DOI: 10.1002/chem.200800454

Highly Enantioselective Strecker Reaction of Ketoimines Catalyzed by an Organocatalyst from (S)-BINOL and L-Prolinamide

Zongrui Hou, Jun Wang, Xiaohua Liu, and Xiaoming Feng*^[a]

The catalytic asymmetric Strecker reaction^[1] has attracted much attention and a number of successful protocols have been disclosed for its great importance in the synthesis of chiral α -amino acids and their derivatives.^[2] However, in contrast to the relatively well-developed cyanation of aldimines,^[3] limited reports were related to the cyanation of ketoimines^[4] to afford pharmaceutically important disubstituted α -amino nitriles. Espe-

 $R^{1} \xrightarrow{I a: R^{1}=H, R^{2}=H}_{H, R^{2}=CH_{3}}$

Figure 1. Catalysts used in this research.

cially, it is not easy to promote cyanation of ketoimines with organocatalyst. Since the first successful example reported by Jacobsen's group using chiral urea as catalyst,^[4a,c] two types of *N*,*N'*-dioxides have been developed by our group for the Strecker reaction of ketoimines and moderate to good results were obtained.^[4g,i] Herein, we reported a novel kind of *N*,*N'*-dioxide with an axial chirality for the enantio-selective cyanation of *N*-Ts-protected ketoimine, providing excellent results (Figure 1).

Before, the linkers of the previously used N,N'-dioxides for the Strecker reaction of ketoimines were achiral moieties. We speculated that the stereocontrol would be enhanced by employing a suitable chiral linker. On the basis of this

[a] Z. Hou, J. Wang, Dr. X. Liu, Prof. Dr. X. Feng Key Laboratory of Green Chemistry & Technology (Sichuan University), Ministry of Education College of Chemistry, Sichuan University Chengdu 610064 (PR China) and State Key Laboratory of Oral Diseases, Sichuan University Chengdu 610041 (PR China) Fax: (+86)28-8541-8249 E-mail: xmfeng@scu.edu.cn

Supporting information for this article is available on the WWW under http://www.chemistry.org or from the author.

idea, we designed and synthesized the N,N'-dioxide catalyst derived from BINOL and prolinamide. The general route was given in Scheme 1. Firstly, (S)-BINOL was formylated via three steps to afford A1 which was subsequently subjected to the condensation reaction with L-prolinamide. Then the product **B1** was oxidized to achieve the desired novel N,N'-dioxide **1a**. Notably, the absolute configuration of the newly formed chiral center in catalyst 1a was identified as R based on the observation of strong NOE signal between H₁ and H_2 (see Supporting Information). However, the attempt to synthesize the similar structure from (R)-BINOL and Lprolinamide was failed, which might be attributed to the instability of the corresponding N, N'-dioxide. Interestingly, when two hydroxyl groups of B1 were replaced by two methoxy group, N,N'-dioxide 1c could not be prepared as diastereomerically pure form in the oxidation step. Instead, the mixture of the two epimers with a ratio of 1:1.8 was obtained (see Supporting Information). Other catalysts displayed in Figure 1 were prepared in a similar process (Scheme 1) for the preparation of 1a.

To examine the initial hypothesis, we evaluated these catalysts in the asymmetric Strecker reaction of *N*-tosyl ketoimines with TMSCN. It was found that a promising result $(80\% \ ee)$ was obtained by employing 5 mol $\% \ N,N'$ -dioxide **1a** as catalyst, while inferior asymmetric induction was ob-

4484

COMMUNICATION

Scheme 1. Synthesis of the catalyst: i) L-prolinamide, ethanol, reflux; ii) mCPBA, CH_2Cl_2 , -78 °C.

served using **1b** with two TMS groups on the 6,6'-position of BINOL (Table 1, entries 1–2). A low *ee* value was obtained by replacing the BINOL framework with H₈-BINOL (Table 1, entry 3), which suggested that a proper dihedral angel in **1a** was of great importance. When catalyst **3** derived from axial flexible 2,2'-biphenol was examined, quite poor enantioselectivity was given, which indicated that the axial chirality of BINOL in **1a** was crucial to achieve the good *ee* value (Table 1, entry 4).

