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ABSTRACT

Intracellular pH is important in regulating variousellular behaviour and
pathological conditions. We synthesised a rhodarbhased lysosomal pH probe
(hereafter referred to as RD) with a pKa of 4.10e Tprobe exhibited favourable
“on-off” reversibility between pH 3.25 and 7.20 fat least five cycles. RD can be
employed to distinguish cancer cells from normadilscen the basis of different
fluorescence response. RD performed well in thedliein of lysosomal pH induced
by artesunate, chloroquine and dexamethasone in -KIGfells. The intense
fluorescence of RD in ovarian tumour indicated hingher acidity in tumour tissues
than that in normal tissues. Furthermore, RD wonketl in the imaging of excised
mouse stomach and living mice under acidic stinmatThese data demonstrate the
applicability of RD in monitoring pH in complex Bagical systems.

Key words : monitoring pH, lysosome, fluorescent probe,s;allvarian tumour
1. Introduction

Lysosome is an acidic organelle in all eukaryogtiscexcluding erythrocytes [1],
which plays significant roles in many physiologieativities, including maintaining
cholesterol homeostasis, repairing damaged cytoptasnembrane, restoring bone

and tissue and defending against pathogens [2§ ftoted that lysosomal pH is
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closely related to its function [3, 4]. Malfunctioof lysosomes can cause many
diseases, such as cancer, gout and neurodegeeateases [5]. Therefore, imaging
of lysosomes and monitoring of pH status is impdtta

To date, there are several methods had been dedetopletect pH in vitro or vivo,
such as weak acid and base distribution [6], nuctesgnetic resonance spectroscopy
[7], microelectrodes [8], and fluorescent probes (8mpared with other techniques,
fluorescence detection using small molecular prohas, regarded as a promising
method in living cells due to its sensitivity, swleity, simple operation, and
especially nondestructive characteristics. Soff@rts have been directed toward the
development of fluorescent pH sensors [10-15], ealhedysosomal pH sensors [2,
16-24]. For instance, Li [2] constructed a pH sewvsiprobe based on a 4-acylated
naphthalimide, Peng [16] synthesised a pH sensontbgducing a novel lysosomal
location group, Yu [17] developed two rhodaminedsh$H probes via the click
reaction, Zhang [18] reported arhodamine-based pihgy Zhao [19] exploited a
rhodamine B-based lysosomal pH probe, Liu [20] torsed three lysosomal pH
probes based on piperazine-modified BODIPY dyes Wahg [21] designed a
pH-activatable near-infrared (NIR) probe througmbiing a cyclic boronate with
Si-rhodamine. Some ratiometric fluorescent probe® leeen developed for tracking
lysosomal pH in vivo. Zhang [22] reported a newok@me-targeted ratiometric
fluorescent probe by hybridizing morpholine with anthane derivative and an
o-hydroxybenzoxazole group, Zhao [23] reported teomzetric lysosomal pH probe
based on the naphthalimide-rhodamine. Very recehity [24] developed a novel
dual site-controlled and lysosome-targeted ratioimdtuorescent probe based on
coumarin and naphthalimide fluorophores. These grehewed general suitability of
specific labelling of acidic lysosomes and trackihgir pH in living cells. However,
not much fluorescence difference can be observdtidrcase of normal and cancer
cells for these probes. A pyridineium-2-yl DarrovedRanalogue with a pKa of 2.4
was adopted for the selective detection of canebs {25]. Unfortunately, the status
of normal cells cannot be visualised because oabse=nce of emission when the pH

exceeds 4.0. Cancer cells contain rich hydrogers if#6], and the acidity of
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lysosomes in cancer cells is lower than that imradrcells [25]. A probe which can
work well both in cancer and normal cells, and whian easily distinguish different
cells on the basis of fluorescence response idyhagsirable.

