mV 57 33.5 1.6 1.705 42.6 64.15
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Tafel slope confirmed the superior OER activity of CuCo2S4/
g-C3N4 composite nanorods.
Further, to figure out the superior catalytic activity of

CuCo2S4/g-C3N4 composite nanorods and investigate the
solution resistance (Rs) and charge-transfer resistance (Rct)
during the catalytic process, electrochemical impedance
spectroscopy (EIS) was used. The EIS spectra of CuCo2S4/
g-C3N4, g-C3N4, CoS2, Cu2S, and CuCo2S4 are shown in
Figure 8c. It was observed from the EIS that CuCo2S4/g-C3N4
displayed the least charge transfer resistance (Rct) of 33.5 Ω
compared to CuCo2S4 (47.3 Ω), CoS2 (97.6 Ω), Cu2S (263.4
Ω), and g-C3N4 (281.7 Ω; Table 1 and Figure 8c,d).
Presumably, a lower Rct value appeared because the quick
charge transfer process was taking place across the CuCo2S4/g-
C3N4 composite nanostructures and electrolyte.
Additionally, electrochemically active surface area (ECSA)

in terms of double layer capacitance, Cdl, was measured to
understand the origin of the high OER activity of CuCo2S4/g-
C3N4 composite nanostructures. From the CV curves (Figure
S17a−e), both the anodic and cathodic double-layer charging
currents (Ja and Jc, respectively) were calculated at a fixed
potential of 0.1 V (vs Ag/AgCl), and the values are plotted
against corresponding scan rates (Figure S17f−j). The Cdl thus
calculated for CuCo2S4/g-C3N4 was found to be 1.705 mF
cm−2, and the corresponding ECSA was found to be 42.6 cm2,
which was greater compared to CuCo2S4 (18.4 cm2), CoS2
(14.35 cm2), Cu2S (9.5 cm2), and g-C3N4 (6.4 cm2) catalysts
(Figure S17f−j and Table 1). It was found from the Brunauer−
Emmett−Teller (BET) results that CuCo2S4/g-C3N4 possesses
the highest surface area of 64.15 m2 g−1 compared to CuCo2S4
(41.72 m2 g−1), CoS2 (33.89 m

2 g−1), Cu2S(22.45 m
2 g−1), and

g-C3N4(19.67 m2 g−1; Figure S18). It is well-known that, for a
material to be an efficient electrocatalyst, catalyst durability is
an important parameter. Accordingly, the long-term stability of
the CuCo2S4/g-C3N4 catalyst for the OER activity was

examined by performing and running 2000 continuous LSV
cycles using 1 M KOH electrolyte. The LSV curve for the
initial and 2000th cycles of CuCo2S4/g-C3N4 composite
nanorods is shown in Figure 9a. It is observed that
overpotential change at a current density of 10 mA cm−2

after 2000 LSV cycles is only 9 mV (from 242 mV to 251 mV),
which indicates the superior durability of the CuCo2S4/g-C3N4
composite nanostructures toward OER activity. We have also
tested the durability of the CuCo2S4/g-C3N4 using chro-
noamperometry techniques at an overpotential of 242 mV for
12 h constantly (Figure 9b). The chronoamperometry study
revealed that only 9% of its initial current density was lost after
12 h. We have also studied chronopotentiometric measure-
ments of CuCo2S4/g-C3N4 in 1 M KOH as a function of
current density (20 to 80 mA cm−2; Figure 9c). CuCo2S4/g-
C3N4 displayed a current density of 20, 40, 60, and 80 mA
cm−2 at overpotentials of 272, 323, 375, and 419 mV,
respectively (Figure 8a and Figure 9c). The chronopotentio-
metric stability test showed that, at different applied current
densities, the obtained overpotential remained almost constant.
We have further investigated the OER activity of CuCo2S4/

g-C3N4, CuCo2S4, CoS2, Cu2S, and g-C3N4 catalysts in a
neutral medium, i.e., phosphate buffer (0.1 M PBS; pH = 7.0)
electrolyte. Figure 10a represents the LSV curves of CuCo2S4/
g-C3N4, CuCo2S4, CoS2, Cu2S, and g-C3N4 catalysts in a
neutral medium. It is seen from Figure 10a that, for the
generation of a current density of 10 mA cm−2, CuCo2S4/g-
C3N4, CuCo2S4, CoS2, and Cu2S catalysts exhibited over-
potential values of 406, 465, 591, and 654 mV, respectively.
Tafel slopes of CuCo2S4/g-C3N4, CuCo2S4, CoS2, Cu2S, and g-
C3N4 catalysts were calculated to be 95, 108, 241, 253, and 346
mV dec−1, respectively (Figure 10b). So the LSV and Tafel
plot analysis confirmed that CuCo2S4/g-C3N4 showed very
good activity toward OER even in a neutral medium. The
stability of CuCo2S4/g-C3N4 was also performed in a neutral

Figure 9. (a) Polarization curves of the CuCo2S4/g-C3N4 composite after the first and 2000th cycles. (b) Chronoamperometry investigation of the
CuCo2S4/g-C3N4 composite catalyst at an overpotential of 242 mV for 12 h. (c) Chronopotentiometric study of CuCo2S4/g-C3N4 for OER in 1.0
M KOH as a function of current density.

