

A Journal of the Gesellschaft Deutscher Chemiker A DOCH International Edition Market Chemiker CDCh Chemiker Ch

Accepted Article

Title: Facile synthesis of cyanide and isocyanides from CO

Authors: Douglas Wade Stephan, Maotong Xu, Bastiaan Kooij, Tongtong Wang, Jack H. Lin, Zheng-wang Qu, and Stefan Grimme

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202105909

Link to VoR: https://doi.org/10.1002/anie.202105909

WILEY-VCH

COMMUNICATION

WILEY-VCH

Facile synthesis of cyanide and isocyanides from CO

Maotong Xu^a, Bastiaan Kooij^{a,b}, Tongtong Wang^{a,c}, Jack H. Lin^a, Zheng-wang Qu^{a*}, Stefan Grimme,^d Douglas W. Stephan^{a*}

This work is dedicated to the memory of Professor Richard H. Holm.

Electronic Supplementary Information (ESI) available: Synthetic and spectral data as well as DFT-computed energies and Cartesian coordinates are deposited. X-ray crystallographic data can be obtained from the CCDC 2080562-2080564.

Abstract: The reaction of K[N(SiMe₃)₂] with ¹³CO proceeds in C₆D₆ or THF affording K¹³CN and O(SiMe₃)₂ under mild conditions as confirmed by crystallographic characterization of K(18-crown-6)CN. Similarly reaction of the alkali metal amides, M[N(SiR₃)R'] (M= Li, K; R = Ph, Me; R' = alkyl, aryl) provides the corresponding ¹³C labeled isocyanide RN¹³C and MOSiR₃, generally in high yields. In some instances, the use of the sterically bulky Ph₃Si-substituent is required to preclude 1,2-silyl migration affording the silylcarbamoyl salt M[Me₃SiC(O)NR']. These reactions have been used to obtain 19 examples of ¹³C labelled isocyanides, and several examples of gram scale reactions are reported. The mechanism of the reactions is probed via reliable DFT calculations.

Isocyanides (RNC) are versatile reagents in synthetic chemistry, acting as nucleophiles and electrophiles.^[1] as well as participating in radical reactions.^[2] This has led to applications in chemistry across the discipline. For example, isocyanides have been widely utilized in macromolecular^[3] and polymer chemistry.^[4] In more recent years, diastereomeric polyisocyanides^[5], light-responsive polyisocyanides^[6] and cross linked polyisocyanides^[7] have been emerged. In bioorganic chemistry, isocyanides have been exploited for multicomponent reactions,^[8] to prepare α -acyl carboxamides or dipeptides. In these cases, diastereoselective and enantioselective versions of these reactions^[9] provide access to valuable products for drug discovery and development.^[10] Isocyanides have also been exploited in biological chemistry as incorporation into amino acids provides opportunities for biorthogonal chemistry and protein labeling.[11] Isocyanides have also been extensively studied as ligands in coordination chemistry as they provide both a strong σ donor and π -acceptor properties. These features give rise to a variable coordination modes where isocyanides act as 2, 4 and 6 e⁻ donors,^[12] and have been employed in transition metal complexes and main group chemistry.^[13] In addition, isocyanides act as potent photo-reductants thus finding applications as photosensitizers. $\ensuremath{^{[14]}}$

Scheme 1. (a) known routes to ${}^{13}C$ enriched isocyanides (b) schematic of the present chemistry. (Nacnac) = [ArNC(tBu)]₂CH, Ar' = 2,6-*i*Pr₂C₆H₃, Cy = cyclohexyl

Given this broad utility and the convenience of ¹³C NMR spectroscopy, it is perhaps surprising to note the paucity of synthetic routes to isotopically labelled RN=¹³C. Indeed, our survey of the literature revealed only a few synthetic routes. Mindiola and coworkers prepared a ¹³C enriched aryl isocyanide from the stoichiometric reaction of a titanium–imide and ¹³CO₂ (Scheme 1a) in 2006.^[15] In the same year, Kira and coworkers described the Si-C coupling reaction of a silylene and isocyanide and used the reaction of ¹³C enriched chloroform with amines to prepare 2,6-(*i*Pr)₂C₆H₃N¹³C.^[16] More recently, Yamashita used the same protocol to prepare *t*BuN¹³C for use in the examination

COMMUNICATION

of diborane reactivity.^[17] In 2021, Islamova *et al*^[18] synthesized cyclohexyl-N¹³C from sodium ¹³C-formate for use as a ligand in transition metal chemistry.

