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Abstract Conjugated dienes underwent Ni-catalyst-promoted 1,2-
hydrocarboxylation in a 1:1 ratio with carbon dioxide under atmospher-
ic pressure in the presence of diisobutylaluminum hydride (DIBAL-H) to
give the corresponding ,-unsaturated carboxylic acids, without di-
merization or oligomerization of the conjugated diene.

Key words nickel catalysis, carbon dioxide, dienes, hydrocarboxyl-
ation, diisobutylaluminum hydride, alkenoic acids

Carbon dioxide is a nontoxic, inexpensive, and abundant

resource that can serve as a one-carbon unit in organic syn-

thesis.1 In this regard, transition-metal-catalyzed coupling

reactions of carbon dioxide with various unsaturated hy-

drocarbons have attracted attention in recent years.2

Among unsaturated hydrocarbons, conjugated dienes

form accessible and useful C4 elongation units in organic

synthesis.3 The transition-metal-catalyzed CO2-fixation re-

action with conjugated dienes has considerable potential as

a practical method for the preparation of unsaturated alco-

hols4 or carboxylic acids.5 However, there are formidable

challenges in C–C bond construction by this method be-

cause some conjugated dienes dimerize easily; for example,

in the presence of nickel(0), they can dimerize to produce

bis--allylnickel complexes.6 These bis--allylnickel inter-

mediates can often serve as reactive nucleophiles that com-

bine with carbonyl compounds such as aldehydes or ke-

tones.7 Furthermore, Ni-catalyzed two-to-one couplings of

dienes and carbon dioxide via bis--allylnickel species have

been reported by several groups as useful methods for pro-

ducing feedstocks from carbon dioxide.8

Despite the problem of dimerization, some examples of

one-to-one couplings of conjugated dienes and carbon di-

oxide have been reported.9 For instance, Takimoto and Mori

successfully developed a nickel-promoted oxidative cycliza-

tion of 1,3-dienes with carbon dioxide followed by hydroly-

sis of the oxo--allylnickel intermediate to produce ,-un-

saturated carboxylic acids (Scheme 1).10 In this case, a stoi-

chiometric amount of bis(cycloocta-1,5-diene)nickel

[Ni(cod)2] and 1,8-diazabyclo[5.4.0]undec-7-ene (DBU)

were required to enhance the reductive coupling of carbon

dioxide with the conjugated dienes through a 1,4-addition.

No catalytic version of a one-to-one coupling reaction of

conjugated dienes with carbon dioxide has yet been fully

developed, except for a Pd pincer-complex-catalyzed hy-

drocarboxylation of conjugated dienes with carbon dioxide

promoted by triethylaluminum as a hydride source to pro-

duce ,-unsaturated carboxylic acids.11

Scheme 1  Previously reported oxidative coupling of a conjugated diene 
and CO2

A site-selective catalytic incorporation of several mole-

cules of carbon dioxide into conjugated dienes was recently

developed by Martin and co-workers, who developed a

bis(tetrabutylammonium) tetrabromonickelate [NiBr4(TBA)2]-

catalyzed dicarboxylation of conjugated dienes under atmo-

spheric pressure with carbon dioxide in the presence of Mn

as a reductant in DMA as a solvent.12 In this case, the -al-

lylnickel species derived by oxidative cyclization of a conju-

gated diene and carbon dioxide in a 1:1 ratio served as nuc-

leophilic intermediates to capture an additional molecule of

carbon dioxide at the -position to give adipic acid deriva-

tives.
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As an alternative CO2-fixation process for the construc-

tion of a carbon framework, we have developed a Ni-cata-

lyzed one-to-one reductive coupling of conjugated dienes

with carbon dioxide in the presence of diisobutylaluminum

hydride (DIBAL-H) to give ,-unsaturated carboxylic acid

through a 1,2-addition, without dimerization of the conju-

gated diene (Scheme 2). The mild reaction conditions per-

mitted the use of a broad range of substrates, and the prod-

ucts were obtained in good yields with moderate to good

regioselectivities.

Scheme 2  Reductive coupling of conjugated dienes and CO2

First, by using myrcene as a substrate, we examined the

effects of various ligands and organometallic compounds

on the desired reaction (Table 1). In the absence of any li-

gand, DIBAL-H produced a 70% yield of the hydrocarboxyl-

ation products 2a and 3a in a 5:1 ratio (Table 1, entry 1).13 A

combination of PPh3 and the DIBAL-H system gave the one-

to-one coupling products a 3:1 mixture of regioisomers 2a

and 3a in a modest 34% yield (entry 2). In the presence of

PCy3, a complicated mixture was obtained (entry 3). The

use of 1,10-phenanthroline (1,10-Phen) and IPr carbene li-

gands provided the desired products in low yields (entries 4

and 5). We also found that polar solvents such as 1,4-diox-

ane or diethyl ether led to a worsening of the reaction out-

come.14 It therefore appeared that competitive binding and

steric crowding of ligands or polar solvents might prevent

coordination of Ni. The use of other hydride sources such as

9-borabicyclo[3.3.1]nonane (9-BBN), Et3SiH, or triethylalu-

minum did not provide good results in terms of the forma-

tion of the desired products as complex mixtures were ob-

tained (entries 6–8). These results showed that the catalytic

activity of the Ni species is affected by the ligand and the

organometallic compound, and also demonstrated a signifi-

cant role for the hydride donor in the reaction. These re-

sults indicated that the conditions in entry 1 are the most

suitable for this coupling reaction. It appears that a combi-

nation of a Ni catalyst and a variety of ligands has a marked

effect on the formation of dimers and oligomers from con-

jugated dienes.

