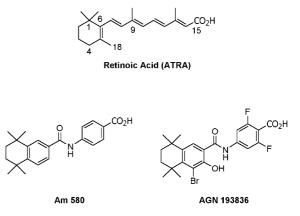


Bioorganic & Medicinal Chemistry Letters 12 (2002) 3145-3148

Synthesis and Biological Activity of Retinoic Acid Receptor- α Specific Amides

Richard L. Beard,^{a,*} Tien T. Duong,^a Min Teng,^a Elliott S. Klein,^b Andrew M. Standevan^b and Roshantha A. S. Chandraratna^{a,b,*}

^aRetinoid Research, Department of Chemistry, Allergan Inc., Irvine, CA 92623-9534, USA ^bRetinoid Research, Department of Biology, Allergan Inc., Irvine, CA 92623-9534, USA


Received 7 May 2002; accepted 28 July 2002

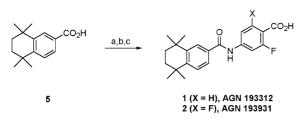
Abstract—Retinoids are analogues of all-*trans*-retinoic acid, a powerful hormone that mediates many fundamental biological processes. Cancer and other serious hyperproliferative diseases are attractive therapeutic targets for retinoids, but the therapeutic use of retinoids is limited due to severe toxicity. We report here the design of retinoid receptor- α specific ligands with growth inhibitory activity in breast cancer cell lines, and which do not cause the cutaneous toxicity associated with the currently available nonselective retinoid agonists.

© 2002 Elsevier Science Ltd. All rights reserved.

Retinoids are analogues of all-trans-retinoic acid (ATRA), a powerful hormone that is capable of mediating many fundamental biological processes, including cell proliferation and differentiation and apoptosis.¹ Thus, retinoids have biological properties that suggest potential therapeutic uses in the treatment and prevention of cancer. Indeed, commercially available retinoids, including ATRA, have been approved for the treatment of some cancers.² Unfortunately, the longer term use of retinoids, particularly in the treatment of premalignant lesions, is severely limited by serious side effects such as mucocutaneous toxicity, hypertriglyceridemia, and headache.³ In order for retinoids to reach their full therapeutic potential in treating cancer and other serious diseases, new compounds with reduced toxicity and improved therapeutic indices must be discovered.

Retinoids induce their powerful biological effects by binding to and activating nuclear receptors. There are six known retinoid receptors, the retinoic acid receptors— RAR α , β and γ —and the retinoid X receptors—RXR α , β , and γ . ATRA binds with high affinity to all three RARs but does not bind to the RXRs.⁴ A geometric isomer of ATRA, 9-*cis*-retinoic acid, is the putative hormone for the RXRs, and it binds to both RXRs and RARs with high affinity.⁵ In biological systems, RARs and RXRs form functional RAR–RXR heterodimers which are effectively activated by RAR-specific agonists but not by RXR-specific agonists. Upon binding an RAR agonist, these RAR–RXR heterodimers, which are associated with specific response elements in the promoter regions of retinoid responsive genes, recruit co-activator proteins to the receptor and induce gene transcription.

It is now evident that each of the RAR subtypes can activate distinct sets of genes. In addition, it is known that the tissue distribution of the RAR subtypes is not uniform, and that distinct RAR subtypes are expressed in different tissues. For example, it is known that the

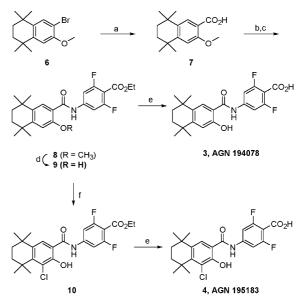

0960-894X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00647-9

^{*}Corresponding authors. Fax: +1-714-246-6207; e-mail: beard_richard@ allergan.com

most abundant receptor in the skin is RAR_{γ} ,⁶ and studies strongly suggest that the mucocutaneous toxicity caused by retinoids is through activation of RAR_{γ} .⁷ These factors imply that retinoids that specifically activate a single RAR subtype will elicit a narrower range of biological effects in fewer tissues than nonselective retinoids. Thus, it may be possible to design RAR subtype specific compounds that have increased beneficial biological effects and decreased toxicity relative to nonselective retinoids. Such compounds with improved therapeutic indices will be much more useful for the treatment of retinoid responsive diseases than the currently available nonselective retinoid drugs.