Low extracellular pH is a symbol of solid tumoug¥]. This acidity mainly arises
from high lactic acid production due to enhancegcgllysis [28]. As a product of
aerobic respiration in vivo, GOnay be another significant source of acidificatodn
tumour interstitium [29]. Some probes were repofftadmonitoring of tumour pH.
For instance, Kobayashi [30] designed four novefliacpH—activatable probes by
conjugating the boron-dipyrromethene fluorophore hwia cancer-targeting
monoclonal antibody. The next year, the group regba dual-controlled activation
fluorescent imaging probe through combining pH-samsifluorophore pHrodo or
TAMRA with the cancer targeting molecules avidin danrastuzumab [31].
Shirmanova [32] used the novel genetically encodeticator SypHer2 for pH
mapping in living cancer cells in vitro and in turaan vivo. Achilefu [33] developed
a highly tumour-selective probe with a pKa of o7rmage acidic cell organelles and
detect primary and metastatic cancer. This professaroduced a cyclic
arginine-glycine-aspartic acid (cCRGD) peptide toCg7 molecule to target Bs
integrin (ABIR), which is highly overexpressed digitumour angiogenesis. In 2015,
Prof. Achilefu [34] found that the Cy7 molecule méocan detect tumour through
electrostatic changes produced by the extraceladatic pH environment of diverse
solid tumors without tumor targeted groups. Thusnspires us to develop a single
molecule probe which can not only distinguish cameds from normal cells but also

detect tumours.
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Scheme 1. Structure of Probe RD

Rhodamine dye, which features a spirocyclic stmactis an ideal OFF-ON

fluorescence switch candidate. In general, theee rer fluorescence at basic and
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neutral pH because of the “ring-closed” statespirocyclic structure. When the™H
increases within a certain range, the ring is opeaging to a significant fluorescence
enhancement [16, 35]. Accordingly, we developedad® termed RD (Scheme 1) by
introducing 2, 4-dihydroxybenzoic acid to rhodamBeRD, which features a pKa of
4.1, facilitates remarkable fluorescence intensithancement and significant colour
variation from colourless to pink when the pH iguasted from 7.02 to 3.06. RD
performed well in the monitoring of lysosomal pHlirced by artesunate (ART),
chloroquine and dexamethasone. The intense fluemescof RD in ovarian tumour
indicated the higher acidity in tumour tissues ttfaat in normal tissues. Furthermore,
RD worked well in the imaging of excised mouse siomand living mice under

acidic stimulation.

2. Materialsand methods

2.1 Materials and instruments

All solvents and reagents used were reagent grade used without further
purification unless otherwise stated. The solubbiRD was dissolved in DMSO at a
concentration of 1 mM as the stock solution andestan a refrigerator (2 °C) for use.
B-R-E (Britton-Robinson buffer/EtOH, v/iv = 5 : 5plation was mixed by 40 mM
acetic acid, boric acid, and phosphoric acid [3®dium hydroxide (0.1 M) was
utilized for tuning pH values of B-R-E solution. &tsolution of metal ions was
prepared from nitrate salts. Deionized water wasdu$roughout the experiment.
Cells were purchased from Institute of Basic Meld&aences (IBMS) of the Chinese
Academy of Medical Sciences.

NMR spectra were recorded on a VARIAN INOVA 400 éoBruker Avance 1l 400
MHZz) spectrometer. Chemical shift§ (vere reported as ppm (in CQ:G&r DMSO-ds,
with TMS as the internal standard). Fluorescencectsp were performed on a
VAEIAN CARY Eclipse fluorescence spectrophotomgt®erial No. FL0812:M018).
Excitation and emission slit widths were modifiedaidjust the fluorescence intensity

to a suitable range. Absorption spectra were medsom a Perkin EImer Lambda 35
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UV/VIS spectrophotometer (Perkin Elmer). Mass spenetric data were achieved
with HP1100LC/MSD MS and an LC/Q-TOF-MS instrumenisaging in vivo mice
was performed using a Night OWL Il LB 983 systenuipged with an NC 100 CCD
deep-cooled camera (Berthold Technologies, Bad Mdd Germany). All pH
measurements were performed using a Model PHS-3@rmé&lash column
chromatography was performed using silica gel (200- mesh) obtained from
Qingdao Ocean Chemicals. Lyso Tracker Green waschpaed from Life

