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ABSTRACT: Under mild reaction conditions with inexpensive cerium and nickel catalysts, easily accessible free alcohols can now
be utilized as operationally simple and robust carbon pronucleophiles in selective C(sp3)−C(sp2) cross-couplings. Facilitated by
automated high-throughput experimentation, sterically encumbered benzoate ligands have been identified for robust cerium
complexes, enabling the synergistic cooperation of cerium catalysis in the emerging metallaphotoredox catalysis. A broad range of
free alcohols and aromatic halides can be facilely employed in this transformation, representing a new paradigm for the C(sp3)−
C(sp2) bond construction between free alcohols and aryl halides with the extrusion of formaldehyde. Moreover, mechanistic
investigations have been conducted, leading to the identification of a tribenzoate cerium(III) complex as a viable intermediate.

The development of efficient photocatalysts is central to
the utilization of visible-light energy for sustainable

synthesis, yet the exploitation of abundant and economical
metals instead of Ru and Ir remains a prominent challenge.1 In
particular, earth-abundant cerium compounds have emerged as
promising lanthanide photocatalysts, owing to their intriguing
redox capacities to engage single-electron transfer (SET)
activations upon metal-centered charge-transfer excitation or
ligand-to-metal charge-transfer (LMCT) excitation.2 The
recent exploitation of cerium bis(guanidinate) complexes,3

cerium chloride,4 and the oxo-bridged cerium cluster5 as
practical photocatalysts has enabled diverse radical-mediated
transformations with reactive radical acceptors, such as
dehalogenative arylation and borylation, decarboxylative
amination and oxidation, C−C bond cleavage of alkanols,
and C−H functionalization of alkane feedstocks. Nevertheless,
ligand design and modification, one main strategy to tune
photoexcitation and redox properties, has remained relatively
underexploited for cerium,6 in which significant challenges
have been imposed by ligand redistribution, unpredictable
coordination geometry, and variable coordination numbers.7

Herein we describe the synergistic combination of cerium−
LMCT catalysis and nickel catalysis for an unprecedented
dehydroxymethylative cross-coupling, enabled by robust and
sterically demanding benzoate ligands (Figure 1).
C−C bond cleavage has been demonstrated as a versatile but

fickle platform to develop innovative transformations of
feedstock chemicals to streamline the synthesis of complex
molecules.8 Direct dehydroxymethylation of alcohols, in which
the α-C(sp3)−C(sp3) bond is selectively cleaved, remains a
challenging task due to the lack of thermodynamic driving
forces; nevertheless, this reaction provides intriguing oppor-
tunities to harness abundant and readily accessible alcohol
feedstocks for rapid molecular complexity constructions.9 The
implementation of this reactivity mode for transition-metal-
catalyzed cross-coupling, avoiding the discrete prefunctional-
ization of premetalation steps, however, currently remains

elusive.10 Encouraged by the generality and selectivity
demonstrated in our recent study of cerium-catalyzed C−C
bond cleavage and alkylations of alkanols,4g we posited that a
practical dehydroxymethylative arylation could be achieved
through the synergistic implementation of metallaphotoredox
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Figure 1. Synergistic cerium and nickel catalysis for the dehydrox-
ymethylative arylation of free alcohols.
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catalysis.11 In our design, cerium−LMCT followed by β-
scission processes would convert alcohols into nucleophilic
alkyl radicals, which could be readily intercepted by a nickel
cross-coupling cycle, establishing a new paradigm for the
C(sp3)−C(sp2) bond construction between free alcohols and
aryl halides with the extrusion of formaldehyde.
We initiated the investigation of the proposed synergistic

catalytic system using N-Boc-prolinol and 4-bromobiphenyl as
template substrates under the irradiation of LED light (center
wavelength, 400 nm; light intensity, 0.30 W/cm2) (Figure 2).