Several groups have reported compounds that specifically activate either the RAR or RXR families of receptors.8 In addition, several compounds with moderate selectivity for two of the three RAR subtypes have been described.⁸ Among the first RAR subtype selective retinoids discovered was the amide linked compound, Am-580, which was reported by Shudo and co-workers in 1988.9 This compound has higher affinity for the RAR_{α} subtype than for RAR_{β} or RAR_{γ} . The amide linker group is a key structural feature for the RAR_{α} selectivity displayed by these arotinoids. This is presumably due to a favorable hydrogen-bonding interaction between the amide group of the ligand and the hydroxyl group on serine 232 residue present in the ligand binding pocket of RAR_{α} .¹⁰ The space occupied by serine 232 in RAR_{α} is occupied by lipophilic alanine residues in RAR_{β} and $RAR\gamma$, leading to destabilized protein-ligand interactions and decreased binding affinities. We recently reported on AGN 193836, an amide-linked compound, that has true pharmacological specificity (>1000-fold) in binding affinity for RAR_{α} over RAR_{β} and $RAR_{\gamma}.^{11}$ In cotransfection assays, AGN 193836 transactivates exclusively through RAR_{α} , and is completely inactive at RAR_{β} and RAR_{γ} . We have continued to develop this series of compounds and report here the discovery of 4 (AGN 195183), a compound with improved RAR_{α} binding selectivity relative to AGN 193836. The structure-activity relationships displayed by these compounds are also examined. Compound 4 inhibited the growth of breast cancer cell lines, and was inactive in an in vivo model of topical irritation.

The mono-and di-fluorinated retinoids, 1 and 2, were prepared from tetralin carboxylic acid 5^9 by a three step protocol as shown in Scheme $1.^{12}$ Tetralin 5 was refluxed in thionyl chloride to convert the carboxylic acid to an acid chloride. This compound was reacted



Scheme 1. Synthesis of mono- and difluorobenzoic acid compounds 1 and 2: (a) SOCl₂, reflux; (b) ethyl 2-fluoro-4-aminobenzoate or ethyl 2,6-difluoro-4-aminobenzoate, pyridine, CH₂Cl₂, 82–90%; (c) NaOH, EtOH; H⁺, 80–93%.

immediately with either ethyl 2-fluoro-4-aminobenzoate or ethyl 2,6-difluoro-4-aminobenzoate¹¹ and pyridine to produce the corresponding amide derivatives. The ester group was then hydrolyzed under standard conditions (NaOH, ethanol) to produce the desired retinoid analogues, **1** (X = H) and **2** (X = F).

Scheme 2 shows the synthesis of compounds **3** and **4**. The known aryl bromide 6^{13} was subjected to a lithiumhalogen exchange reaction, and the resulting anion was quenched with carbon dioxide to give carboxylic acid **7** after acidic workup. Compound **7** was treated as above with thionyl chloride and ethyl 2,6-difluorobenzoate to form amide analogue **8**. The methyl protecting group was then removed by treating **8** with boron tribromide, producing compound **9**. Compound **9** was then hydrolyzed under the usual conditions to give retinoid analogue **3**. Alternatively, compound **9** was chlorinated with sulfuryl chloride to give compound **10**, which was then hydrolyzed to carboxylic acid **4**.

Table 1 summarizes the RAR binding and transactivation data of these compounds, which were tested as previously described.¹⁴ These compounds had no binding or transactivation activity at the RXRs (data not shown). Am-580 binds to RAR_{α} with about 35-fold higher affinity than to RAR_{β} and about 105-fold higher affinity than to RAR_{γ} . In transactivation assays, Am-580 is able to fully activate all three RAR subtypes, and it is moderately more potent at RAR_{α} (EC₅₀=2 nM) than at RAR_{β} (9 nM) and RAR_{γ} (19 nM). A significant improvement in binding selectivity was achieved with the monofluorobenzoic acid, compound 1. This compound is about 190-fold selective in binding to RAR_{α} than to RAR_{β} , and almost 500-fold selective in binding to RAR_{α} than to RAR_{γ} . Similar to Am-580, compound 1 is about 5-fold more potent in activating RAR_{α} than

Scheme 2. Synthesis of RAR_{α} -specific retinoid agonists 3 and 4: (a) *t*-BuLi, THF, -78 °C; CO₂; H_3O^+ , 93%; (b) SOCl₂, reflux; (c) ethyl 2,6-difluoro-4-aminobenzoate, pyridine, CH₂Cl₂, 85%; (d) BBr₃, CH₂Cl₂, -78 - 25 °C, 92%; (e) NaOH, EtOH; H⁺, 85–90%; (f) SO₂Cl₂, CH₂Cl₂, Et₂O, 25 °C, 70%.