Next, by using this optimal strategy, we examined the

reactions of various commercially available conjugated

dienes (Table 2). Under similar catalytic conditions to those

shown in entry 1 of Table 1, a substrate containing a phenyl

group gave the desired product in a moderate yield as a 2:1

mixture of regioisomers (Table 2, entry 2).14 Notably, sub-

strates containing electron-donating groups, such as 4-me-

thoxybenzyl or benzodioxole gave good yields of the corre-

sponding products with improved regioselectivities (entries

3 and 4). In the case of alkyl substituents at the terminal

position of the conjugated diene, single isomers were ob-

tained in good yields (entries 5–8). In addition, cyclohexa-

1,3-diene gave a single isomer (entry 9). However, when

1,4-dimethylbuta-1,3-diene was used, the corresponding

carboxylic acid was almost undetectable and a highly in-

tractable mixture was formed (entry 10). Therefore, the

catalytic process is subtly affected by structural variations

in the substrate.

To verify the reactivity of conjugated dienes, we investi-

gated the reaction in the presence of benzaldehyde as an

electrophile instead of carbon dioxide, under a nitrogen at-

mosphere. The reaction of (E)-2-methyldeca-1,3-diene (1e)

with benzaldehyde in the presence of Ni(cod)2 catalyst and

DIBAL-H gave the corresponding homoallylic alcohol 2j in

50% yield as a mixture of diastereoisomers (Scheme 3). This

result suggests that the formation of the homoallylic alco-

hol under the present conditions proceeds through the

electrophilic attack of the aldehyde at the -position of an

allylic anion species, such as a -allylaluminum intermedi-

ate.15

Scheme 3  Ni(0)-catalyzed three-component coupling reaction of a 
conjugated diene, DIBAL-H, and benzaldehyde

Although it is premature to rationalize the reaction

mechanism, a plausible catalytic cycle is presented in

Scheme 4, based on our experimental results. We propose

that the reaction commences with the oxidative addition of
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Table 1  Ni(0)-Promoted Hydrocarboxylation of Myrcene with CO2
a

Entry Ligand (mmol) Organometallic Yield (%) (2a/3a)

1 – DIBAL-H 70 (5:1)

2 PPh3 (0.1) DIBAL-H 34 (1:1)

3 PCy3 (0.1) DIBAL-H 0

4 1,10-Phen (0.05) DIBAL-H 25 (3:1)

5 IPr (0.05) DIBAL-H 34 (3:1)

6 – Et3Al 0

7 – 9-BBN-H 0

8 – Et3SiH 0

a Reaction conditions: Ni(cod)2 (0.05 mmol), myrcene (4 mmol), ligand, or-
ganometallic (1 mmol), CO2 (1 atm), hexane (2 mL), rt.

Ni(cod)2/ligand
organometallic

COOH

HOOC+

2a 3a
1a

CO2
(1 atm)

5

Ni(cod)2 (0.05 mmol)
DIBAL-H (1 mmol)

n-hexane (2 mL)
r.t., N2, 24 h

PhCHO (0.5 mmol)

r.t., N2, overnight
5

OHPh1e

2j 50% (1.8:1.0)
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DIBAL-H to Ni(0) metal to form a (i-Bu)2Al–Ni–H species;

this is followed by hydronickelation across the conjugated

dienes to produce a -allylnickel complex.16 Subsequently,

the least-hindered -allylaluminum species II might be

formed by reductive elimination of the -allylnickel inter-

mediate I to regenerate the nickel(0) catalyst. Carbon diox-

ide then attacks at the -position of the allylaluminum in-

termediate II via a six-membered-ring transition state III or

III′, predominantly producing the desired ,-unsaturated

carboxylic acid 2.17 The alternative -allylaluminum com-

plex VI obtained through the unfavorable hydronickelation

of (i-Bu)2Al–Ni–H toward the conjugated diene results in

the formation of carboxylic acid 3 as a minor regioisomer.

In conclusion, we have developed a Ni-catalyzed one-to-

one reductive coupling of conjugated dienes with carbon

dioxide in the presence of DIBAL-H in the presence of car-

bon dioxide at atmospheric pressure. The process proceeds

via an allylaluminum intermediate to produce a ,-unsatu-

rated carboxylic acid. The mild reaction conditions (room

temperature and atmospheric pressure) permit good yields

and high regioselectivities without oligomerization or po-

lymerization of the conjugated diene.
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Table 2  Ni(0)-Catalyzed Hydrocarboxylation of Conjugated Dienes with DIBAL-H and Carbon Dioxidea

Entry R1 R2 R3 R4 Products Yield (%) (ratio 2/3)

1 H H 1,1-dimethylbut-1-enyl H 2a + 3a 70 (5:1)

2b Ph H H H 2b + 3b 40 (2:1)

3b 4-MeOC6H4 H H H 2c + 3c 58 (13:1)

4b 1,3-benzodioxole H H H 2d + 3d 48 (6:1)

5 hexyl H Me H 2e 52

6 octyl H H H 2f 50

7 Ph(CH2)2 H H H 2g 51

8 Cy H H H 2h 67

9 cyclohexa-1,3-dienyl 2i 46

10 Me H H Me –

a Reaction conditions: Ni(cod)2 (0.05 mmol), conjugated diene (4.0 mmol), DIBAL-H (1 mmol), CO2 (1 atm), hexane (2 mL), rt, 24 h.
b A small amount of the 1,4-addition product was also formed; for detailed spectral data, see the Supporting Information.
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