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Abstract

The retinoic acid receptor-related orphan recegéonma-t (ROR) is a promising
therapeutic target for treatment of Th17 cell-mesisautoimmune diseases. Based on
a scaffold hopping/conformational restriction sttt a series ofN-indanyl
benzamides as novel R@Rinverse agonists was discovered. Exploration of
structure-activity relationship on the piperazimgy benzoyl moiety and cyclopentyl
moiety of N-indanyl benzamidega and 2d led to identification of potent ROR
inverse agonists. Compourtd with (S)-enantiomer was found having ans¢Qf
153.7 nM in Fluorescence Resonance Energy Tra(lSRET) assay, and an Jgof
47.1 nM in mouse Th17 cell differentiation assayick represents a promising
starting point for developing potent small molecRI®Ryt inverse agonists. Binding
modes of the two enantiome®s and5d in RORyt ligand binding domain were also
discussed.

Keywords. N-indanyl benzamides; ROR inverse agonists; Thl7 cells;

autoimmune diseases; binding modes
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1. Introduction

The retinoic acid receptor-related orphan recegéonma-t (ROR), an isoform
of RORYy restrictedly expressed in the thymissa key transcriptional factor in Th17
cell differentiatiod*®. Th17 cells produce inflammatory cytokines (IL-17;17F,
etc.), which play a central role in the pathogemedivarious autoimmune diseases
such as psoriasis, rheumatoid arthritis, and nlaltisclerosi$**. Recently,
accumulated clinical efficacy of the biologics @ firmed importance of the Th17
pathway as a viable clinical target for the treattma psoriasis, rheumatoid arthritis,
ankylosing spondylitis and uveitid*”. Given the crucial role of ROR in the
differentiation of Th17 cells, ROR has been considered as a promising therapeutic
target for treatment of Th17 cell-mediated autoimmdiseasés’.

Since the identification of digoxXfi¥’, SR100¥* and ursolic acid” as small
molecule RORt inhibitors, quite a number of small molecule R@Rhibitors have
been reportdtt*28 Among them, a few compounds such as VTP-43742,
GSK-2981278, AZD-0284, ESR-114, ARN-6069, AUR-1®RITA-1701 and others
have been progressed into clinical trials (Figu)®®1 However, some of these
front-runners have failed in clinical trials due ¢ompound toxicities or lack of
efficacy. Thus, the development of more and beRERyt inhibitors with diverse

structure types for therapeutic use remains in .need
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Figurel. Structures of RGRinhibitors in clinical trials and benzyl piperaeil
Previously, we have reported the discovery of RORhibitors such as

carbazole carboxamid@d, thiazole/thiophene ketone amiffés thiazole ether
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amide§?, indole amide&® and biaryl amidd¥". Recently, GlaxoSmithKline (GSK)
disclosed a series of benzyl piperazines as no¥@RyR inhibitors in their PCT
patent§™ . Subsequently, a few R@Rinhibitors based on the benzyl piperazine
scaffold were disclosed by PfiZ8, Novarti’® and LEO Pharfi. In light of
benzyl piperazine representing a unique structype tand displaying reasonable
RORt activities, it was chosen as our starting scdffébr further structural
modification. Compoundl, a typical GSK patent compound with the benzyl
piperazine scaffold, displayed low R@Ractivity (ICso of 8.2uM) in our FRET assay
(Figure 1). We hypothesized that cyclization of tenzyl core using a scaffold
hopping/conformational restriction strategy coulgidify the molecule and improve
its RORyt activity. In this paper, we report the designntbgsis, structure-activity
relationship (SAR) of a series of indane-containo@mpounds as novel RQR
inhibitors. The binding modes of two indane enanges in the RORR ligand binding

domain (LBD) were also discussed.

2. Results and discussion
2.1 Compound design

First, the analogs of benzyl piperazifhewith different bicyclic cores2a-2g)
were designed with aid of computer modeling andkohgg; trying to identify new
bicyclic cores that could maintain R@Rinhibitory activity. Then, with the best
indane cores2a and2d) identified, some compounds with modification apgrazine
moiety @a-3d and 4a-4d) were designed and evaluated. Finally, SARs of
left-hand-side (LHSpenzoyl moiety and right-hand-side (RHS) cyclopbentyiety
were investigated on two different indane corgs5 and 6a-6g) to optimize the