Technologies Co. (USA).
2.2 Synthesis of compound RD

RD was synthesised by two procedures (Scheme &#)fifbt step, RB (2.51 g, 5.2
mmol) was dissolved in ethanol (50 mL), then 5 ntthykenediamine was added in
dropwise to the flask and the reaction mixture si@sed at 90°C for 8 h. After the
solution was cooled to room temperature, the smiutivas concentrated under
reduced pressure and the residue was purified lhyneochromatography (DCM :
MeOH = 10 : 1, v/v) to afford a light yellow soli@2 in 75% vyield.*H NMR (400
MHz, CDCL), 6 7.89 (m, 1H), 7.60-7.33 (m, 2H), 7.18-7.00 (m, 1B6)68-6.12 (m,
6H), 3.50-3.23 (m, 8H), 3.23 (@,= 6.6 Hz, 2H), 2.45 (] = 6.6 Hz, 2H), 1.17 (] =
7.0 Hz, 12H). MS: (M+H), calcd:m/z = 485.29, foundm/z = 485.27.

The second step, 2,4-dihyoxybenzoicacid (308 mgnr@ol) was dissolved in
acetonitrile (20 mL), then 1-(3-Dimethylaminopropyl)-3-ethylcahimide
hydrochloride (EDCI, 384 mg, 2 mmol) and 4-dime#tmginopyridine (DMAP, drops)
were added into the flask and the reaction mixtvae stirred at room temperature for
1 h. After, R2 (500 mg, 1 mmol) was added to tlskland the reaction mixture was
stirred at 90 °C for 12 h. After cooled down to motemperature, the solution was
concentrated under reduced pressure and the residise purified by column
chromatography (DCM : MeOH = 30 : 1, v/v) to aff@advhite solid RD in 65% yield.
'H NMR (400 MHz, CDCJ) , 6 12.91 (s, 1H), 8.31 (s, 1H), 7.93 (dds 6.0, 2.4 Hz,
1H), 7.58 (d,J = 8.7 Hz, 1H), 7.55-7.40 (m, 2H), 7.11 (di= 5.9, 2.1 Hz, 1H),
6.62-6.16 (m, 8H), 3.63-3.03 (m, 12H), 1.17)(t 7.1 Hz, 12H)**C NMR (100 MHz,
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CDCls), 6 171.68, 170.72, 164.37, 162.66, 154.38, 153.88,664 133.76, 130.41,
129.02, 128.83, 128.46, 124.51, 123.70, 109.02,9480/107.58, 104.53, 104.49,
98.29, 67.03, 46.38, 44.91, 41.89, 39.75, 13.10M8R (M+H)", calcd: m/z =
621.3071, foundm/z = 621.3067.

2.3 Fluorescence detection

Absorption and emission spectra were primarily ragss in B-R-E solution. The
resulting solution was equilibrated for 15 min refoneasurement. The fluorescence
spectra were measured with excitation wavelenggaatnm.

Photo-bleaching experiments were performed accgrdo the literature [37].
Concentration of RD and commercialized dye LysaRea Green were 10M, at pH
4.25, 500 W halogen lamp as light source, saturBi@dO, (50 g/L) solution as a
light filter (to cut off light of wavelength undet00 nm) and hot filters, keep light
source and the test samples at 30 cm distancectesgbg and record the fluorescence
intensity of probe RD and Lyso Tracker Green, andcgssing the biggest

fluorescence intensity values normalized.
2.4 Live cell imaging experiments

Cells were cultured in Dulbecco’s modified Eagleiedium (DMEM, Invitrogen)
supplemented with 10% fetal bovine serum (Invitrggerhe cells were seeded in
24-well flat-bottomed plates and then incubated Zdrh at 37°C under 5% GO
Before imaging, the live cells were incubated vwRb (5 uM) for different time and
then washed with phosphate-buffered saline (PB®@gttimes. Fluorescence imaging
was performed using an OLYMPUSFV-1000 inverted iscence microscope with a
60 x objective lens. Under the confocal fluoreseemicroscope, RD was excited at
559 nm and emission was collected at 565-620 nmtHedetection of Lysosomal
pH, MCF-7 cells were incubated with RD (5 pM) at®7for 1 h and then artesunate
(ART, 50 uM), chloroquine (20uM), dexamethasone (10QM) were added

respectively to incubate with cells at 37 °C fdfedent time.

