A Journal of the Gesellschaft Deutscher Chemiker A DOCH International Edition Market Chemiker CDCh Chemiker Ch

Accepted Article

- Title: Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO2
- Authors: Rong Cao, Jun-Dong Yi, Duan-Hui Si, RuiKuan Xie, Qi Yin, Meng-Di Zhang, Qiao Wu, Guo-Liang Chai, and Yuan-Biao Huang

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202104564

Link to VoR: https://doi.org/10.1002/anie.202104564

WILEY-VCH

Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO₂

Jun-Dong Yi,^[a] Duan-Hui Si,^[a] Ruikuan Xie,^[a] Qi Yin,^[a] Meng-Di Zhang,^[a] Qiao Wu,^[a] Guo-Liang Chai,^[a,b] Yuan-Biao Huang,^{*[a,b]} and Rong Cao^{*[a,b]}

[A] Dr. J. Yi, Dr. D. Si, Dr. R. Xie, Dr. Q. Yin, M. Zhang, Q. Wu, Prof. G. Chai, Prof. Y. Huang, Prof. R. Cao State Key Laboratory of Structural Chemistry
 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
 Fuzhou, 350002 (China)
 E-mail: ybhuang@fjirsm.ac.cn; rcao@fjirsm.ac.cn
 [b] Prof. G. Chai, Prof. Y. Huang, Prof. R. Cao

University of Chinese Academy of Science Beijing 100049 (China)

Supporting information for this article is given via a link at the end of the document.

Abstract: The electrocatalytic conversion of CO2 into value-added chemicals using renewable electricity is a promising approach to reduce atmospheric CO₂ concentration and realize carbon-energy balance. However, the low current density still limits CO2 electroreduction reaction (CO₂RR) for commercial application. Crystalline porous metal-organic frameworks (MOFs) are one class of promising alternatives for CO2RR due to their high CO2 adsorption uptakes and periodically arranged isolated metal active sites. However, the poor conductivity and slow electron-transfer capability of the traditional MOFs usually result in low current density in CO2RR. Herein, conductive two-dimensional (2D) phthalocyaninebased MOF (NiPc-NiO₄) nanosheets were prepared by the construction of nickel phthalocyanin-2,3,9,10,16,17,23,24-octaol (NiPc-OH) and nickel(II) ions, which can be employed as highly efficient electrocatalysts for CO₂RR towards production of CO. The obtained NiPc-NiO₄ has a good conductivity with a high value of 4.8 \times 10⁻⁵ S m⁻¹ due to the in-plane full π -d conjugation. Thus, the asprepared NiPc-NiO₄ nanosheets exhibited a very high selectivity of 98.4% towards production of CO and a large CO partial current density of 34.5 mA cm⁻², outperforming the reported MOF catalysts. This work offers an opportunity to design conductive crystalline frameworks for improving energy efficiency in electrocatalysis.

Introduction

Conversion of CO_2 to value-added chemicals could help reduce the atmospheric CO_2 concentration and alleviate the dependence on fossil fuels. Using electricity generated from renewable energy sources, CO_2 can be electrochemically reduced to energy-rich products such as carbon monoxide (CO), which is one of the most important feedstock to be used in the Fischer-Tropsch industrial process.^[1-5] Over the past decades, various electrode materials for the conversion of CO_2 -to-CO have been explored, such as Au, Ag, Cu metals,^[6-9] metal complexes^[10-13] and single-atom Fe, Co, Ni based catalysts,^[14-30] metal-free carbons.^[31-33] Nevertheless, it still remains several challenges for the CO₂ electroreduction reaction (CO₂RR), including low energy conversion efficiency, poor selectivity and stability. Therefore, it still needs design and fabrication of highly active, selective and robust electrocatalysts towards CO₂RR. Compared with Au, Ag, Cu-based inorganic solid catalysts, the tunable homogeneous molecular catalysts usually show enhanced selectivity and specific activity in CO₂RR.^[34] However, the extensive challenge for discrete metal complexes-based electrocatalysts is to achieve high selectivity and large current density in an aqueous medium. Loading electroactive metal complexes into porous conductive substrates is a promising approach to reduce CO2 with high current density because of their fast electron transfer capacity and accessible active sites. Compared with other substrates, crystalline porous metalorganic frameworks (MOFs) with designable metal clusters and functional organic linkers have shown high selectivity in electrocatalytic CO₂RR and other electrocatalytic reaction due to their single active sites and large CO2 adsorption uptake.[35-51] However, the poor electrical conductivity feature of the traditionally insulating MOFs usually results in low current density in CO2RR. Hence, developing conductive MOFs (CMOFs) with highly single-active sites for CO2RR is extremely desirable.