Figure 10. (a) Polarization curves (LSV) and (b) corresponding Tafel plot of g-C3N4, Cu2S, CoS2, CuCo2S4, and CuCo2S4/g-C3N4 composite
nanorods at pH 7. (c) Polarization curves of CuCo2S4/g-C3N4 for the first and 2000th cycles of continuous operation at pH 7.
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medium by 2000 contentious cycles of LSV analysis, and it has
been found that after 2000 cycles of LSV analysis that the
overpotential is 429 mV, which is 23 mV higher than the initial
overpotential (406 mV) at a current density of 10 mA cm−2

(Figure 10c). Hence, CuCo2S4/g-C3N4 exhibited long-term
superior stability toward OER activity even in a neutral
medium. All of these electrochemical studies indicate that
CuCo2S4/g-C3N4 composite nanorods are good catalysts for
OER activity under both alkaline and neutral conditions.
Therefore, the results confirmed that the incorporation of g-
C3N4 is very beneficial for creating more active sites for
efficient electron transfer in the catalytic OER process in
CuCo2S4/g-C3N4 composite nanorods. From an OER
efficiency point of view, the presence of g-C3N4 provides an
additional direct conduction of electrons to CuCo2S4 nanorods
and improves O2 production. Thus, the surface complexity of
CuCo2S4 nanorods via g-C3N4 incorporation showed better
OER efficiency. In addition to the chronoamperometric
stability test, we conducted powder XRD analysis (Figure
S19) to study any changes in crystalline structure of the
CuCo2S4/g-C3N4 composite. From the XRD pattern, it was
found that all of the diffraction peaks related to CuCo2S4/g-
C3N4 composite nanorods were observed with almost the same
intensity ratio. As the OER reaction mechanism of CuCo2S4/g-
C3N4 composite nanorods has not been thoroughly inves-
tigated yet, we utilized XPS at different applied potentials to
understand the reaction process and modification of the
catalyst to some extent. We picked CuCo2S4/g-C3N4
composite nanorods to execute a chronoamperometry test
for 1 h at four stages: before the catalytic reaction and after
three different applied potentials to get a current density of 10,
20, and 40 mA cm−2, to examine the impact of surface
modification of CuCo2S4 nanorods by g-C3N4 on the OER
process. These are displayed in Figure S20. Concerning the
XPS range of Co 2p (Figure S20a), the moving of the peak
position to bring down the binding energy (in all of the stages)
has illustrated that Co2+ changes into Co3+ as the reaction
proceeds. Again, moving of the Cu peaks toward a lower
binding energy (Figure S20b) seems to be consistent with the
electronic charge equilibrium of Cu in advancement of a
synergistic response. After catalytic activity, the intensity of the
peaks at 160.93 eV for S 2p (Figure S20c) is significantly
reduced, which indicates that most of the S sites detected had
been replaced by O centers. In the XPS spectra of O 1s, it was
found that there is an appearance of a new peak at 535.48 eV
for CuCo2S4/g-C3N4 composite nanorods that indicates the
presence of surface oxygen imperfection (Figure S20d).
Moreover, as the reaction continues, a few little, sharp peaks
at the binding energy values of 529.92 and 532.03 eV
appeared, which correspond to various oxides and hydroxides
of Co and Cu, respectively (Figure S20d).94 Moreover, the
appearance of O 1s peaks with applied potential toward a lower
binding energy shows that water molecules respond with the
dynamic site of Co (Figure S20d).94

■ CONCLUSION
In the summary, spinel-type sulfide CuCo2S4 nanorods have
been successfully synthesized using their molecular precursors
via a simple colloidal approach. Various TEM studies were
conducted to realize the reaction conditions and growth stages
associated with the formation of CuCo2S4 nanorods. Micro-
scopic analysis affirmed that the utilization of Cu[PDTC]2 and
Co[PDTC]2 complex precursors provides an advantage in

preparing homogeneous CuCo2S4 nanorods. In addition, these
CuCo2S4 nanorods coupled with g-C3N4 conductive support
were examined for OER activity under alkaline and neutral
media as well. The CuCo2S4/g-C3N4 was found to be a more
active electrocatalyst for OER catalysis compared to its various
constituents and other reported CuCo2S4-based catalysts
(Table S8)
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