2.5 MTT assay



Measurement of cell viability was evaluated by m@dg of MTT (3-(4,
5)-dimethylthiahiazo(-2-yl)-3,5-diphenytetrazolivomide) to formazan crystals
using mitochondrial dehydrogenases (Mosmann, 1383)G-2 cells were seeded in
96-well microplates (Nunc, Denmark) at a densitylefl® cells/mL in 100 mL
medium containing 10% fetal bovine serum (FBS, thogen). After 24 h of cell
attachment, the plates were washed with LQ0Ovell PBS. The cells were then
cultured in medium with 0.5, 1, 2 andu of RD for 12 h. Cells in culture medium
without RD were used as the control. Six replicattls were used for each control
and test concentrationi. of MTT (5 mg/mL) prepared in PBS was added toheac
well and the plates were incubated at 37 °C fotharo4 h in a 5% C©Ohumidified
incubator. The medium was then carefully removed the purple crystals were
lysed in 200uL DMSO. Optical density was determined on a micabtplreader
(Thermo Fisher Scientific) at 570 nm (OD) with galstion of the absorbance of the
cell-free blank volume at 630 nm (QP Cell viability was expressed as a percent of
the control culture value, and it was calculatedgighe following equation [38]:Cells

Vlablllty (%) = (OD‘jye‘ ODKdye)/ (OD control” ODKcontroD X 100.
2.6 Animal Models and in Vivo Animal Studies

All animal experiments were performed in compliamgth the Guiding Principles
for the Care and Use of Laboratory Animals, DalMedical College, China. Before
animal imaging and analysis, SPF (Specific pathodgegee) Kunming mice
(7-week-old, 20-25 g) were starved 12 h becauseasisible food fluorescence
interference at the emission wavelength of the #scent dyes. The experiments were
performed using a Night OWL Il LB 983 system equgpwith an NC 100 CCD
deep-cooled camera (Berthold Technologies, Bad badd Germany), with an

excitation filter of 530 nm and an emission filefr600 + 20 nm.
3. Results and discussion

3.1 Design and synthesis of RD



RD was readily synthesised by a two-step proceffbcheme S1) and confirmed
by '"H NMR, *C NMR and HRMS spectra (Fig. S1-S5). The proposenkisg
mechanism of RD for Hs shown in Scheme S2. To provide evidence, thegdha
between RD and the protonated form RDH was chaiaete through'H NMR
titration (Fig. S6). The addition of trifluoroacetacid led to the “ring-opened” state
of spirocyclic structure RDH. Hence, a down-fiekifscan be observed for eight
protons of NEt and six protons of benzene ring in RB. After tlleliaon of NaOH,

the spirocyclic ring was closed, and the correspangdroton shift was recovered.
3.2 Spectroscopic properties and optical responses to pH

The spectroscopic properties of RD were initialgtedmined in a B-R-E solution.
As expected, the fluorescence intensity reachedaain within 15 min at pH 4.25
(Fig. S7a). As shown in Fig. 1a, the absorptiorcspeof RD in weak basic aqueous
solution (pH 7.02) displayed almost no absorptiands at 500-600 nm. The changes
of pH from 7.02 to 3.06 caused a gradual incredsthe absorbance at 564 nm,
indicating that the spirolactam ring of rhodaminasvopened. Moreover, the solution
changed from colourless to pink, which was visible the naked-eye. The pH
response of RD is displayed in Fig. 1b. RD was fheorescent under neutral
conditions because of its “ring-closed” form. Howeas the pH decreased from 7.02
to 3.06, a remarkable enhanced fluorescence sap@gared at 586 nm because of
spirocyclic ring opening. The fluorescence specfrRD was obtained under pH 3.26
in Fig. S7b.

A good linearity (R = 0.9867) between fluorescence intensity and p46(3.06)
was obtained by fluorescence titration (Fig. 2ajthvfluorescence intensity (at 586
nm) as a function of pH, a pKa of 4.10 was caladatusing the
Henderson-Hasselbalch equation [39], suggestingREamay detect pH for acidic
organelles such as lysosomes in vivo. Furthermbe reversibility of the probe in
the B-R-E solution was studied between pH 3.25a20 (Fig. 2b). Approximately

94% of the original signal was successfully restoadter five cycles, providing a



possibility for monitoring pH change repeatdéthe fluorescence quantum yield of RD

at pH 3.26 was determined to be 0.475 [40].
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Fig. 1 (a) Absorption and (b) fluorescence specig € 540 nm) of RD (1QuM) in B-R-E
solution with different pH 7.02, 6.06, 5.26, 4.8666, 4.46, 4.26, 4.06, 3.86, 3.66, 3.46, 3.26 and

3.06.