As we know, metalophthalocyanine complexes with M-N₄ (e.g. M = Ni, Fe, Co) structures have been considered as typical active sites for CO₂RR, but the selectivity and current density still need to be improved.^[52-54] To address these problems, herein, Ni-phthalocyanine motif (NiPc) was integrated into a porous intrinsically conductive nickel-catecholate-linked two-dimensional (2D) MOF nanosheets (NiPc-NiO₄, **Figure 1**) for the highly efficient CO₂RR towards production of CO in aqueous medium. Notably, different from the traditional carboxylate-based MOFs, the CMOF NiPc-NiO₄, in which the planar NiPc architecture was bridged by the nickel-catecholates, has good electrical conductivity because of the high d- π orbital overlap between the nickel node and the catechol. Thus, the

WILEY-VCH

Figure 1. (a) Schematic illustration of the preparation of NiPc-NiO₄. Top and side view of their structures with 2×2 square grids in AA-stacking mode. (b) Experimental PXRD patterns for NiPc-NiO₄ and simulated patterns with AA-packing and AB-stacking modes. (c) Current-voltage characteristic of NiPc-NiO₄ using two-contact probe method. (d) N₂ adsorption–desorption isotherms and (e) the pore size distribution (PSD) profile of NiPc-NiO₄.

as-prepared NiPc-NiO₄ nanosheets exhibit outstanding electrocatalytic performance of CO₂RR for production CO with nearly 100% selectivity (98.4 %) and a partial current density of 34.5 mA cm⁻² at -1.2 V versus the reversible hydrogen electrode (vs. RHE). The turnover frequency (TOF) can reach to 2603 h⁻¹ at -1.2 V vs. RHE and it also exhibits excellent long-term stability with 86% CO selectivity maintained after 10 hours chronoamperometry test. Moreover, the density functional theory calculation proves that the nickel of phthalocyanine center is the active site and NiPc-NiO₄ performs better activity than NiPc-OH due to the fast electron transfer capacity and excellent reducibility, which is consistent with the experiment results.

Results and Discussion

The conjugated 2D CMOF NiPc-NiO₄ was synthesized by reaction of nickel phthalocyanin-2,3,9,10,16,17,23,24-octaol (NiPc-OH) and Ni(OAc)₂·4H₂O in water at 85 °C for 24 h (Figure 1a).^[55] The powder X-ray diffraction (PXRD) pattern of the asprepared NiPc-NiO₄ is well consistent with the AA-stacking model of the simulated one (Figure 1b), instead of AB-stacking model (Figure S1), suggesting the successful preparation of the crystalline NiPc-NiO₄. The peaks at 5.2°, 7.0°, 10.1°, and 27.0° are assigned to (100), (110), (200), and (001) facets, respectively. Among them, the (001) facets at 27.0° indicated that NiPc-NiO₄ possess a square-shaped channel of 14.5 Å in diameter along the c-axis (Figure 1a-b). The layered phthalocyanine-based MOF features good carrier transport ability based on the large delocalized π system originating from the macrocyclic phthalocyanine structure itself and the $d\pi$ -p π interaction between the nickel node and the catechol in these square-planar moieties. As expected, the electrical conductivity of NiPc-NiO₄ has a high value of 4.8×10^{-5} S m⁻¹ measured at room temperature using a two-contact probe method (Figure 1c).^[56] Such good electrical conductivity would be beneficial for the electron transfer to the active sites during CO₂RR, thereby improving energy conversion efficiency and electrochemical

activity. The N₂ sorption measurement at 77 K revealed that the 2D NiPc-NiO₄ has a high Brunauer-Emmett-Teller (BET) surface area of 180 cm³ g⁻¹ (**Figure 1d**). The pore size distribution analysis (**Figure 1e**) indicated that NiPc-NiO₄ possesses micropore of 1.2 nm, which is consistent with the theoretical size of the square shaped channels along the *c* direction (**Figure 1a**). Moreover, many mesopores ranging from 2 nm to 18 nm were formed in NiPc-NiO₄, which may be originated form the stacking gaps and defects between microcrystalline particles. Besides, NiPc-NiO₄ shows a high CO₂ adsorption uptake of 16.8 cm³ g⁻¹

Figure 2. (a) TEM image and (b) HAADF-STEM image of NiPc-NiO₄. (c) AFM image of NiPc-NiO₄. (d) The height profile along the white line in (c). (e) The elemental mapping of Ni, O, N, and C for NiPc-NiO₄.

WILEY-VCH

Figure 3. (a) LSV curves of NiPc-NiO₄ and NiPc-OH in CO₂-, and Ar-saturated 0.5 M KHCO₃. (b) Faradaic efficiencies of CO, (c) CO partial current density, (d) turnover frequency for NiPc-NiO₄ and NiPc-OH. (e) Comparison of the TOF and maximum CO partial current density with reported MOF catalysts, including Co-PMOF,^[29] CoCp₂@MOF-545-Co,^[30] PcCu-O₈-Zn,^[31] MOF-1992/CB,^[32] Re-MOF film,^[33] Al₂(OH)₂TCPP-Co.^[34] (f) Stability of NiPc-NiO₄ at a potential of -0.85 V versus RHE for 10 h.

at room temperature (Figure S2), which would facilitate in promoting CO_2RR .