Targeting a facile route to ¹³C enriched products, we noted our recent demonstration of reactions of both lithium amides and phosphides^[19] with CO affording products with N-C and P-C bonds. Herein, we demonstrate the facile reactions of silylamides $M[N(SiMe_3)_2]$ and $M[N(SiR_3)R']$ (M= Li, K; R = Ph, Me; R' = alkyl, aryl) with ¹³CO provides convenient access to ¹³CN⁻ and ¹³Clabeled alkyl and aryl isocyanides. The mechanism of these reactions is discussed, and the protocol is adapted to gram scale syntheses.

In 1965, reaction of Na[N(SiMe₃)₂], with CO at 80 °C and 100 atm pressure in petroleum ether or benzene was reported to give NaCN.^[20] We began by examining the reaction of $K[N(SiMe_3)_2]$ in C_6D_6 with 1 atm pressure of CO in a J-young tube. No reaction was observed after 24 h at room temperature (Table 1, entry 1). However, heating to 50°C for 24 h, led to the formation of KCN in 64% yield (Table 1, entry 2), consistent with the appearance of the ¹³C resonance at 166.6 ppm in D₂O and DMSO-d₆ and the concurrent appearance of the ¹H NMR resonance attributable to O(SiMe₃)₂. Repeating the reaction in THF at room temperature, affording K¹³CN in 13% yield after 24 hours (Table 1, entry 3), however the yield improved to 89% at elevated temperature (50°C, Table 1, entry 4). Alternatively, elevating the pressure to 4 atm of ¹²CO gave 78% yield after 24 h at room temperature (Table 1, entry 5). Under analogous conditions using Li[N(SiMe₃)₂], Li¹³CN was obtained in <1% yield (Table 1, entry 6). Addition of 18-crown-6 ether to K[N(SiMe₃)₂] in THF at 50 °C, (Table 1, entry 7) led to poor reactivity. This was attributed to partially deprotonation of the crown ether by K[N(SiMe₃)₂]. However, this was avoided in THF or 1,4-dioxane at ambient temperature under 1 atm ¹³CO. These reactions led to the formation of [(18-crown-6)K¹³CN] **1** as colorless crystals after 24 h in 88 and 99% yields, respectively (Table 1, entry 8, 9). This optimized, mild protocol provides a facile route to isotopically labeled cyanide. We note that previous routes employed ¹³CO₂ and requires a Ru/Pt catalyst, H₂, NH₃ and forcing conditions.^[21]

Table 1 Conditions for the formation of CN⁻ from CO and M[N(SiMe₃)₂].

Solvent							
MIN(S	$SiMe_3)_2$] + ^{13}CO	Temp) ₂ O	1
Ent	Cation	Solv	Ρ	Т	t	Yield	
	(M)		(atm)	(°C)	(h)	(%)	ľ
1 ^a	К	C ₆ D ₆	1	rt	24	<1 ^b	
2 ^a	К	C ₆ D ₆	1	50	24	64 ^b	
3	К	THE	1	rt	24	13 ^b	
4	К	THF	1	50	24	89	
5ª	К	THF	4	rt	24	78	
6	Li	THF	1	rt	24	<1 ^b	
7	K(18-crown-6)	THF	1	50	5	<1 ^b	
8	K(18-crown-6)	THF	1	rt	24	88	
9	K(18-crown-6)	1.4-dioxane	1	rt	24	>99 ^b	

^a trial done with unlabelled CO. ^b yield determined by integration of the ¹H NMR spectrum.

A crystallographic study of **1** revealed its formulation as [K(18-crown-6)CN] with two molecules in the asymmetric unit. The K⁺ ion is coordinated to six oxygen atoms of the crown with K-O distances falling in the range 2.76-2.97 Å. In addition, the K⁺ ion is bound to a cyanide fragment with an average K-C distance of 2.70(1) Å and an average C-N bond distance of 1.07(1) Å (Figure 1). The K-C-N angle of is $130(1)^{\circ}$. These data affirm the remarkable and facile transformation of CO to CN⁻.