Nitrogen atom can bind with many metal ions, sustPd” and CG* in solution,

and the binding may cause ring-opening in rhodarbased probes [41, 42]. Thus,

investigating whether other ions are potentialriietents is necessary [43]. As shown

in Fig. S8a, RD did not exhibit any observable fasmence change in the presence of
common cations, such as N&*, C**, Ag", C/*, Cd*, HF", F€*, PIF*, Ni**, Co,
Fe*, zn™, C&', Mg®, Mn**and AP* at pH 7.02. While significant fluorescence

enhancement occurred in the case of pH 4.25 asrshowrig. S8b. The high
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selectivity of RD over interfering species alonghwihe above-mentioned excellent
reversibility indicates that RD demonstrates a ificant potential as a pH probe for

practical applications.
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Fig. 2 (a) Sigmoidal fitting of the pH-dependent fluoreseemtensity at 586 nm of RD (10M)

in B-R-E solution, with different pH 7.02, 6.8136, 6.06, 5.86, 5.66, 5.46, 5.26, 5.06, 4.86, 4.66,
4.46, 4.26, 4.06, 3.86, 3.66, 3.46, 3.26 and 3@€et: the good linearity in the pH range of
3.46-5.06, (b) The reversibility of the probe RDD (M) between pH 3.25 and 7.20 in B-R-E
solution. Fluorescence intensity change of RD &t%® along with the addition of HCI (1 M) and
NaOH (1 M) to the solution for five times, respgety (Aex = 540 nm).

3.3 Fluorescence imaging and distribution in living cells

To evaluate the cell membrane permeability of Rbaging was monitored in the
red channel (565-620 nm) with a 559 nm laser urala@onfocal laser scanning

microscope. As shown in Fig. S9, the probe camdfa¢ MCF-7 cell in 10 min,
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demonstrating its good membrane permeability. AB&8rmin, the staining can be
finished and focused mainly in the cytoplasm.

To study the subcellular distribution of RD, we dissommercial Lyso Tracker
Green to co-stain with the probe (Fig. 3). Aftecubating with 5uM RD for 30 min,
MCF-7 cells were further stained with |IM Lyso Tracker Green for 10 min. A
co-localisation coefficient (Pearson’s correlatiof)0.90 can be reached between the
red emission of RD and the green emission of LysaKer Green. HeLa and HepG-2
cells were also tested with higher Pearson’s caticeis of 0.98 and 0.94, respectively

(Fig. S10 and S11).

Fig. 3 Co-localization experiments of MCF-7 cells incidzhtvith RD (5uM) for 30 min and then
incubated with Lyso Tracker Green (1.01) for 10 min at 37 °C under 5% G{a) Bright image,
(b) Confocal image from LysoTracker Green on grelgmnel Xex = 488 nm), (c) Confocal image
from RD on red channelf = 559 nm), (d) Merged image of b and c, (e) Catreh plot of the

intensities of RD and Lyso Tracker Green (Rr = .90

Furthermore, confocal fluorescent imaging was peréal in Human hepatoma
carcinoma cells (HepG-2) and Human normal livetsc@tiL-7702) using RD. Probe
RD gave very strong red emission in HepG-2 celig.(511), while only slightly
weaker emission was observed in HL-7702 cells &i@g-i). To provide further
evidence, normal cells (COS-7, BEAS-2B) and caceélrlines (MCF-7, HelLa) were

used to repeat imaging. The results indicate tbatnbrmal cells, such as COS-7,
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BEAS-2B and HL-7702, only weak emission was fouftdrancubation for 60 (Fig.
S12) and 120 min (Fig. S13), while, intense redssion can be observed for the
above mentioned cancer cells in 30 min (Fig. 3, @ S11). This result
demonstrates that the lysosomal pH in cancer el®wer than that in normal cells
as reported [25]. The different fluorescence respsnof RD can be employed to
separate cancer cells from normal cells.