N-indanyl benzamide compounds with better RO&tivity (Figure 2).
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Figure 2. Target compounds with modifications onay core Ra-g), piperazine

moiety @Ba-d and4a-d), cyclopentyl moiety%a-5e and6a-6¢) and benzoyl moiety

(5f-51 and6d-6g) of benzyl piperaziné

2.2 Chemistry

A general procedure for the synthesis ¢indanyl benzamide compounds is
described in Scheme 1. The commercially availabladanone T) reacted with
KNOj3 in the presence of 40, to produce compoungda or 8b, which then reacted
with Boc-protected piperazine analogues in thegres of sodium cyanoborohydride
to obtain compoundda or 9b. After N-deprotection oBa or 9b, the resulting amines
subsequently reacted with the corresponding catlwo®gids or acyl chlorides to

afford the compound¥0a or 10b. Then, the aniline%la or 11b were obtained by the
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reduction of the nitro group ofi0a or 10b. Finally, the target compound&a( 2d,
3a-3d, 4a-4d, 5a, 5b, 5e5i, 6a-6g) were obtained via acylation with the
corresponding carboxylic acids or urea formatiothvanilines/amines. Enantiomers
(9-5c and R)-5d were obtained by chiral HPLC separation 5. The absolute
structures obc and5d were determined by the optical rotation value®otind 5d

compared with that of @)-1-Aminoindane in the literature.
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Scheme 1. Synthesis of compouds2d, 3a-3d, 4a-4d, 5a-5i and6a-6g°
®Reagents and conditions: (a}30;, KNOs, 00 to rt, 1h; (b) Boc-YH, NaBkCN,
CH3;OH, AcOH, 0] to rt, overnight; (c) C#£OOH, DCM, rt, 4h; (d) RCOH or
R1COCI, DIPEA, DCM, 01 to rt, 2h; (e) Fe, AcOH, rt, overnight; (lh&0O,H, HATU,
DIPEA, DCM, rt, overnight, oN-(3-cyanophenyl)-1H-imidazole-1- carboxamide,
ZrCly, THF, reflux; (g) Chiral supercritical-fluid chratography (SFC), 25% MeOH
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(0.2% Methanol ammoniajc (42%),5d (56%).
Synthetic procedures of compouri2ls 2c, 2e-2g, the detailed chiral separation
and absolute structure determinations5ofand 5d were described in the supporting

information.

2.3 Structure-activity relationship

The first set of compounds with different bicyctiores a-2g) were designed,
synthesized and evaluated in the RORRET assay (Table 1). Cyclization of the
methylene carbon of benzyl piperazifieto the 4-position of central phenyl ring
resulting in indane compour improved the RORR potency by 10-fold (830.0 nM
in 2avs. 8242.0M in 1), while replacing indane ring i2a with indoline ring 2b) or
indole ring @c) lowered the RORR activity (1574.5 nM in2b and 4897.5 nM ir2c,
respectively). Interestingly, when cyclization dfet methylene carbon of benzyl
piperazinel to the 2-position of central phenyl ring, the f@sg indane-containing
compound2d exhibited a 17-fold improvement in R@Ractivity (464.9 nM in2d vs.
8242.0 nM inl). Replacing indane ring i2d with N-methylindole ring 2e) or
indoline ring @g) dramatically decreased the activity and replacinip indole ring
(2f) completely aborted the activity. Thus, the indaeenpounds2a and 2d which
possessed the best R@Ractivity among the bicyclic compounds were subjec

further optimization.

Table 1. SAR exploration of benzyl corelin
CN O

Compd Y X

RORy FRET IGs(nM)?
(% max. inhibition}

3 s
1 @A N 8242.0 + 2387.9135.9)
2a ¢ \©:§ N 830.0 +19.3107.7)
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T
2b 3 \CEN) C 1574.5 + 163.3156.2)
M,
ég /
2c \©/\"> C 4897.5 + 102.5137.8)
Y,
2d 8 \(95 N 464.9 + 10.1(149.0)
AN
N
2e ﬁﬁ\f c 6149.0 + 562.9108.7)
B N—
of 5\5 H c N/AC
& N—¢
29 C 5575.0 + 927.7129.7)

%Csp value was expressed as mean + SD, n=2.
®Percent max. inhibition measured against activdipthe surrogate agonist.
°N/A represents no activity.

The SAR of the piperazine moiety of the indar®asand 2d was then
explored, and the results were summarized in TAbReplacing the piperazine
moiety in2a with (S§)-3-methylpiperazine3a) improved RORt activity (193.6
nM in 3a vs. 830.0 + 19.3 nM irka), while replacing piperazine moiety with
(R)-3-menthylpiperazine 3p) lowered RORt activity (1674.5 nM in3b vs.
830.0 nM in2a), indicating the importance of the chirality in tingpiperazine.
Subsequently, we replaced the piperazine moiety h wit(3S
5R)-2,6-dimethylpiperazine moietyd¢), resulting in equipotent RGRactivity
compared td®a. Conformation restriction by bridging two methylogps in3c
to form 3d improved the ROR activity (207.9 nM in3d vs. 925.1 nM in3c)
and the maximum inhibition (147.4% 8dl vs. 122.3% ir8c). We used the same
strategy to modify the piperazine moiety of theane2d (Table 2). Interestingly,
the RORt inhibitory potency (IGy) and the maximum inhibition (%) of the
methyl substituted piperazinedaf4d) were not dramatically affected by the

methyl conformation or conformation restriction piperazine ring, indicating
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that the substituent groups on piperazine moieghbtplay an insignificant role
on biological activities ofd. For example, compoundd exhibited a slightly
improved RORt activity with an IGp of 287.2 nM relative t@d with an 1Gg of

464.9 nM.
Table 2. SAR exploration of the piperazine moieties

] ©THCE§JEQ Nc@\g“&;\@

RORy FRET IGyo(nM)? RORy FRET IGy(nM)?