Our initial attempts failed to provide any dehydroxymethyla-
tive arylation product, even with 9,10-diphenylanthracene
(DPA) added as an electron-shuttle; nevertheless, the
detection of biphenyl and 4-chlorobiphenyl confirmed that
the nickel cycle driven by the catalyst composition of NiCl2·
glyme and 2,2′-bipyridine was functional under this condition.
The indication of the cerium−LMCT pathway being inhibited,
possibly by bipyridine, promoted us to search for suitable
cerium photocatalysts to operate synergistically with nickel
catalysis. Distinct from traditional approaches of photoredox
catalysis where iridium/ruthenium photocatalysts need to be
synthesized and purified before evaluation, the LMCT catalysis
mode can harness the in situ formed cerium alkoxide
complexes for direct photoactivation with additional ligands,
providing an advantageous opportunity to conduct rapid
evaluations of ligands for the optimal cerium photocatalyst.
With the assistance of an automated high-throughput

experimentation platform, we were able to evaluate a large
collection of ligands for cerium trichloride, including various
mono-, bi-, tri-, and tetradentate ligands. (Over 190 ligands
were screened; see the Supporting Information for details.)
The rapid, automated evaluation identified benzoate ligands as
effective for enabling the desired dehydroxymethylative
arylation, which were subsequently carried into a second
round of optimization. Interestingly, several previously
reported ligands for cerium catalysis, such as multidentate-
amine-type ligands, were found to be inactive in this
photocatalytic system. Under an operationally simple labo-
ratory setup with enhanced light intensity of 0.51 W/cm2, a
cross-examination of the seven benzoate ligands for cerium
with well-established bipyridine-type ligands for nickel then
revealed the optimal catalyst combination, cerium trichloride
and benzoate L4, with nickel chloride and L10. Notably, the
ortho substitution of the benzoates could affect the efficiency
dramatically, as electron-donating groups with some degree of
steric hindrance exhibit a more positive effect, with isopropyl
groups demonstrating the best efficiency. (See Table S1.)
Further improvement of the catalytic efficiency was observed
when the preformed nickel complex Ni(dMebpy)(H2O)4Cl2
was used instead of the separate addition of the nickel salt and
L10.12 Under the optimal conditions, the desired arylation
product 3 could be obtained in 93% yield, with no α-C−H
arylation or C−O cross-coupling products observed, demon-
strating high levels of chemoselectivity. Moreover, control
experiments revealed that cerium catalyst, nickel catalyst, DPA,
and light are all essential for the desired photoactivity. (See
Table S2.)
With the optimal conditions in hand, we then examined the

generality of this synergistic catalytic system. As demonstrated
in Scheme 1, a broad range of primary alcohols could be
utilized as operationally simple carbon pronucleophiles in the
dehydroxymethylative cross-couplings with 4-bromobiphenyl
under mild reaction conditions, demonstrating an unconven-
tional strategy directly utilizing readily accessible free alcohols
as robust coupling reagents in C(sp3)−C(sp2) constructions.
Importantly, the cleavage of the α-C(sp3)−C(sp3) bond
mediated by the β-scission of alkoxy radicals was universally
achieved with a high level of selectivity, as activated C(sp3)−H
bonds or alkenes were left unscathed, despite their tendencies
to react with alkoxy radicals via hydrogen atom transfer or
addition processes. Commonly occurring functional groups
such as aromatic halides, heteroarenes, alkenes, alkyne, ethers,
and amides can be well-tolerated. Primary alcohols with β-
substitutions can be readily converted into stabilized benzylic-
type radicals by a cerium catalyst to forge a new C−C bond,
and the reaction efficiency was found in correlation with the
electronic and steric properties of the resultant radicals.
Alcohols equipped with electron-rich arenes that would render
more nucleophilic carbon-centered radicals tend to provide
enhanced efficiency (products 5, 14−17), whereas electron-
withdrawing functionalities including nitrile (6), trifluorometh-
yl (7), and ester (8) groups lead to slightly declined yields.
This cross-coupling arylation was sensitive to the steric
hindrance of the alcohol, as the presence of ortho substitutions
of the resultant benzylic radicals such as methyl and chloride
groups has a detrimental effect on the catalytic efficiency and
requires the use of a higher loading of nickel catalyst (products
11−13). Importantly, a variety of homoallylic alcohols can be
selectively activated and utilized as robust allylic nucleophiles
in C(sp3)−C(sp2) cross-couplings (products 18−20). No