The cytotoxicity of RD was evaluated using MTT asgkig. S14). Negligible
toxicity existed under uM. Especially, RD exhibited higher photostabilityah
commercial Lyso Tracker Green at pH 4.25 (Fig. SThE fluorescence intensity of
RD only decreased to 94% after irradiation undé&08 W halogen lamp for 4 h,
whereas that of Lyso Tracker Green significantlcrdased to 54%. This result
demonstrates the higher photostability of RD thgsolL Tracker Green. Thus, RD may
be used for long-term monitoring of pH in the figur

3.4 Monitoring lysosomal pH in cells

RD RD/ART 5h

2000
S e = RD

3

< 160l I RD/ART 5h
>

2

§o

& 12001

<

8 s

%

O 4004

o}

=

Tl

1h 6h

Fig. 4 Confocal images of RD (54M) in MCF-7 cells. (a, b) RD incubated with celts flL h, (c)
RD incubated with cells for 6 h, (d) Incubated wRbD for 1 h then exposed to a1 ART for 5
h, (e*) Quantification of fluorescence intensity fr&D and RD/ART. Scale bar: 20n, ey = 559
nm, Aem = 565-620 nm. (*:The values obtained were averaged from six arbitrar

fluorescent areas in a, b, ¢, d image.

12



Artesunate (ART) [44], a water-soluble derivatiieastemisinin, has been widely
used to cure malaria. It preferably accumulateghe lysosomes and decreases
lysosomal pH in a time-dependent manner [45]. THART-induced lysosomal pH
changes were studied on RD-stained MCF-7 cells. @igTo compare the intensity
on amounts, six arbitrarily fluorescent areas iargumage were chosen to represent
the lysosomal regions of the MCF-7 cells. The valobtained were subsequently
averaged for each case (Fig. 4e) [16]. After treanwith 50uM ART for 5 h, RD
exhibited a stronger red fluorescence compared tivghcontrol. To provide further
evidence (Fig. S16), chloroquine [46] was also useithduce lysosomal pH changes
as reported in the literature [47, 48]. Howevetpniquine led to the alkalisation of
the lysosome, and this effect was opposite to tfaART. Compared with the
fluorescence intensity in the cells only stainechviRD, that in the cells stained with
RD and chloroquine significantly reduced. Thesailtesindicate that RD can be a
lysosomal pH-responsive sensor in cell biology.

Dexamethasone is a chemotherapeutic and anti-infetory agent [49], typically
used to induce cell apoptosis [16]. RD detectedbdgmal pH changes during
apoptosis induced by dexamethasone (Fig. S17 addisMCF-7 cells. The addition
of dexamethasone decreased the fluorescence igtensitthe cells in a
time-dependent manner because of the increase .irHpttever, without incubation
with dexamethasone, the fluorescence intensity ofsR@wved no significant change
even when the incubation time was prolonged (Fit8 &nd S19). Furthermore,
apoptosis-related morphological changes were aetié/5 h after dexamethasone
treatment (Fig. S17). This observation agrees thighliterature [16, 50].

3.5 Imaging of ovarian tumour

Considering that most of the tumour tissues araghigracidic [27, 34, 51, 52], we
focused on the detection of tumour in vivo using. RIvarian tumour model mice
(7-week-old, 20-25 g) were bought from Dalian Madli€ollege, China. Before
animal imaging and analysis, the mice were stafged2 h because of possible food
fluorescence interference at the emission waveleafjthe fluorescent dyes. Then,

the ovarian tumour-bearing mouse was in-situ ig@avith RD (50uL, 500 uM, in
13



DMSO) and observed using an in vivo imaging systafter injection of RD for 20
min, a strong fluorescence signal was detectedhentamour, and the fluorescence

intensity became stronger along with the prolorogatf time (Fig. 5).

Fig. 5 Representative fluorescence images (pseudocolanjag given an in-situ injection of RD
(50 pL, 500 uM, in DMSO ) in tumour and blank respectively. Bank, (b) in-situ injection of
RD in tumour and blank for 10 min, (c) for 20 m{d) for 40 min, (e) for 60 min, (f) for 80 min,
(g) for 100 min, (h) for 120 min, (i) for 150 mitmages were taken with an excitation laser of
530 nm and an emission filter of 600 + 20 nm. Tieerted figure was the enlarged fluorescent

position.