The morphology of the as-prepared NiPc-NiO₄ was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM images in Figure S3 show that the obtained NiPc-NiO₄ was composed of nanoparticles (NPs) of less than 100 nm. The TEM (Figure 2a) and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images (Figure 2b) display no aggregated Ni NPs. To ensure the accessible of the Ni active sites in the slipped AA stacking frameworks for the electrolytes and CO2, the ultrathin 2D NiPc-NiO4 nanosheets were successfully fabricated by exfoliating from its bulk via highfrequency sonication at room temperature. As shown the atomic force microscopy (AFM) image and its height profile in Figure 2c-2d, a uniform thickness of ca. 1.65 nm was clearly observed, which is close to five layers of NiPc-NiO₄ nanosheets. Such ultrathin 2D NiPc-NiO₄ nanosheets would facilitate in exposure of more the Ni active sites for the CO₂ and electrolytes, thus improving CO₂RR activity. Furthermore, the corresponding element mapping analysis of NiPc-NiO₄ indicated Ni, N, O and C elements were homogeneously distributed over the entire structure (Figure 2e). The results indicated that the Ni species in NiPc-NiO₄ are positioned in isolated sites.

To examine the catalytic performance of the as-prepared NiPc-NiO₄ nanosheets towards CO_2RR in 0.5 M KHCO₃ solution, a conductive ink containing NiPc-NiO₄ was prepared and dropcasted on carbon paper electrode. The catalytic activity was evaluated in a three-electrode system using a two-compartment H-type cell that separated by a proton-exchange membrane. All the potentials mentioned in this work are with reference to the reversible hydrogen electrode (RHE). As shown in **Figure 3a**, the onset potentials of both NiPc-OH and NiPc-NiO₄ in CO₂ atmosphere are more positive than that of in Ar atmosphere, indicating that their activities are originated from the CO_2RR . Furthermore, as shown in **Figure 3b**, NiPc-NiO₄ nanosheets show high Faradaic efficiencies of CO with above 90% in a wide potential range from -0.65 V to -1.1 V, reaching the maximum of 98.4% at -0.85 V, surpassing most of reported MOF catalysts (Table S1).^[35-48] Moreover, the CO partial current density of NiPc-NiO₄ gradually increases with the increase of the overpotential, reaching 34.5 mA cm⁻² at -1.2 V (Figure 3c), which is the largest value among the reported MOFs (Table S1) and about 4 times of that NiPc-OH monomer (Figure S4). The excellent electrocatalytic CO₂RR performance for NiPc-NiO₄ nanosheets highlights the importance of their good electrical conductivity, accessible single active sites, and large CO₂ adsorption capacity.

In order to determine whether the catalytically active site is the nickel of phthalocyanine center or NiO₄ node, the typical 2D CMOF Ni₃(HHTP)₂ containing only NiO₄ node was synthesized for CO₂RR under the same conditions.^[57] As shown in Figure S5, the main product of Ni₃(HHTP)₂ is H₂ with selectivity of around 95% throughout the testing range of -0.7 to -1.2 V, indicating that the NiO₄ node cannot catalyze the CO₂RR and can be excluded as the active site in NiPc-NiO₄ for CO₂RR. Besides, pure ketjen black and carbon paper electrode also only produce H₂ (Figure S6 and S7), while the ligand NiPc-OH shows certain CO₂RR activity, indicating that the active site in NiPc-NiO₄ is the NiN₄ sites of NiPc moiety. Thus, on the basis of the NiPc motif as active site, the turnover frequency (TOF) of the NiPc-NiO₄ was calculated and summarized in Figure 3d. The TOF of NiPc-NiO₄ gradually increases with the increasing overpotential, reaching a maximum of 2603 h⁻¹ at -1.2 V. To the best of our knowledge, such high TOF and CO partial current density are better than any state-of-the-art MOF catalysts (Figure 3e). The long-term stability is another important factor for evaluating the practicability of catalysts. As shown in Figure 3f, after 10 hours durability test at -0.85 V, the current density of NiPc-NiO₄ did not change significantly by decreasing only 0.8 mA cm⁻², while the high CO selectivity of 86% for NiPc-NiO₄ was still maintained. The result indicates the superior structural stability of NiPc-NiO₄ in this neutral aqueous medium. Moreover, no Ni NPs were observed in the TEM images of the NiPc-NiO₄ after