Figure 1 POV-ray depiction of one of the molecules in the asymmetric unit of 1, hydrogen atoms are omitted for clarity. C: black, O: red, N: blue.

The formation of 1 presumably proceeds via nucleophilic attack of CO by amide generating a transient carbene species. Intramolecular 1,3-silyl group migration is followed by a 1,2 elimination of siloxide generating cyanide. A carbene-like intermediate was also proposed for the analogous reaction of the [tBu_2P]⁻ anion with CO, where tBu group migration from P to C afforded [K(18-crown-6)][E-tBuPC(tBu)O].^[19b] In the present case, silyl migration to oxygen is presumably thermodynamically favored by the strength of Si-O bonds.

Scheme 2 Proposed reaction pathway to 1.

To further support the proposed mechanism, DFT calculations were performed at the PW6B95-D3/def2-QZVP + COSMO-RS // TPSS-D3/def2-TZVP + COMSO level of theory in THF solution.^[22] Consistent with the known crystal structure,^[23] the dimeric form of [K(N(SiMe₃)₂)]₂ is shown to be 1.9 kcal/mol more stable than the monomer in THF solution. Direct CO insertion into a K-N bond of [K(N(SiMe₃)₂)]₂ is 15.3 kcal/mol endergonic over a low free energy barrier of 16.5 kcal/mol (via transition state TS1) affords the transient intermediate Int1. Subsequently almost barrierless and highly exergonic 1,3-silylshift to cleave the C-O bond (via TS2) affords the complex (Me₃Si)₂NK₂OSiMe₃ and Me₃SiNC. Isomerization of isocyanide the cyanide Me₃SiCN is almost neutral in free energy but slow due to the barrier of 24.2 kcal/mol, with isocyanide being entropically favored on heating. Subsequent nucleophilic attack at the Sicenter of Me₃SiNC by amide is -19.5 kcal/mol exergonic over a low barrier of 11.6 kcal/mol (via TS3) yielding the complex (Me₃Si)₂NK₂CN and O(SiMe₃)₂. To this point, the reaction is highly

WILEY-VCH

COMMUNICATION

exergonic with a low overall barrier of 16.5 kcal/mol (**TS1**), and thus should be facile at room temperature. A very similar mechanism is also found for monomeric $K(N(SiMe_3)_2 \text{ and } CO$, however this is kinetically 3.7 kcal/mol less favorable. The complex (Me₃Si)₂NK₂CN is further stabilized by -2.3 kcal/mol upon dimerization. The moderate yield of KCN observed experimentally suggests the possibility of the formation of higher amide-cyanide aggregates. Coordination of K⁺ by 18-crown-6 stabilizes the monomeric potassium amide (18-crown-6)KN(SiMe₃)₂ by -7.4 kcal/mol and kinetically favors reaction with CO by 1.8 kcal/mol (see ESI). The corresponding reaction using [(THF)LiN(SiMe₃)₂]₂ encounters a 4.9 kcal/mol higher barrier (21.4 kcal/mol via **TS1Li**, see ESI) due to stronger THF coordination and less ionic Li–N amide bond.

Figure 2 DFT-computed free energy path (in kcal/mol, 298 K) from CO to CN-

The mechanism infers the formation of intermediates Me_3SiNC with KOSiMe₃ suggesting substituted-silyl amides could provide isocyanides. To that end, the silylamide [(Me_3Si)(tBu)N]K was prepared via deprotonation of the corresponding amine with one equivalent of benzyl potassium in THF. Subsequent reaction with ¹³CO (1 atm) at room temperature for 12 h, led to the immediate discoloration of the solution and the quantitative conversion to $tBuN^{13}C$ **2** and Me_3SiOK as evidenced by the ¹³C resonance at 155.1 ppm (Table 2, entry 1). Similarly, using 1 atm ¹³CO with [(Me_3Si)(tBu)N]Li, the isotopically labeled isocyanide $tBuN^{13}C$ **2** was obtained in 98% yield (Table 2, entry 2).