To provide further evidence, we dissected tumout smme organs from another
group of ovarian tumour-bearing mice first, andntigected RD (5QuL, 100 uM, in
DMSO) on the corresponding tumour and organs. Asvehin Fig. 6, an exclusive

emission signal was observed in the tumour 20 tér the injection. The fluorescent
14



signal in the tumour indicates that the acidityvarian tumour tissues is higher than

that in normal tissues.

Tumor {g_ Spleen .

Fig. 6 Fluorescence images (pseudocolor) of tumour anahargxcised from mice. Images were
taken after injection 20 min with an excitationdasf 530 nm and an emission filter of 600 + 20

nm.
3.6 Imaging in vivo mice

Hence, SPF mice starved 12 h were sacrificed. Tihenstomach and other organs
were excised. As shown in Fig. S20, no fluorescentnsity was found for other
organs. However, the fluorescence intensity in thenach sharply increased after
injection with RD for 30 min due to the pH of themach is less than 4 [53].

The Living mice administered with a skin-pop injeat of RD (50uL, 200 puM)
and a mixture (10QL) of phosphate buffer (10 mM) and EtOH (5/5, vat)pH 4.09
(Fig. 7) and 2.94 (Fig. S21) were also imaged usimgght OWL Il LB 983 system
equipped with an NC 100 CCD deep-cooled camera.

The fluorescence intensity became strongest affection for 20 min (Fig. 7f), and
then decreased along with time extension at pH &@9 7g, h, i). The same trend
can be observed in the case of pH 2.94 (Fig. S&file the strongest fluorescent

emission happened after injection for 15 min (Bg1e). The fluorescence intensity

15



was stronger and the response time was shortad &% than that at pH 4.09. In
comparison, not any fluorescence can be observétinorresponding blank control

group. These results demonstrate that RD is aciefti fluorescent pH probe in vivo

imaging.

Fig. 7 Representative fluorescence images (pseudocdlamjce given a skin-pop injection of RD
(50 uL, 200 uM ) and a mixture (10QL) of phosphate buffer (pH 4.09, 10 mM) and EtOK¥b(5
v/v). (a) Blank, (b) Skin-pop injection of a mixeuof phosphate buffer (pH 4.09, 10 mM) and
EtOH (5/5, v/v), (c) 10 min later, skin-pop injemti of RD in the mouse in b for 5 min, (d) for 10
min, (e) for 15 min, (f) for 20 min, (g) for 25 miigh) for 30 min, (i) for 40 min. Images were
taken with an excitation laser of 530 nm and arseion filter of 600 £ 20 nm. The inserted figure

was the enlarged fluorescent position.
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4. Conclusions

In summary, a rhodamine B-based lysosomal pH ptebbeed RD with a pKa of
4.10 was developed. The probe exhibited high seiggtgood photostability and
high reversible response to pH, as well as lowtoyioity. RD can be an efficient pH
probe for distinguishing cancer cells from normell and detecting tumours. The
fluorescence signal in the ovarian tumour indicalbes the acidityn tumor tissues is
higher than that in normal tissues. Furthermore, pformed well in complex

biological systems, such as excised mouse stonrathvéng mice.
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10 min 20 min 30 min 45 min

Fig. 9 Confocal fluorescence images of MCF-7 cells with & uM) after the cells were
incubated for 10, 20, 30 and 45 min at 37 °C ul86erCQ, respectively. Scale bar: 20n, key =
559 nmMAem = 565-620 nm.
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2 1.l-p|m

Fig. S10 Co-localization experiments of HelLa cells incubatgth RD (5uM) for 30 min and
then incubated with Lyso Tracker Green (jtNd) for 10 min at 37 °C under 5% GQa) Bright
image, (b) Confocal image from LysoTracker Greengmaen channell{, = 488 nm), (c)
Confocal image from RD on red channgl(= 559 nm), (d) Merged image of a, b and c, (e)
Correlation plot of the intensities of RD and LyBacker Green (Rr = 0.98).