Figure 2. Reaction development. Automated high-throughput
experimentation and subsequent cross-examination were carried out
to identify the optimal catalyst combination. See the Supporting
Information for details.
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isomerization of the trisubstituted double bond in product 19
was observed. Moreover, homopropargylic alcohol can be
employed in dehydroxymethylative arylation, albeit with
moderate efficiency, even at an increased loading of nickel
catalyst (21). A variety of primary alcohols with oxygen or
nitrogen functionalities can be accommodated, delivering the
corresponding arylation products (22−26). Primary hydroxyls

appended to the tetrahydroisoquinoline moieties proved to be
efficient functional handles, enabling the direct coupling of
tetrahydroisoquinoline to the aryl bromide.
We were pleased to find that a variety of aromatic bromides

can be accommodated in the dehydroxymethylative arylation.
As shown in Scheme 2, both electron-withdrawing groups
(30−37) and electron-donating groups (38−43) on the aryl

Scheme 1. Dehydroxymethylative Arylation Scope of Alcoholsa

aGeneral reaction conditions: alcohol substrate (0.4 mmol), 4-bromo-1,1′-biphenyl (0.2 mmol), Ni(dMebpy)(H2O)4Cl2 (0.002 mmol), DPA
(0.002 mmol,), L4 (0.07 mmol), CeCl3 (0.02 mmol), Na3PO4 (0.6 mmol), CH3CN (2 mL) and DMSO (0.25 mL), blue LEDs. All yields are
isolated yields. bReaction performed with Ni(dMebpy)(H2O)4Cl2 (0.01 mmol).
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Scheme 2. Dehydroxymethylative Arylation Scope of Aryl Halides

Figure 3.Mechanistic studies. (A) Molecular structure of 56 with 30% probability ellipsoids. (B) Evaluation of the catalytic efficiency of the cerium
complex. (C) Stern−Volmer plot based on the steady-state emission experiment. (D) Stern−Volmer plot based on the time-resolved emission
experiment. See the Supporting Information for a detailed description. (E) Proposed catalytic cycle.
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ring could be incorporated, with trivial differences in catalytic
efficiencies. Furthermore, aryl bromides installed on hetero-
cycles such as indole (48), furan (49), thiophene (50), and
pyridines (51−54) could also be employed as effective
coupling partners. A broad range of functionalities could be
well-tolerated, including halogen atoms (30, 31, 34−37) and
silane (41), ether (33, 38, 47, 53), and ketal groups (43).
Interestingly, the boronic ester functional handle in 44 was
kept intact during this synergistic cross-coupling. Moreover, β-
bromostyrene could be employed for dehydroxymethylative
vinylation under the same set of reaction conditions, although
alkene isomerization was observed in the products.
Encouraged by the generality of this dehydroxymethylative

cross-coupling, we next carried out mechanistic investigations
to elucidate the enabling effect of the benzoates in promoting
cerium/nickel synergistic catalysis. Control experiments have
demonstrated the critical role of benzoate salts. During
optimization, a 3.5:1 benzoate/cerium loading was found to
be optimal, and increased loadings of benzoate would shut
down the dehydroxymethylative arylation. Moreover, the ortho
substitution effect revealed in the optimization study clearly
precludes the benzoate being a mild or soluble base. We were
intrigued by the fact that aromatic carboxylic acids were
previously demonstrated to be viable LMCT substrates and
converted into lactones in the oxidative decarboxylation
developed by the Mashima group.5 Although in their seminal
report, cerium(IV) tert-butoxide was employed as a precatalyst
and an oxo-cerium(IV) cluster was demonstrated as the active
intermediate, this promoted us to investigate whether the
benzoate was consumed in this dehydroxymethylation
reaction. Even after 36 h of irradiation under our conditions,
benzoic acid derived from L4 could be almost completely
recovered (93%) after acidification of the reaction mixture, and
no corresponding lactone could be detected using gas
chromatography−mass spectrometry (GC−MS). (See Figure
S8.)
The crystallizations of cerium trichloride with benzoate