To probe the generality of this reactivity, a series of silylamides [(Me₃Si)(R)N]M (M = Li, K) were prepared. The silylamide [(Me₃Si)(Ad)N]Li (Ad = adamantyl) gave AdN¹³C **3** in 81% yield (Table 2, entry 3). Analogous reactions of arene substituted amides [(Me₃Si)(Ar)N]Li (Ar = 2-*i*PrC₆H₄, 2-PhC₆H₄, 2-Me-4-MeOC₆H₃, 2,6-Me₂C₆H₃, 2,6-*i*Pr₂C₆H₃, 2,4,6-(*i*Bu)₃C₆H₂, 2,6-(Ph₂CH)₂-4-MeC₆H₂) gave the corresponding isotopically enriched isocyanides **4-10** in yields ranging from 71 to 97% (Table 2 Entry 4-10).

In the reaction of the sterically less demanding [(Me_3Si)(4-MeOC_6H_4)N]Li, while the isocyanide was the major product as

evidenced in the ¹³C{¹H} NMR triplet (${}^{1}J_{C-N} = 5$ Hz) at 164 ppm, another signal at 180 ppm exhibited ²⁹Si satellites with ${}^{1}J_{C-Si} = 60$ Hz was consistent with the formation of the carbamoyl lithium species, [(Me₃Si)C(O)N(4-MeOC₆H₄)]Li consistent with previous reports of silvlation of amidocarbomoyl lithium species.^[24] In the present case, these two species were present in a ratio of 2:1 (Table 2, entry 11), indicating that 1,3 and 1,2 silyl migrations are energetically competitive. To sterically favor 1,3 migration of the silyl group to oxygen the amide [(Ph₃Si)(4-MeOC₆H₄)N]K was reacted with CO. After 12 h, the isocyanide formed in quantitative yield (Table 2, entry 12). In a similarly fashion, Ph₃Si-derived amides afforded the alkyl isocyanides RNC (R = iPr 12, Bu 13, hexyl 14) in good yields (Table 2, entry 13-15). In addition, the aryl isocyanides RNC (C₆H₅15, 3-MeOC₆H₄16, 4-Me₂NC₆H₄17, 4-PhOC₆H₄ **18**, 4-*i*PrC₆H₄ **19**) were formed in yields of 74-95% (Table 2, entry 16-20). Efforts to apply this protocol to picolyl substituted silvlamide led to known cyclization affording imidazo[1, 5-alpyridine-3-13C 20, via the transient isocyanide intermediate.^[25]

Table 2 Conditions for the formation of RN¹³C from ¹³CO and M[N(SiR'₃)R].

$M[N(SiR'_3)R] + {}^{13}CO \xrightarrow{THF} RN^{13}C + R'_3SiOM$ (1 atm)							
Ent	R'	[Si]	м	Yield (%)ª	RN ¹³ C		
1	<i>t</i> Bu	Me₃Si	К	> 99 ^b	2		
2	<i>t</i> Bu	Me₃Si	Li	98	2		
3	Adamantyl	Me₃Si	Li	81	3		
4	2- <i>i</i> PrC ₆ H ₄	Me₃Si	Li	93	4		
-5	2-PhC ₆ H ₄	Me₃Si	К	71	5		
6	2-Me-4-OMeC ₆ H ₃	Me₃Si	Li	95	6		
7	2,6-Me ₂ C ₆ H ₃	Me₃Si	Li	97	7		
8	2,6- <i>i</i> Pr ₂ C ₆ H ₃	Me₃Si	Li	93	8		
9 ^d	2,4,6-(<i>t</i> Bu)₃C ₆ H ₂	Me₃Si	Li	86 ^c	9		
10	2,6-(Ph ₂ CH) ₂ -4-Me C ₆ H ₂	Me₃Si	Li	92	10		
11	4-MeOC ₆ H ₄	Me₃Si	Li	66 ^e	11		
12	4-MeOC ₆ H ₄	Ph₃Si	к	99	11		
13	<i>i</i> Pr	Ph₃Si	Li	98	12		
14	Bu	Ph₃Si	к	89	13		
15	Hexyl	Ph₃Si	к	97	14		
16	C ₆ H₅	Ph₃Si	к	74	15		
17	3-MeOC ₆ H ₄	Ph₃Si	к	86	16		
18	4-Me ₂ NC ₆ H ₄	Ph₃Si	к	95	17		
19	4-PhOC₀H₄	Ph₃Si	К	87	18		
20	4- <i>i</i> PrC ₆ H₄	Ph₃Si	К	88	19		
21 ^d	2-Picolyl	Ph₃Si	Li	91 ^c	20		

^ayield determined by¹³C{¹H} NMR spectroscopy using ^{[13}C] urea as internal standard; ^byield determined by ¹H NMR spectroscopy; ^cisolated yield; ^d36 h; ^eyield determined by relative integration of isocyanide: carbamoyl species.