'2llp'm

Fig. S11 Co-localization experiments of HepG-2 cells indeblawith RD (5uM) for 30 min and
then incubated with LysoTracker Green (M) for 10 min at 37 °C under 5% GQ@a) Bright
image, (b) Confocal image from Lyso Tracker Greengeen channelify = 488 nm), (c)
Confocal image from RD on red channgly(= 559 nm), (d) Merged image of a, b and c,(e)
Correlation plot of the intensities of RD and Ly&acker Green (Rr = 0.94).
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HL-7702

Fig. S12 Confocal fluorescence images of nomal cells with (8[pM) after the cells were
incubated for 60 min at 37 °C under 5% L£@-c) COS-7 cells, (d-f) BEAS-2B cells, (g-i)
HL-7702 cells. Scale bar: 20m, Aex = 559 NnMAem = 565-620 nm.
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Bright Field Dark Field Merge

COS-7

BEAS-2B

HL-7702

Fig. S13 Confocal fluorescence images of normal cells vitth (5 uM) after the cells were
incubated for 120 min. (a-c) COS-7 cells, (d-f) BE&B cells, (g-i) HL-7702 cells. Scale bar: 20
UM, Aex = 559 NMAem = 565-620 nm.
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Fig. S16 Confocal image of RD (5.0M) incubated with 2QM chloroquine in MCF-7 cells for 1
h. (a-c) incubated with RD in MCF-7 cells for 1.5(b-f) incubated with RD for 0.5 h and then
incubated with chloroquine for 1 h in MCF-7 cellg) Quantification of fluorescence intensity
from RD and RD+CQ (chloroquine). Scale baru20, Ae,= 559 nmAey = 565-620 nm.
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Fig. S17 Fluorescence images of RD (M) in MCF-7 cells stimulated with dexamethasonec)a
Images of the stained cells before stimulationf)(dmages of cells exposed to 1QM

dexamethasone for 0.5 h, (g-i, j-I, m-o, p-r) imagef cells in (d-f) exposed to 100M
dexamethasone for 1.0 h, 1.5 h, 2.0 h, 2.5 h réispbc Scale bar: 2¢im, Aex = 559 NMAem =
565-620 nm.
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Fig. S18 Fluorescence images of RD ) in MCF-7 cells at different time. (a-c) 0.5 ll-f) 1.0
h, (g-i) 1.5 h, (j-) 2.0 h, (m-0) 2.5 h, (p-r) 3tD Scale bar: 2Qm, Aex = 559 NMAeny, = 565-620
nm.
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Fig. S19 Time dependent relative fluorescence intensity ofdRB undergoing apoptotic death
induced by dexamethasone (1) in MCF-7 cells.

e > _
Heart  /Spleen, / Kidney

Fig. S20 Fluorescence images (pseudocolor) of organs exfieed mice. (a) Blank, (b) Organs
were given an injection of RD (5@, 100uM, in DMSO). Images were taken with an excitation
laser of 530 nm and an emission filter of 600 &0
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Fig. S21 Representative fluorescence images (pseudocdionjog given a skin-pop injection of
RD (50uL, 200 uM, in DMSO) and a mixture (100L) of phosphate buffer (pH 2.94, 10 mM)
and EtOH (5/5, v/v). (a) Blank, (b) Skin-pop inject of a mixture of phosphate buffer (pH 2.94,
10 mM) and EtOH (5/5, v/v), (c) 10 min later, skinp injection of RD in the mouse in b for 2
min, (d) for 8 min, (e) for 15 min, (f) for 20 mirfg) for 25 min, (h) for 30 min, (i) for 40 min.
Images were taken with an excitation laser of 530amd an emission filter of 600 + 20 nm. The
inserted figure was the enlarged fluorescent siti
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Highlights:

« Probe RD can be employed to distinguish cancer cells from normal cells on the
basis of fluorescence response.

« Performing well in the detection of lysosomal pH induced by artesunate,
chloroquine and dexamethasone in cells.

«  Distinguishing tumour tissues from normal tissues by intense fluorescence of RD
in ovarian tumour.

« Working well in the imaging of ovarian tumour, excised mouse stomach and
living mice under acidic stimulation.