Table 1. Asymmetric cyanation of ketoimine **4a** catalyzed by various catalyst systems.

	NTs_catalyst, 1.5 equiv TMSCN							
	Ph —	toluene, 0°C	Ph CN					
	4a		5a					
Entry ^[a]	Cat. [mol%]	Solvent	Yield [%] ^[b]	ee [%] ^[c]				
1	1a (5)	toluene	71	80				
2	1b (5)	toluene	53	55				
3	2 (5)	toluene	40	59				
4	3 (5)	toluene	43	27				
5	1a (5)	CH_2Cl_2	88	24				
6	1a (5)	anisole	64	48				
7	1a (5)	THF	84	18				
8	1a (5)	CH ₃ CN	64	23				
9 ^[d]	1a (5)	toluene	89	81				
10 ^[e]	1a (5)	toluene	99	60				
11	1a (10)	toluene	99	75				
12	1a (2)	toluene	56	84				
13	1 a (1)	toluene	42	86				
14 ^[f]	1a (2)	toluene	66	90				
15 ^[f,g]	1a (2)	toluene	93	97				

[a] All the reactions were carried out with 4a (0.1 mmol), TMSCN (1.5 equiv) in toluene (0.5 mL) at 0 °C in a dry flask for 48 h unless otherwise specified. [b] Isolated yield. [c] Determined by chiral HPLC. [d] The reaction was performed at -20 °C for 168 h. [e] The reaction was performed at 30 °C. [f] The reaction was performed in 2.0 mL toluene for 72 h. [g] 1.0 equiv 1-adamantanol was added.

Solvent screening showed that toluene was the best solvent (Table 1, entry 1). Other solvents such as CH_2Cl_2 , anisole, THF and CH_3CN gave poor enantioselectivities (Table 1, entries 5–8). When the reaction was performed at -20 °C, slight increase in the enantioselectivity was observed, but the reactivity decreased. High temperature was disadvantageous to asymmetric induction (Table 1, entries 9–10). Although low catalyst loading made the reaction

somewhat sluggish, the *ee* value was gradually enhanced (Table 1, entries 11–13). Also, reduced concentration was beneficial to the enantioselectivity (Table 1, entry 14). To further improve the result, some additives were investigated. Fortunately, 1-admantanol was found to be efficient to enhance both reactivity and enantioselectivity, and the best amount was 1.0 equiv (Table 1, entry 15).

With the optimal conditions (Table 1, entry 15) in hand, the substrate scope was surveyed. As shown in Table 2, various aryl imines bearing no matter electron-withdrawing or electron-donating group were smoothly converted to their corresponding adducts in the range of 93-99% ee with high yields (Table 2, entries 1-11). Heteroaromatic ketoimines showed high reactivities and enantioselectivities as well (Table 2, entries 12-13). Aliphatic substrate 4n gave 93% ee (Table 2, entry 14). Besides, α,β -unsaturated ketoimine could be transformed to the synthetically important product 50 with 95% ee (Table 2, entry 15). Cyclic ketoimine could give an excellent result with 98% ee (Table 2, entry 16). Excitingly, current catalyst system could be applied to the aryl ethyl and aryl propyl ketoimines to give excellent results (Table 2, entries 17-18). ortho-Chloro diphenylketoimine exhibited good result, too (Table 2, entry 19).

In summary, a novel and efficient organocatalyst was developed to promote the Strecker reaction of ketoimines with fairly wide substrate scope and excellent enantioselec-

Table 2. Substrate scope for the Strecker reaction of ketoimines.