In the case of the isocyanides RNC (R = 2,6-(*i*Pr)₂C₆H₃ **8**; 2,6-(Ph₂CH)₂-4-MeC₆H₂ **10**), cocrystalization of reaction products afforded crystals of the tetra-lithium-siloxide clusters formulated as [(2,6-(*i* $Pr)_2C_6H_3NCLiOSiMe_3)]_4$ and $[(THF)_2(2,6-(Ph_2CH)_2-4-MeC_6H_2)NC)_2(LiOSiMe_3)_4]$, respectively (Figure 3a, b). Both species are LiOSiMe₃ pseudo-cubanes where oxygen atoms bridge the lithium atoms. The coordination spheres of the Liatoms are completed with either an isocyanide or THF molecule. Presumably, the steric bulk of the latter isocyanide precludes the inclusion of four isocyanides about the Li-O cluster, prompting THF coordination. The Li-C distances were 2.243(4) and 2.258(17) Å for R = 2,6-(*i*Pr)_2C₆H₃ and 2,6-(Ph_2CH)_2-4-MeC₆H₂, respectively, with N-C distances being 1.154(3) and 1.161(11) Å,

3

COMMUNICATION

solubility allowed crystallization of the isocyanide in the absence of the Li-siloxide (Figure 3c). The N-C distance was 1.159(4) Å.

(b) (c) Figure 3 POV-ray depictions of the crystal structures of (a) [(2,6-[(THF)2(2,6-(Ph2CH)2-4-(*i*Pr)₂C₆H₃NCLiOSiMe₃)]₄, (b) MeC₆H₂)NC)₂(LiOSiMe₃)₄], and (c) 2,4,6-(tBu)₃C₆H₂NC. Hydrogen atoms are omitted for clarity, C: black, N: blue, O: red, Si: pink, Li: bronze.

Several examples of these syntheses were performed on a gram scale. Reactions of 1.1 g of [(Me₃Si)(2,6-*i*Pr₂C₆H₃)N]Li or 1.0 g of [(Me₃Si)(2,6-(Ph₂CH)₂-4-MeC₆H₂)N]Li in THF with CO afforded the corresponding isocyanides in isolated yields 99 and 94% after recrystallization (Scheme 3), respectively. Similarly, 1 g of [(Me₃Si)(tBu)N]Li in C₆D₆ led to quantitative conversion to tBuNC, as evidenced by ¹H NMR spectrum. Efforts to develop a one-pot synthesis from the parent amines were also probed. Using 1.88 g of 2,6-iPr₂C₆H₃NH₂ successive additions of 1.1 equivalent of *n*BuLi, 1 equivalent of Me₃SiCl, and a second equivalent of nBuLi and CO for 12 h in THF afforded the isocyanide 2,6-*i*Pr₂C₆H₃NC in 47% isolated yield (Scheme 3).

Scheme 3 Examples of gram-scale and one-pot reactions to isocyanides.

In conclusion, the reaction of silylamides with CO provides a facile and low-pressure protocol to both KCN and isocyanides. Understanding the mechanism using reliable DFT calculations has allowed the adaptation of this reaction to the preparation of a series of 19 isocyanides. This methodology is readily adapted to the inclusion of ¹³C isotopic labeling at the cyano or isocyanide carbons. In addition, it is shown to be viable in gram scale preparations. We are continuing to explore the reaction chemistry of alkali-metal species with small molecules.

Acknowledgements

D.W.S. is grateful to NSERC of Canada for research support and the award of an NSERC Canada Research Chair and to the Guggenheim Foundation for a 2020 Guggenheim Fellowship and Killam foundation for the 2021 Killam Prize, Z.W.Q and S.G are grateful to DFG (project SPP1807 and Gottfried Wilhelm Leibnitz prize to S.G) for financial support. M.X. is grateful for the award of Colin H. Bayley Scholarship. T.W. is grateful to China Scholarship Council for financial support.