Table 1. RAR transcriptional activation and competitive binding data for RAR_{α} -selective retinoid agonists¹⁴

Compd	RAR bind. $K_{\rm d}$ (nM)			RAR Trans. EC ₅₀ (nM) (% efficacy)		
	α	β	γ	α	β	γ
ATRA	14	11	16	240 (100)	38 (100)	6 (100)
Am 580	36	1400	3800	2 (101)	9 (105)	19 (80)
193836	4	6400	$> 10^4$	290 (50)	ŇA	NA
1	2*	380*	990*	8 (69)	45 (78)	350 (85)
2	7*	1470*	5600*	94 (81)	> 1000 (25)	NÀ
3	3	$> 10^4$	5600	112 (77)	> 1000 (10)	>1000(10)
4	3	$> 10^{5}$	$> 10^{5}$	200 (80)	NA	NA

Values represent the mean of three determinations. Errors in this assay are approximately 15% of the mean value. NA indicates <10% efficacy at the highest dose tested (1 μ M). Efficacy (%) is the percent transcriptional activity of a compound at the highest dose tested relative to transcriptional activity produced by 1 μ M ATRA.

RAR_{β} in the transactivation assay. More significantly, compound **1** activates gene transcription through RAR_{α} with > 40-fold higher potency than through RAR_{γ}. The difluorobenzoic acid, compound **2**, was even more selective than compound **1**, having K_d values of 7 nM at RAR_{α} and 1470 nM (210-fold selectivity) at RAR_{β} and 5600 nM (800-fold selectivity) at RAR_{γ}. In terms of transcriptional activity, compound **2** is a full agonist of RAR_{α}-mediated gene transcription, having an EC₅₀ of 94 nM. This compound has only partial agonist activity at RAR_{β} at the highest dose tested (1000 nM), and it has no transcriptional activity at RAR_{γ}. Thus, the diffurobenzoic acid moiety is a key structural unit necessary for achieving high selectivity in the binding and transactivation assays.

We mentioned earlier that the hydrogen-bonding characteristics of the amide group in these compounds are responsible for maintaining strong binding to RAR_{α} while destabilizing binding to RAR_{β} and RAR_{γ} . We wished to examine if this property could be exploited further by introducing a hydrogen-bonding group adjacent to the amide linker in the tetrahydronaphthalene moiety. To this end, compound **3**, which has a hydroxyl group in the α -position relative to the amide group, was synthesized. Indeed, compound **3** binds to RAR_{α} with very high affinity, having a K_d value of 3 nM, while being unable to bind to RAR_{β} and binding only very weakly ($K_d = 5600$ nM) to RAR_{γ}. Furthermore, compound 3 maintained full transcriptional activity through RAR_{α} , with an EC₅₀ value of 112 nM, but only activated RAR_{β} and RAR_{γ} with about 10% efficacy at the highest dose (1000 nM) tested. Another beneficial structural modification was to add halogens (Cl and Br) to the C18 position (ATRA numbering) to further improve RAR_{α} selectivity. Like AGN 193836, which is substituted with bromine in the C18-position, compound 4, which is substituted with chlorine, has true pharmacological specificity for RAR_{α} over RAR_{β} and RAR_{γ} in the binding assays. Compound 4 binds to RAR_{α} with high affinity, having a K_d value of 3 nM, and it does not bind to either RAR_{β} or RAR_{γ} , even at doses as high as 100 μ M. In the transactivation assays, compound 4 activates RAR_{α} exclusively, with an EC₅₀ value of 200 nM. Compound 4 was unable to induce transcriptional activity through either RAR_{β} or RAR_{γ} at the doses tested. To our knowledge, compound 4 is the most selective RAR_{α} agonist known.