WILEY-VCH

Figure 4. (a) Normalized Ni *K*-edge XANES spectra of Ni foil, NiO, NiPc-OH, NiPc-NiO₄ and NiPc-NiO₄-tested. (b) XPS spectra of the Ni 2p region of NiPc-OH, NiPc-NiO₄ and NiPc-NiO₄-tested. (c) Fourier transform EXAFS spectra of different samples. (d) Wavelet transforms for the k^2 -weighted EXAFS signals of different samples. The corresponding EXAFS fitting curves of (e) NiPc-OH, (f) NiPc-NiO₄ (g) NiPc-NiO₄-tested. The inset in (e) is the molecule architecture of NiPc-OH. (h) Schematic illustration of the transformation process throughout the CO₂RR reaction.

electrocatalysis (Figure S9-S10), and the post-reaction SEM images showed no significant changes in the size and shape (Figure S11), suggesting that no structural collapse of NiPc-NiO₄ was occurred and no crystalline metal impurities generated during the CO2RR process. Furthermore, the major peaks were remained in the PXRD of NiPc-NiO4 after the CO2RR measurement (NiPc-NiO₄-tested) (Figure S12), indicating that the crystalline framework of NiPc-NiO4 was still maintained in this neutral electrochemical testing system. To further determine whether CO was produced from the CO2RR, the ¹³C-labeling gas CO₂ isotope experiments were conducted via chromatography-mass spectrometry (GC-MS). As shown in Figure S13, when conducting CO_2RR with ¹³C-labeling CO_2 in 0.5 M $KH^{12}CO_3$, both the signal of ^{12}CO and ^{13}CO was observed, while only ¹³CO was observed in KCI electrolyte. These results demonstrate that CO was originated from the CO₂ in equilibrium with bicarbonate anions in CO2-saturated KHCO3 aqueous solution.[58-60]

In order to further figure out the coordination environment and electronic structure of Ni active sites during the CO_2RR , the *ex situ* synchrotron based X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) were carried out. The X-ray absorption near edge structure (XANES) of Ni *K* edge in **Figure 4a** shows that the XANES curves of NiPc-NiO₄ and

NiPc-NiO₄-tested almost overlap together, indicating that the structure of NiPc-NiO₄ maintained well after the CO₂RR process. In addition, two fingerprint peaks of NiN₄ symmetrical structure were found at 8334 eV and 8340 eV in NiPc-OH, NiPc-NiO4 and NiPc-NiO₄-tested. One at 8334 eV is assignable to the dipole forbidden 1s to 3d transition, and the other one at 8340 eV is attributed to the shakedown satellite 1s to $4p_z$ transition.^[61-62] The presence of these two NiN₄ fingerprint peaks in NiPc-NiO₄tested reveals that the nickel atom in the center of phthalocyanine maintains the NiN₄ structure after CO₂RR, instead of detaching from the phthalocyanine center and aggregating together. Both of the white line positions of NiPc-NiO4 and NiPc-NiO4-tested are very close to that of NiO, indicating that the valence state of the Ni atoms in these samples is close to +2.[61-62] The XPS results also indicated the dominance of Ni²⁺ in all the samples, consistent with the XANES analysis. As shown in Figure 4b, the Ni 2p XPS spectra of the three samples display the similar patterns with two peaks at 873.0 eV and 855.7 eV, which can be assigned to Ni 2p_{1/2} and Ni 2p_{3/2}, respectively.^[61-63] What's more, cyclic voltammetry (CV) measurement could be used to analyze the dynamic change process of oxidation state. As shown in Figure S14, the CV curves of NiPc-NiO₄ were conducted in an anhydrous system (0.1 M TBAPF₆/acetonitrile) in order to eliminate the effect of the

redox peaks of water. There is a pair of redox peaks assigned to the conversion between Ni(II) and Ni(I) in the CV tested in argon atmosphere, while no obvious redox peaks are observed in CO₂ atmosphere, which may be due to the electrons are quickly transferred from the formed Ni(I) species to the CO₂ substrate molecules. According to the CV results, it is suggested that Ni(II) could be reduced to Ni(I) under cathodic bias during CO₂RR, which would be quickly oxidized back to Ni(II) after the electrons transferred from the formed Ni(I) species to the CO₂ substrate molecules.^[64]

The coordination environment of the nickel atoms in the samples are further analyzed by extended X-ray absorption fine structure (EXAFS). As shown in **Figure 4c**, compared with Ni foil sample, no Ni-Ni bond at 2.2 Å was observed in NiPc-OH, NiPc-NiO₄ and NiPc-NiO₄-tested, indicating that all the nickel atoms in these samples exist as single Ni site without the presence of metal-derived aggregates. The results revealed that the NiPc sites and NiNO₄ nodes in NiPc-NiO₄ were not reduced to NPs during CO₂RR process. Besides, the NiPc-OH, NiPc-NiO₄ and NiPc-NiO₄-tested samples have one main peak at 1.4 Å that attributed to the Ni–N bond, while the latter two samples show another peak centered at 1.6 Å, which overlaps with the Ni–O bond in NiO and can therefore be attributed to the NiO₄ nodes in NiPc-NiO₄ were well maintained after CO₂RR.