NTs 2 mol% 1a , 1 equiv 1-admantanol NHTs									
	$R^1 R^2$	1.5 eq	uiv TMSCN, (0°C					
	4				R² 5				
Entry ^[a]	\mathbb{R}^1	\mathbb{R}^2	Product	<i>t</i> [h]	Yield [%] ^[b]	ee [%] ^[c]			
1	Ph	Me	5a	72	93	97 (R)			
2	$2-FC_6H_4$	Me	5 b	72	95	94			
3	3-ClC ₆ H ₄	Me	5 c	72	93	94			
4	$4-ClC_6H_4$	Me	5 d	72	91	93 (R)			
5	$4-FC_6H_4$	Me	5e	72	94	95			
5	$4-MeC_6H_4$	Me	5 f	72	88	98 (R)			
7	2-MeOC ₆ H ₄	Me	5g	120	82	97			
3	3-MeOC ₆ H ₄	Me	5 h	120	81	96			
)	4-MeOC ₆ H ₄	Me	5i	120	80	99 (R)			
10		Me	5j	120	74	99 (R)			
11	2-naphthyl	Me	5 k	72	82	97 (R)			
12	2-furyl	Me	51	72	88	95			
13	2-thienyl	Me	5m	72	86	97			
14	<i>t</i> Bu	Me	5 n	72	96	93			
15	C St	Me	50	72	86	95			
16	NTs	_	5 p	120	73	98 (R)			
17	Ph	Et	5 q	120	86	98			
18	Ph	nPr	5r	120	74	95			
19	$2-ClC_6H_4$	Ph	5 s	120	76	90			

[a] All the reactions were carried out in a 0.1 mmol scale of **4** using 1.5 equiv TMSCN in 2.0 mL toluene with 2 mol% catalyst and 1.0 equiv 1-admantanol at 0°C in a dry tube. [b] Isolated yield. [c] Determined by chiral HPLC.

www.chemeurj.org

tivities (up to 99% *ee*). Low catalyst loading (2 mol%), mild reaction conditions, and operational simplicity made this strategy facile to be used in the organic synthesis. Further investigation of the reaction mechanism is underway.

Experimental Section

Typical procedure for the Strecker reaction of ketoimine: To a dry reaction tube charged with *N*-Ts ketoimine (0.1 mmol), catalyst (0.002 mmol), additive (0.1 mmol) and toluene (2.0 mL) was added TMSCN (0.15 mmol) with stirring at 0 °C. After the reaction completed, the reaction mixture was purified by flash chromatography on silica gel to afford the desired product.

Acknowledgements

We appreciate the National Natural Science Foundation of China (Nos. 20602025 and 20732003) for financial support. We also thank Sichuan University Analytical & Testing Center for NMR analysis and State Key Laboratory of Biotherapy for HRMS analysis.

Keywords: asymmetric catalysis • cyanides • ketoimines • organocatalysis • Strecker reaction

- [1] A. Strecker, Ann. Chim. Farm. 1850, 75, 27.
- [2] For reviews on the asymmetric Strecker reaction, see: a) L. Yet, *Angew. Chem.* 2001, 113, 900; *Angew. Chem. Int. Ed.* 2001, 40, 875; b) H. Gröger, *Chem. Rev.* 2003, 103, 2795; c) C. Spino, *Angew. Chem.* 2004, 116, 1796; *Angew. Chem. Int. Ed.* 2004, 43, 1764; d) S. J. Connon, *Angew. Chem.* 2008, 120, 1194; *Angew. Chem. Int. Ed.* 2008, 47, 1176.
- [3] For the asymmetric Strecker reaction of aldimines, see: a) M. S. Iyer, K. M. Gigstad, N. D. Namdev, M. Lipton, J. Am. Chem. Soc. 1996, 118, 4910; b) M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901; c) H. Ishitani, S. Komiyama, S. Kobayashi, Angew. Chem.