We then determined the growth inhibitory properties of compound 4 in two human breast cancer cell lines, T-47D, which is estrogen receptor (ER) positive, and SK-BR-3, which is ER negative. Both of these cell lines are known to express relatively high levels of RAR_{α} and should be responsive to RAR_{α} -specific agonists.¹⁵ Compound 4 inhibited of the growth of T-47D cells by approximately 60% with an IC_{50} value of 1.4 nM. By comparison, ATRA inhibited the growth of T-47D cells by about 70% with an IC₅₀ value of 200 nM. In SK-BR-3 cells, 4 was even more efficacious showing 93% growth inhibition with an IC₅₀ value of 11 nM. This compares well with ATRA, which induced 99% growth inhibition with an IC₅₀ value of approximately 2 nM. These data indicate that RAR_{α} -specific ligands such as 4 are potentially useful for the treatment of breast cancer.

With regard to retinoid toxicity, we wanted to determine if RAR_{α} -specific agonists such as 4 had any advantage over RAR_{α} -selective compounds such as Am-580. We tested 4 and Am-580 in our previously described topical irritation assay, a clinically relevant in vivo model of retinoid toxicity.^{3b} In this assay, the retinoids were applied at a dose of 1000 nmol/25 g to the backs of hairless mice for an 8 day period. The severity of the induced topical toxicity was scored from 0 to 21 (0 = no irritation, 21 = severe irritation) based on the amount of flaking, abrasion and body weight loss observed in each animal. As can be seen from the data summarized in Table 2, Am-580 caused severe topical irritation at this dose whereas 4 caused no topical irritation whatsoever. Thus, the topical toxicity caused by RAR_{α} subtype specific agonists such as 4 is very different from that caused by compounds with only moderate RAR_{α} subtype selectivity.

In summary, we have described the synthesis and structure–activity relationships of new RAR_{α}-selective agonists which led to the discovery of the RAR_{α}-specific agonist **4**. We have shown that this compound is a potent growth inhibitor of the ER positive and ER negative human cancer breast cell lines, T-47D and SK-BR-3, respectively. In addition, in a hairless mouse model of retinoid induced topical irritation, compound **4** was non-toxic while Am-580 caused severe topical irritation. This confirms our hypothesis that compounds with true RAR subtype specificity will have very different biological properties than RAR subtype selective or

Table 2. Compound **4** and ATRA inhibit growth of the human breast cancer cell lines, T-47D and SK-BR-3,¹⁵ compound **4** does not cause the topical irritation induced by the RAR_{α}-selective retinoid, Am-580^{3b}

Compd	$\begin{array}{c} T-47D\\ IC_{50} \text{ (nM)}\\ (\% \text{ efficacy}) \end{array}$	SK-BR-3 IC ₅₀ (nM) (% efficacy)	Topical irritation score (0–21)
ATRA Am 580 4	$200 \pm 71 (74) \\ \text{ND}^{\text{a}} \\ 1.4 \pm 1.8 (57)$	1.7±0.5 (99) ND ^a 11±7 (93)	$\begin{array}{c} ND^a\\ 16\pm 1\\ 0\pm 0\end{array}$

^aND, not determined. Efficacy (%) is the percent inhibition of BrdU incorporated in dividing cells at the highest dose tested (1 μ M) relative to vehicle control.

non-selective retinoid agonists. Such compounds will have improved therapeutic indices relative to the nonselective retinoids currently available and greater utility in treating cancers and other serious retinoid responsive diseases. Compound **4** (AGN 195183) is currently in Phase I/IIA clinical trials in cancer patients.

Acknowledgements

We are grateful to Mr. Hai Nguyen for mass spectral analyses.

References and Notes

1. Review: Sporn, M. B., Roberts, A. B., Goodman, D. S., Eds. *The Retinoids: Biology, Chemistry, and Medicine*; 2nd ed.; Raven: New York, 1994.

2. (a) Huang, M. E.; Ye, Y. C.; Chen, S. R.; Chai, J. R.; Lu, J. X.; Zhao, L.; Gu, L. J.; Wang, Z. Y. *Blood* **1988**, *72*, 567. (b) Motzer, R. J.; Schwartz, L.; Law, T. M.; Murphy, B. A.; Hoffman, A. D.; Albino, A. P.; Vlamis, V.; Nanus, D. M. *J. Clin. Oncol.* **1995**, *13*, 1950. (c) Duvic, M.; Hymes, K; Heald, P.; Breneman, D.; Martin, A. G.; Myskowski, P.; Crowley, C.; Yocum, R. C. *J. Clin. Oncol.* **2001**, *19*, 2456.