Keywords: Cyanide • carbon monoxide • isotopic labelling • small molecule activation• ¹³C labelled iso cyanides

- [1] R. M. Wilson, J. L. Stockdill, X. Wu, X. Li, P. A. Vadola, P. K. Park, P. Wang, S. J. Danishefsky, Angew. Chem. Int. Ed. 2012, 51, 2834-2848.
- [2] D. P. Curran, H. Liu, J. Am. Chem. Soc. 1991, 113, 2127-2132.
- (a) D. G. Rivera, L. A. Wessjohann, J. Am. Chem. Soc. 2006, 128, 7122-[3] 7123; (b) T. Tian, R. Hu, B. Z. Tang, J. Am. Chem. Soc. 2018, 140, 6156-6163
- [4] (a) E. Schwartz, M. Koepf, H. J. Kitto, R. J. M. Nolte, A. E. Rowan, Polvm. Chem. 2011, 2, 33-47; (b) F. Millich, Chem. Rev. 1972, 72, 101-113; (c) T. J. Deming, B. M. Novak, J. Am. Chem. Soc. 1993, 115, 9101-9111; (d) R. J. M. Nolte, A. J. M. v. Beijnen, W. Drenth, J. Am. Chem. Soc. 1974, 96, 5932-5933.
- T. Kajitani, K. Okoshi, S.-I. Sakurai, J. Kumaki, E. Yashima, J. Am. Chem. [5] Soc. 2006, 128, 708-709.
- S. K. Pomarico, C. Wang, M. Weck, Macromol Rapid Comm 2020, 41, [6] 1900324
- (a) S. K. Pomarico, D. S. Lye, E. Elacqua, M. Weck, Polymer Chemistry [7] 2018, 9, 5655-5659; (b) Q. Wang, J. Huang, Z.-Q. Jiang, L. Zhou, N. Liu, Z.-Q. Wu, Polymer 2018, 136, 92-100.
- I. Ugi, Angew. Chem. Int. Ed. 1962, 18-21.
- (a) D. J. Řamón, M. Yus, Angew. Chem. Int. Ed. 2005, 44, 1602-1634; (b) [9] J. Zhang, P. Yu, S.-Y. Li, H. Sun, S.-H. Xiang, J. Wang, K. N. Houk, B. Tan, Science 2018, 361, eaas8707
- [10] P. Slobbe, E. Ruijter, R. V. A. Orru, *MedChemComm* 2012, *3*, 1189.
 [11] Y. Chen, K.-L. Wu, J. Tang, A. Loredo, J. Clements, J. Pei, Z. Peng, R. Gupta, X. Fang, H. Xiao, *ACS Chem. Bio.* 2019, *14*, 2793-2799.
- [12] F. P. Pruchnik, S. A. Duraj, in Organometallic Chemistry of the Transition Elements (Eds.: F. P. Pruchnik, S. A. Duraj), Springer, Boston MA, 1990.