Figure 5. (a) Calculated energy diagrams for CO₂-to-CO conversion on two proposed active sites in NiPc-NiO₄. (b) The noncovalent interaction (NCI) between CO₂ and NiPc-NiO₄ structure. (c) The Mulliken charge of different Ni atoms in NiPc-NiO₄. (d) The energy level of HOMO and LUMO of different Ni atoms in NiPc-NiO₄ with introduction of CO₂.

EXAFS wavelet transform (WT) analysis is powerful for discriminating the backscattering atoms in *R*-space, by providing radial distance resolution and *k*-space resolution.^[65-67] In the EXAFS WT contour plots of Ni foil (**Figure 4d**), only one intensity maximum at 7.4 Å⁻¹ ascribed to the Ni–Ni bond was observed. While two intensity maximum at 4.8 and 6.9 Å⁻¹ were observed in NiO standard sample, which can be ascribed to the Ni–O and Ni–Ni bond, respectively. Notably, only one intensity maximum at 3.4 Å⁻¹ ascribed to the Ni–N(O) bonding was observed and no intensity maximum corresponded to Ni–Ni bonding existed in NiPc-NiO₄ and NiPc-NiO₄-tested, further demonstrating that the nickel species were presented with

isolated atomic-level dispersion. To obtain quantitative structural parameters of the Ni atoms, a least-squares EXAFS fitting was carried out and the fitting results are shown in **Figure 4e-4g**, **Figure S15-S16** and **Table S2**. The fitting result of NiPc-NiO₄ indicated that the average coordination number of Ni-N and Ni–O bond are 4.0 and 5.5, respectively. The larger coordination number of Ni–O bond in comparison with the theoretical value can be reasonably ascribed to the axial coordinated H₂O molecules adsorbed on NiO₄ nodes. In general, the analysis of the oxidation states and the precise coordination environment of Ni atoms throughout the CO₂RR process demonstrate the superior structure stability of NiPc-NiO₄ and the full exposure of active sites.

To further determine whether the catalytically active site is the nickel of phthalocyanine center (NiPC) or NiO₄ node, we calculated the energy for CO2RR and hydrogen evolution reaction (HER) at two different Ni active sites in NiPc-NiO4 (Table S3). For the NiPC, the energies of the rate-determining step (RDS) for CO₂RR (formation of COOH* intermediate) and HER (formation of H*) are 1.93 eV (Figure 5a) and 1.98 eV (Figure S17), respectively, suggesting that CO₂RR occurs preferentially at NiPC sites. In contrast, the corresponding energy for CO₂RR (2.53 eV, Figure 5a) in the nickel of the NiO₄ node is larger than that of HER (1.58 eV, Figure S17), which indicated that HER takes precedence at NiO₄ nodes. Moreover, the energy for RDS on the NiPC (1.93 eV) is significantly lower than that on NiO₄ node (2.53 eV), which clearly shows that NiPC is the active site for CO₂RR. The above calculated results are in agreement with the experiment results that NiPc-OH showed active for CO₂RR (Figure 3b) while Ni₃(HHTP)₂ exhibited only catalytic HER performance (Figure S5).

The high activity and selectivity of NiPC in the CO₂RR can be further explained in terms of adsorption capacity, charge distribution, and reducibility. Firstly, the adsorption energies of CO2 on NiPC and NiO4 node are 0.23 eV and 0.02 eV (Table S3), respectively. Thus, the CO₂ molecular was easier to combine with NiPC, which is also revealed by noncovalentinteraction. As shown in Figure 5b, there is stronger Van der Waals interaction between CO2 molecule and NiPC than that of NiO₄ node. Secondly, the Mulliken population analysis of the two Ni atoms indicates the more electron-rich environment of NiPC compared with Ni in NiO₄ node, no matter that whether Ni atom was or not adsorbed by CO₂ molecule (Figure 5c). Thirdly, the lowest unoccupied molecular orbital (LUMO) energy level of NiPc-NiO₄ shifts from -4.22 eV to -4.62 eV when the CO_2 molecule moves from NiPC to NiO₄ node (Figure 5d), indicating the excellent reducibility of NiPC. Thus, the Ni of phthalocyanine center is an excellent active site on account of its strong adsorption capacity of CO2, electron-rich environment and excellent reducibility.