1998, 110, 3369; Angew. Chem. Int. Ed. 1998, 37, 3186; d) E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157; e) C. A. Krueger, K. W. Kuntz, C. D. Dzierba, W. G. Wirschun, J. D. Gleason, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 1999, 121, 4284; f) M. S. Sigman, P. Vachal, E. N. Jacobsen, Angew. Chem. 2000, 112, 1336; Angew. Chem. Int. Ed. 2000, 39, 1279; g) M. Takamura, Y. Hamashima, H. Usuda, M. Kanai, M. Shibasaki, Angew. Chem. 2000, 112, 1716; Angew. Chem. Int. Ed. 2000, 39, 1650; h) B. Liu, X. M. Feng, F. X. Chen, G. L. Zhang, X. Cui, Y. Z. Jiang, Synlett 2001, 1551; i) Z. G. Jiao, X. M. Feng, B. Liu, F. X. Chen, G. L. Zhang, Y. Z. Jiang, Eur. J. Org. Chem. 2003, 3818; j) W. Mansawat, W. Bhanthumnavin, T. Vilaivan, Tetrahedron Lett. 2003, 44, 3805; k) S. Nakamura, N. Sato, M. Sugimoto, T. Toru, Tetrahedron: Asymmetry 2004, 15, 1513; 1) V. Banphavichit, W. Mansawat, W. Bhanthumnavin, T. Vilaivan, Tetrahedron 2004, 60, 10559; m) J. Huang, E. J. Corey, Org. Lett. 2004, 6, 5027; n) T. Ooi, Y. Uematsu, K. Maruoka, J. Am. Chem. Soc. 2006, 128, 2548; o) M. Rueping, E. Sugiono, C. Azap, Angew. Chem. 2006, 118, 2679; Angew. Chem. Int. Ed. 2006, 45, 2617; p) S. C. Pan, J. Zhou, B. List, Angew. Chem. 2007, 119, 3028; Angew. Chem. Int. Ed. 2007, 46, 612; q) S. C. Pan, B. List, Org. Lett. 2007, 9, 1149; r) Y. H. Wen, Y. Xiong, L. Chang, J. L. Huang, X. H. Liu, X. M. Feng, J. Org. Chem. 2007, 72, 7715; s) M. Negru, D. Schollmeyer, H. Kunz, Angew. Chem. 2007, 119, 9500; Angew. Chem. Int. Ed. 2007, 46, 9339; t) S. C. Pan, B. List, Chem. Asian J. 2008, 3, 430.

[4] For the asymmetric Strecker reaction of ketimines, see: a) P. Vachal, E. N. Jacobsen, Org. Lett. 2000, 2, 867; b) J. J. Byrne, M. Chavarot, P.-Y. Chavant, Y. Vallée, Tetrahedron Lett. 2000, 41, 873; c) P. Vachal, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 10012; d) S. Masumoto, H. Usuda, M. Suzuki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 5634; e) N. Kato, M. Suzuki, M. Kanai, M. Shibasaki, Tetrahedron Lett. 2004, 45, 3153; f) N. Kato, M. Suzuki, M. Kanai, M. Shibasaki, Tetrahedron Lett. 2004, 45, 3147; g) X. Huang, J. L. Huang, Y. H. Wen, X. M. Feng, Adv. Synth. Catal. 2006, 348, 2579; h) N. Kato, T. Mita, M. Kanai, B. Therrien, M. Kawano, K. Yamaguchi, H. Danjo, Y. Sei, A. Sato, S. Furusho, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 6768; i) J. L. Huang, X. H. Liu, Y. H. Wen, B. Qin, X. M. Feng, J. Org. Chem. 2007, 72, 204; j) J. Wang, X. L. Hu, J. Jiang, S. H. Gou, X. Huang, X. H. Liu, X. M. Feng, Angew. Chem. 2007, 119, 8620; Angew. Chem. Int. Ed. 2007, 46, 8468.

> Received: March 12, 2008 Published online: April 9, 2008

4486 -