ligand L7 resulted in a crystallized compound 56 (Figure 3).
X-ray analysis of 56 revealed that three benzoate ligands were
ligated to the cerium center in the κ2 chelating mode with the
Ce−O bond length ranging from 2.501 to 2.613 Å. Three
solvent molecules of DMSO were also found ligated to the
cerium(III) center. The steric shielding around the cerium
center caused by ortho-substitution groups of the benzoates
probably helped to prevent the formation of dimeric or
polymeric structures that typically prevail in lanthanide
carboxylate complexes,13 rendering multiple open coordination
sites for the in situ ligation of alkoxide. In cyclic voltammogram
measurements, complex 56 showed an irreversible redox wave
in CH3CN/DMSO solution (Ep/2 = 0.46 V vs SCE). Because
of the difficulties in isolating Ce(IV) compounds,7d we were
only able to conduct 1H NMR spectroscopic analysis on the in
situ formed Ce(IV) carboxylate complexes. (The 1H NMR
spectrum reveals an approximate carboxylate/Ce ratio of 3:1;
see Figure S11.)
Under the standard reaction conditions, cerium complex 56

demonstrated identical catalytic efficiency compared to the
addition of cerium trichloride with L7. This finding together
with the optimal 3.5:1 ligand/cerium loading that we identified
during the optimization lends support for the in situ formation
of CeL3 alkoxide complexes. The distinct coordination pattern
we observed, in comparison with the oxo-cerium cluster
discovered by the Mashima group, would have resulted in

different patterns of photoactivity, further demonstrating the
intriguing potential and underexploited properties of cerium
catalysis. Importantly, both steady-state and time-resolved
emission quenching experiments revealed the linear photo-
luminescence quenching of the cocatalyst DPA by cerium(III)
complexes.14 As shown in the Stern−Volmer plots, CeL3
alkoxide complexes exhibit higher quenching efficiency
compared with CeL3 complexes at the same concentration,
which indicates a favorable SET between photoexcited DPA
(E* = 1.19 V vs SCE in DMSO) and CeL3 alkoxide for the in
situ generation of Ce(IV)L3(OR) complexes.
In light of these experiments, a synergistic catalytic cycle was

proposed. The coordination of free alcohol with a cerium
benzoate complex followed by photoinduced electron transfer
with DPA generates a photoactive Ce(IV) alkoxide species.
Under LED irradiation, one electron of the higher lying
alkoxide ligand orbital will be promoted to the empty 4f orbital
of cerium, resulting in the homolysis of the Ce−O bond. The
bond homolysis leads to the generation of Ce(III) benzoate
and alkoxy radicals, which would undergo β-scission to form
alkyl radicals. Meanwhile, in the nickel catalytic cycle, low-
valent Ni complexes undergo oxidative addition to generate
Ni(II) aryl complexes. The radical interception with the Ni(II)
aryl complex forms a Ni(III) species that undergoes rapid
reductive elimination to deliver the desired dehydroxymethy-
lative arylation product. The SET events enabled and
coordinated by the DPA cycle, including the reduction of
Ni(I) by a radical anion of DPA and the oxidation of Ce(III)
by excited DPA, have furnished cerium and nickel catalytic
cycles and, more importantly, have established a synergy
between radical generation and conversion.
In summary, the photocatalytic dehydroxymethylative

arylation of free alcohols with aryl halides has been achieved
under mild and practical conditions. Enabled by the synergistic
utilization of cerium and nickel catalysts, the α-C(sp3)−C(sp3)
bond of free alcohols can be selectively cleaved and harnessed
as an unconventional synthon in cross-couplings. Sterically
encumbered benzoate ligands have enabled the incorporation
of cerium catalysts in metallaphotoredox catalysis, providing
intriguing opportunities for the exploitation of abundant
cerium catalysts in sustainable synthesis.
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