We also calculated the energy required for CO₂RR of NiPc molecule. As shown in **Figure S18**, the energy for RDS towards CO₂RR by NiPc molecule is 3.12 eV, which is quite larger than that of the Ni of phthalocyanine center (1.93 eV) in NiPc-NiO₄. The result indicated that the catalytic capacity of the Ni active site has been significantly improved after the phthalocyanine molecules are inserted into the 2D conductive MOF material. This improvement can be reasonably ascribed to the dπ-pπ interaction between the nickel node and the catechol in the square-planar NiPc-NiO₄.

Conclusion

In summary, nickel phthalocyanine molecules as active sites were installed into nickel-catecholate-linked 2D conductive metal-organic framework (NiPc-NiO₄) nanosheets for efficiently CO_2 electroreduction reaction. Due to the in-plane full π -d conjugation between the phthalocyanine molecule and the NiO₄ nodes, NiPc-NiO₄ has good conductivity of 4.8×10^{-5} S m⁻¹. Hence, the as-prepared 2D NiPc-NiO₄ nanosheets show outstanding activity towards CO2 electroreduction with nearly 100% CO selectivity, large CO partial current density up to 34.5 mA cm⁻², high turnover frequency up to 2603 h⁻¹, and excellent long-term durability. To the best of our knowledge, such high TOF and CO partial current density is better than any state-ofthe-art MOF catalysts. The density functional theory calculation proves that the nickel of phthalocyanine center is the active sites and NiPc-NiO₄ performs better activity than the phthalocvanine molecules due to the fast electron transfer capacity and excellent reducibility, which is consistent with the experiment results. Our work provides an effective strategy to improve the CO₂ electroreduction performance by designing conductive crystalline frameworks with uniformly distributed phthalocyanine active sites. It also builds a bridge between the homogeneous molecule catalysts and heterogeneous porous catalysts.

Acknowledgements

We acknowledge the financial support from the National Key Research and Development Program of China (2018YFA0208600, 2018YFA0704502), NSFC (21871263, 22071245, 21671188, 22033008), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB2000000), Youth Innovation Promotion Association, CAS (Y201850). We thank the beamline BL14W1 station for XAS measurements at the Shanghai Synchrotron Radiation Facility, China. We thank Prof. Xu Gang for the assistance of the conductivity measurements.

Conflict of interest

The authors declare no conflict of interest.

Keywords: Conductive metal-organic framework • CO₂ electroreduction • CO • phthalocyanine

- D. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, *Nat. Catal.* 2019, 2, 198–210.
- [2] C. Long, X. Li, J. Guo, Y. Shi, S. Liu, Z. Tang, Small Methods 2018, 1800369.
- [3] W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, Z. Jin, Adv. Sci. 2018, 5, 1700275.
- [4] H. Yang, X. Wang, Q. Hu, X. Chai, X. Ren, Q. Zhang, J. Liu, C. He, Small Methods 2020, 4, 1900826.
- [5] Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, *Joule* 2018, 2, 2551–2582.
- [6] M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. De Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, *Nature* **2016**, *537*, 382–386.