WILEY-VCH

COMMUNICATION

I

- [13] (a) M. J. Drance, J. D. Sears, A. M. Mrse, C. E. Moore, A. L. Rheingold, M. L. Neidig, J. S. Figueroa, *Science* 2019, 363, 1203-1205; (b) J. S. Figueroa, J. G. Melnick, G. Parkin, *Inorg. Chem.* 2006, 45, 7056-7058; (c) B. R. Barnett, C. E. Moore, A. L. Rheingold, J. S. Figueroa, *J. Am. Chem. Soc.* 2014, *136*, 10262-10265; (d) R. B. Brandon, C. Moore, E., A. Rheingold, L., J. Figueroa, S., *Chem. Commun.* 2015, *51*, 541-544; (e) J. Böhnke, H. Braunschweig, T. Dellermann, W. C. Ewing, T. Kramer, I. Krummenacher, A. Vargas, *Angew. Chem. Int. Ed.* 2015, *54*, 4469-4473; (f) T. J. Hadlington, T. Szilvasi, M. Driess, *Chem. Sci.* 2018, *9* 2595–2600.
- [14] W. Sattler, M. E. Ener, J. D. Blakemore, A. A. Rachford, P. J. Labeaume, J. W. Thackeray, J. F. Cameron, J. R. Winkler, H. B. Gray, *J. Am. Chem. Soc.* 2013, 135, 10614-10617.
- [15] U. J. Kilgore, F. Basuli, J. C. Huffman, D. J. Mindiola, *Inorg. Chem.* 2006, 45, 487-489.
- [16] (a) H. Asakawa, K.-H. Lee, Z. Lin, M. Yamashita, *Nat Commun* 2014, 5;
 (b) T. Abe, T. Iwamoto, C. Kabuto, M. Kira, *J. Am. Chem. Soc.* 2006, *128*, 4228-4229.
- [17] Y. Katsuma, N. Tsukahara, L. Wu, Z. Lin, M. Yamashita, Angew. Chem. Int. Ed. 2018, 57, 6109-6114.
- [18] M. V. Dobrynin, E. V. Sokolova, M. A. Kinzhalov, A. S. Smirnov, G. L. Starova, V. Y. Kukushkin, R. M. Islamova, ACS Applied Polymer Materials 2021, 3, 857-866.
- [19] (a) M. T. Xu, A. R. Jupp, Z. W. Qu, D. W. Stephan, Angew. Chem. Int. Ed.
 2018, 57, 11050-11054; (b) M. T. Xu, A. R. Jupp, D. W. Stephan, Angew.
 Chem. Int. Ed. 2019, 58, 3548-3552; (c) M. Xu, Z.-W. Qu, S. Grimme, D.
 W. Stephan, J. Am. Chem. Soc. 2021, 143, 634-638.
- [20] U. Wannagat, H. Seyffert, Angew. Chem. Int. Ed. 1965, 4, 438-439.
 [21] D. G. Ott, V. N. Kerr, T. G. Sanchez, T. W. Whaley, Journal of Labelled Compounds and Padiapharmacoutics 1980, 17, 255, 262.
- Compounds and Radiopharmaceuticals 1980, 17, 255-262.
 (a) Vol. See <u>http://www.turbomole.com</u>., TURBOMOLE GmbH, Karlsruhe, 2018; (b) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, *Phys Rev Lett* 2003, 91; (c) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; (d) S. Grimme, S. Ehrlich, L. Goerigk, *Journal of Computational Chemistry* 2011, 32, 1456-1465; (e) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305; (f) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, 2, 799; (g) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, 8, 1057-1065; (h) S. Grimme, *Chem. Eur. J.* 2012, 18, 9955-9964; (i) F. Eckert, A. Klamt, *AlChE J.* 2002, 48, 365; (j) F. Eckert, A. Klamt, COSMOlogic GmbH & Co., Leverkusen, Germany, 2015; (k) Y. Zhao, D. G. Truhlar, 2005, 109, 5656-5667.
- [23] K. F. Tesh, T. P. Hanusa, J. C. Huffman, *Inorg. Chem.* **1990**, *29*, 1584–1586.
- [24] (a) A. Orita, K. Ohe, S. Murai, Organometallics 1994, 13, 1533-1536; (b)
 D. Seyferth, R. M. Weinstein, J. Am. Chem. Soc. 1982, 104, 5534-5535.
 [25] U. Schollkopf, E. Eilers, K. Huntke, Liebigs Ann. Chem. 1976, 969-977.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

Insert graphic for Table of Contents here. ((Please ensure your graphic is in one of following formats))

[K(18-crown-6)] <u>1 atm ¹³(</u> [N(SiMe ₃) ₂]	[K(18-crown-6)] CO [¹³ CN] +
	(Me ₃ Si) ₂ O
[Si] _N ^M 1 atm ¹³ R M = Li, K	³ CO ¹³ C≡N−R + M[OSiMe ₃] • 19 examples • up to 99% yield • gram scale

The reactions of K[N(SiMe₃)₂] with ¹³CO affords K¹³CN and O(SiMe₃)₂ under mild conditions. DFT calculations affirmed this reaction proceeds via an isocyanide intermediate. This was confirmed experimentally as the alkali metal amides, M[N(SiR₃)R'] (M= Li, K; R = Ph, Me; R' = alkyl, aryl) are shown to provide a facile route to the 19 ¹³C labeled isocyanide RN¹³C and MOSiR₃ generally in high yields.

researcher Twitter usernames: @FLPchemist