3. (a) Agnish, N. D.; Kochhar, D. M. In Retinoids and Clinical

Practice; Korean, G., Ed.; Mercel Dekker: New York, 1992; p 47.
(b) Standeven, A. M.; Johnson, A. T.; Escobar, M.; Chandraratna, R. A. S. *Toxicol. Appl. Pharmacol.* 1996, *138*, 169.
4. (a) Petkovich, M.; Brand, N. J.; Krust, A.; Chambon, P. *Nature* 1987, *330*, 444. (b) Giguere, V.; Ong, E. S.; Segui, P.; Evans, R. M. *Nature* 1987, *330*, 624. (c) Krust, A.; Kastner, P.; Petkovich, M.; Zelent, A.; Chambon, P. *Proc. Natl. Acad. U.S.A.* 1989, *86*, 5310.

5. (a) Heyman, R. A.; Mangelsdorf, D. J.; Dyck, J. A.; Stein, R. B.; Eichele, G.; Evans, R. M.; Thaller, C. *Cell* **1992**, *68*, 397. (b) Levin, A. A.; Sturzenbecker, L. J.; Kazmer, S.; Bosakowski, T.; Huselton, C.; Allenby, G.; Speck, J.; Kratzeisen, C.; Rosenberger, M.; Lovey, A.; Grippo, J. F. *Nature* **1992**, *355*, 359.

6. Elder, J. T.; Fisher, G. J.; Zhang, Q.-Y.; Eisen, D.; Krust, A.; Kastner, P.; Chambon, P.; Voorhees, J. J. *J. Invest. Dermatol.* **1991**, *96*, 425.

7. Reczek, P. R.; Ostrowski, J.; Yu, K.-L.; Chen, S.; Hammer, L.; Roalsvig, T.; Starrett, J. E., Jr.; Driscoll, J. P.; Whiting, G.; Spinazze, P. G.; Tramposch, K. M.; Mansuri, M. M. *Skin Pharmacol.* **1995**, *8*, 292.

8. Beard, R. L.; Chandraratna, R. A. In *Handbook of Experimental Pharmacology, Retinoids The Biochemical and Molecular Basis of Vitamin A and Retinoid Action*; Nau, H., Blaner, W. S., Eds.; Springer: Berlin Heidelberg, 1999; Vol. 139, p 185.

9. Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Himi, T.; Shudo, K. J. Med. Chem. **1988**, *31*, 2182.

10. Renaud, J.-P.; Rochel, N.; Ruff, M.; Vivat, V.; Chambon, P.; Gronemeyer, H.; Moras, D. *Nature* **1995**, *378*, 681.

11. Teng, M.; Duong, T. T.; Klein, E. S.; Pino, M. E.; Chandraratna, R. A. S. J. Med. Chem. **1996**, *39*, 3035.

12. All new compounds gave ¹H NMR, ¹³C NMR, IR, and HRMS data consistent with their structures.

13. Qing, F.-L.; Fan, J.; Sun, H.-B.; Yue, X.-J. J. Chem. Soc., Perkin. Trans. 1 1997, 20, 3053.

14. (a) Transactivation assay: Benbrook, D.; Lernhardt, E.; Pfahl, M. *Nature* **1988**, *333*, 669. (b) Graupner, G.; Malle, G.; Maignan, J.; Lang, G.; Pruniéras, M.; Pfahl, M. *BBRC* **1991**, *179*, 1554. Binding assay: Allegretto, E. A.; McClurg, M. R.;

Lazarchik, S. B.; Clemm, D. L.; Kerner, S. A.; Elgrot, M. G.; Boehm, M. F.; White, S. K.; Pike, J. W.; Heyman, R. A.

J. Biol. Chem. 1993, 268, 26625.

15. Fitzgerald, P.; Teng, M.; Chandraratna, R. A. S.; Heyman, R. A.; Allegretto, E. A. *Cancer Res.* **1997**, *57*, 2642.