WILEY-VCH

- [7] F. P. G. De Arquer, C. Dinh, A. Ozden, J. Wicks, C. Mccallum, A. R. Kirmani, D. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton, E. H. Sargent, *Science* **2020**, *367*, 661–666.
- [8] C. Zhao, G. Luo, X. Liu, W. Zhang, Z. Li, Q. Xu, Q. Zhang, H. Wang, D. Li, F. Zhou, Y. Qu, X. Han, Z. Zhu, G. Wu, J. Wang, J. Zhu, T. Yao, Y. Li, H. J. M. Bouwmeester, Y. Wu, *Adv. Mater.* **2020**, *32*, 2002382.
- [9] J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo, Q. Fan, J. Wang, L. M. Yang, Y. Wu, Adv. Energy Mater. 2020, 10, 2001709.
- [10] X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, Angew. Chem. Int. Ed. 2018, 57, 2427–2431.
- [11] Y. Peng, L. Wang, Q. Luo, Y. Cao, Y. Dai, Z. Li, H. Li, X. Zheng, W. Yan, J. Yang, J. Zeng, *Chem* **2018**, *4*, 613–625.
- [12] F. Li, L. Chen, G. P. Knowles, D. R. Macfarlane, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 505–509.
- [13] D. Yang, Q. Zhu, X. Sun, C. Chen, W. Guo, G. Yang, B. Han, Angew. Chem. Int. Ed. 2020, 59, 2354–2359.
- [14] H. J. Zhu, M. Lu, Y. R. Wang, S. J. Yao, M. Zhang, Y. H. Kan, J. Liu, Y. Chen, S. L. Li, Y. Q. Lan, *Nat. Commun.* **2020**, *11*, 497.
- [15] Y. Hou, Y. B. Huang, Y. L. Liang, G. L. Chai, J. D. Yi, T. Zhang, K. T. Zang, J. Luo, R. Xu, H. Lin, S. Y. Zhang, H. M. Wang, R. Cao, CCS Chem. 2019, 1, 384–395.
- [16] H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, C. He, J. Am. Chem. Soc. 2019, 141, 12717–12723.
- [17] Q. Wu, R. K. Xie, M. J. Mao, G. L. Chai, J. D. Yi, S. S. Zhao, Y. B. Huang, R. Cao, ACS Energy Lett. 2020, 5, 1005–1012.
- [18] A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang, T. Sham, C. Yang, Y. Ji,
 L. Qian, X. Xu, G. Zheng, ACS Energy Lett. 2020, 5, 1044–1053.
- [19] J. Gu, C. S. Hsu, L. Bai, H. M. Chen, X. Hu, *Science* **2019**, *364*, 1091–1094.
- [20] M. D. Zhang, D. H. Si, J. D. Yi, S. S. Zhao, Y. B. Huang, R. Cao, Small 2020, 16, 2005254.
- [21] J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen, Z. Li, Y. Qu, J. Dong, J. Luo, Z. Li, Y. Wu, Angew. Chem. Int. Ed. 2018, 57, 14095–14100.
- [22] C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang, X. Bao, *Energy Environ. Sci.* 2018, *11*, 1204–1210.
- [23] Q. Wu, J. Liang, Z. L. Xie, Y. B. Huang, R. Cao, ACS Materials Lett. 2021, 3, 454–461.
- [24] X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 14889–14892.
- [25] C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu, D. He, D. Xi, Q. Zhang, T. Yuan, Y. Qu, J. Yang, F. Zhou, Z. Yang, X. Wang, J. Wang, J. Luo, Y. Li, H. Duan, Y. Wu, Y. Li, *Joule* **2019**, *3*, 584–594.
- [26] M. D. Zhang, D. H. Si, J. D. Yi, Q. Yin, Y. B. Huang, R. Cao, Sci. China Chem. DOI: 10.1007/s11426-021-1022-3.
- [27] H. Bin Yang, S. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, B. Liu, *Nat. Energy* **2018**, *3*, 140–147.
- [28] C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, *J. Am. Chem. Soc.* **2017**, *139*, 8078–8081.
- [29] Q. Wu, M. J. Mao, Q. J. Wu, J. Liang, Y. B. Huang, R. Cao, Small DOI: 10.1002/smll.202004933.
- [30] X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu, Y. Li, *Angew. Chem. Int. Ed.* **2018**, *57*, 1944–1948.
- [31] B. Pan, X. Zhu, Y. Wu, T. Liu, X. Bi, K. Feng, N. Han, J. Zhong, J. Lu, Y. Li, Y. Li, Adv. Sci. 2020, 7, 2001002.
- [32] J. Xie, X. Zhao, M. Wu, Q. Li, Y. Wang, J. Yao, Angew. Chem. Int. Ed. 2018, 57, 9640–9644.
- [33] Y. Wang, J. Chen, G. Wang, Y. Li, Z. Wen, Angew. Chem. Int. Ed. 2018, 57, 13120–13124.
- [34] L. Sun, V. Reddu, A. C. Fisher, X. Wang, *Energy Environ. Sci.* 2020, 13, 374–403.
- [35] Y. R. Wang, Q. Huang, C. T. He, Y. Chen, J. Liu, F. C. Shen, Y. Q. Lan, *Nat. Commun.* 2018, *9*, 4466.
- [36] Z. Xin, Y. R. Wang, Y. Chen, W. L. Li, L. Z. Dong, Y. Q. Lan, Nano Energy 2020, 67, 104233.

- [37] H. Zhong, M. Ghorbani-asl, K. H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, D. Makarov, E. Zschech, E. Brunner, I. M. Weidinger, J. Zhang, A. V Krasheninnikov, S. Kaskel, R. Dong, X. Feng, *Nat. Commun.* **2020**, *11*, 1409.
- [38] R. Matheu, E. Gutierrez-Puebla, M. Á. Monge, C. S. Diercks, J. Kang, M. S. Prévot, X. Pei, N. Hanikel, B. Zhang, P. Yang, O. M. Yaghi, *J. Am. Chem. Soc.* 2019, *141*, 17081–17085.
- [39] L. Ye, J. Liu, Y. Gao, C. Gong, M. Addicoat, T. Heine, C. Woll, L. Sun, J. Mater. Chem. A 2016, 4, 15320–15326.
- [40] N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J. Chang, O. M. Yaghi, P. Yang, J. Am. Chem. Soc. 2015, 137, 14129–14135.
- [41] F. Mao, Y.-H. Jin, P. Liu, P. Yang, L. Zhang, L. Chen, X.-M. Cao, J. Gu, H. Yang, *J. Mater. Chem. A* **2019**, *7*, 23055–23063.
- [42] Y. Guo, W. Shi, H. Yang, Q. He, Z. Zeng, J. Ye, X. He, R. Huang, C. Wang, W. Lin, J. Am. Chem. Soc. 2019, 141, 17875–17883.
- [43] B. Dong, S. Qian, F. Bu, Y. Wu, L.-G. Feng, Y.-L. Teng, W.-L. Liu, Z.-W. Li, ACS Appl. Energy Mater. 2018, 1, 4662–4669.
- [44] Z. Yang, X. Zhang, C. Long, S. Yan, Y. Shi, J. Han, J. Zhang, P. An, L. Chang, Z. Tang, *CrystEngComm* **2020**, *22*, 1619–1624.
- [45] S. Dou, J. Song, S. Xi, Y. Du, J. Wang, Z. Huang, Z. Xu, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 4041–4045.
- [46] X. Jiang, H. Li, J. Xiao, R. Si, F. Yang, Y. Li, X. Bao, Nano Energy 2018, 52, 345–350.
- [47] Y. Wang, P. Hou, Z. Wang, P. Kang, ChemPhysChem 2017, 18, 3142– 3147.
- [48] I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha, J. T. Hupp, I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha, T. Joseph, *ACS Catal.* **2015**, *5*, 6302–6309.
- [49] J. Su, W. He, X. M. Li, L. Sun, H. Y. Wang, Y. Q. Lan, M. Ding, J. L. Zuo, *Matter* 2020, 2, 711–722.
- [50] W. Xiong, H. Li, H. You, M. Cao, R. Cao, *Natl. Sci. Rev.* 2020, 7, 609– 619.
- [51] J. D. Yi, R. K. Xie, Z. L. Xie, G. L. Chai, T. F. Liu, R. P. Chen, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 23641–23648.
- [52] Z. Zhang, J. Xiao, X. J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Y. Wang, Z. Q. Tian, D. Deng, *Angew. Chem. Int. Ed.* **2018**, *57*, 16339–16342.
- [53] M. Lu, M. Zhang, C. G. Liu, J. Liu, L. J. Shang, M. Wang, J. N. Chang, S. L. Li, Y. Q. Lan, *Angew. Chem. Int. Ed.* **2021**, *60*, 4864–4871.
- [54] L. Lin, T. Liu, J. Xiao, H. Li, P. Wei, D. Gao, B. Nan, R. Si, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2020, 59, 22408–22413.
- [55] Z. Meng, A. Aykanat, K. A. Mirica, J. Am. Chem. Soc. 2019, 141, 2046– 2053.
- [56] L. Sun, S. S. Park, D. Sheberla, M. Dincă, J. Am. Chem. Soc. 2016, 138, 14772–14782.
- [57] H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, *Chem. Mater.* **2012**, *24*, 3511–3513.
- [58] M. Dunwell, Q. Lu, J. M. Heyes, J. Rosen, J. G. Chen, Y. Yan, F. Jiao, B. Xu, J. Am. Chem. Soc. 2017, 139, 3774–3783.
- [59] S. Zhu, B. Jiang, W. Bin Cai, M. Shao, J. Am. Chem. Soc. 2017, 139, 15664–15667.
- [60] Y. Hou, Y.-L. Liang, P.-C. Shi, Y.-B. Huang, R. Cao, Appl. Catal. B Environ. 2020, 271, 118929.
- [61] D. M. Koshy, S. Chen, D. U. Lee, M. B. Stevens, A. M. Abdellah, S. M. Dull, G. Chen, D. Nordlund, A. Gallo, C. Hahn, D. C. Higgins, Z. Bao, T. F. Jaramillo, *Angew. Chem. Int. Ed.* **2020**, *59*, 4043–4050.
- [62] N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S. T. Lee, Y. Li, *Chem* **2017**, *3*, 652–664.
- [63] T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, H. Wang, *Joule* 2019, 3, 265–278.
- [64] S. Liu, H. Bin Yang, S. F. Hung, J. Ding, W. Cai, L. Liu, J. Gao, X. Li, X. Ren, Z. Kuang, Y. Huang, T. Zhang, B. Liu, *Angew. Chem. Int. Ed.* 2020, 59, 798–803.
- [65] H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, *Nat. Catal.* **2018**, *1*, 63–72.

- [66] X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. Ju, J. Dong, L. Zheng, W. Yan, X. Zheng, Z. Li, X. Wang, J. Yang, D. He, Y. Wang, Z. Deng, Y. Wu, Y. Li, *J. Am. Chem. Soc.* **2017**, *139*, 9419–9422.
- [67] Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W. C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, *J. Am. Chem. Soc.* **2018**, *140*, 4218–4221.

WILEY-VCH

RESEARCH ARTICLE

Entry for the Table of Contents

Nickel phthalocyanine molecules as active sites were installed into nickel-catecholate-linked 2D conductive metal-organic framework nanosheets for efficiently CO_2 electroreduction reaction with nearly 100% CO selectivity.