Compd o Compd -
(%max.inhibition§ (Yomax.inhibition§
N
O 2a 830.0 + 19.3107.7) 2d 464.9 + 10.1(149.0)
"]1{
ok
3a 193.6 + 81.9118.3) 4a 384.7 + 12.4151.8)
M
KL A
N 30 1674.5 + 27.6124.0) 4b 399.9 + 68.0(146.4)
o
N 3¢ 925.1 + 197.§122.3) 4c 270.3 + 14.6148.9)
E/N\)"W
o
N, 3d 207.9 + 17.4147.4) 4d 087.2 + 23.6144.3)
g

%Csp value was expressed as mean + SD, n=2.
®Percent max. inhibition measured against activdipthe surrogate agonist.

We next explored the SAR of RHS jjRand LHS (R and R) of the
ethylene-bridged piperazineSd) and @d). SAR data were summarized in
Tables 3 and 4. Firstly, fixing the;Rnd R moiety as 3-cyano-benzamido, we
explored SAR of Rin 3d. Changing the cyclopentyl i&d to cyclobutyl ga),
cyclohexyl 6b) or cyclobutylmethyl %e) could essentially maintain the R@R
activity. Fixing R as cyclopentyl, replacing the LHS 3-cyano-pheny8d with
pyridine derivatives either maintaineshj or mildly decreaseds() the RORt
activity, but with a 4-methyltetrahydrd2pyran 6g), the RORt activity

dropped dramatically, indicating that R@Rctivity disfavored non-aromatics in
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LHS. Replacing the amide linker 8d with a urea linker%i) slightly decreased

the RORt activity. Chiral separation of racemib led to its two respective

enantiomer$c and5d. The §-enantiomerbe displayed higher ROR activity

compared to5b (153.7 nM in 5c vs. 264.9 nM in5b), whereas the

(R)-enantiomersd displayed no activity at all in the RQRFRET assay. This

result can be explained by the binding mode diffees of the compourtst and

5d in RORyt LBD (see section 2.4).

Table 3. SAR explorations of LHS and RHS3th
(0]

RORy FRET IGs(nM)?
(% Max inhibition¥

. O
Ra\RiN\@j

Compd Ry R, Rs

CN
VI
5a %):I ur )(J)\ 5 @\;‘I
- L0 X &
O K/O “mj\f ©\f
5e ; \):l %)(J)\ ;‘5 @\;‘J
i’ %D %i:‘ . ¥
- O & O

207.9 +17.9147.4)

333.2 +27.(141.6)

264.9 + 163.4119.2)

153.7 + 4.7(137.3)

N/A®

366.7 + 6.2(148.9)

717.9 +1.8(148.1)

8410.0 + 1971.(140.1)
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O
5h /E> N 288.4 + 6.4141.5)
.,LLL "H,L)J\;ss |

N__— Jé
0] CN
5 /O R @\ 357.7 + 45.q134.2)
¢ NT »

%Csp value was expressed as mean + SD, n=2.
PPercent max. inhibition measured against activdtipthe surrogate agonist.
°N/A represents no activity.

The SAR of the R R; and R in 4d was explored in a similar way (Table 4).
Fixing the R and R moiety as 3-cyano-benzamido, changing the cycliypen
ring in 4d with cyclobutyl @a), cyclohexyl @b) or cyclobutylmethyl §e)
resulted in a marked drop in R@Ractivity. With identification of cyclopentyl
as the best RHS substituentdith we continued to explore the SAR of &d R
in LHS. When 3-cyano-phenyl was replaced by eifherdines 6d and6f) or
4-methyltetrahydro-&2-pyran ©e), the RORt activity was greatly reduced.
Similarly, replacing the amide linker #d with a urea linker@g) also decreased

the RORt activity.
Table 4. SAR exploration of LHS and RHSich.

RORy FRET IG(nM)?

Compd R Re Re (% Max inhibition}
o CN
ad /O 287.2 + 23.6144.3)
. %)J\f ’
o CN
6 873.4 + 329.((144.3
SV @rf e
o CN
6b Q 1692.5 + 415.1166.7)
5 Py @L

,

6d

CN
0
6c 5\)3 “%)J\f @\ 569.3 + 124.9146.4)
o
e

%)J\ Y N 2442 5 + 466.4156.5)
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0
6e " /E> N ; CO/\ ¥ > 10000(92.8)

F
(@]
of ):> N 1512.5 + 352.8142.3)
D%L)J\gé |

‘L"L \NZ ‘_;f'
0] CN
69 /E> L @\ 1589.5 + 1132.q114.1)
g N »

%Csp value was expressed as mean + SD, n=2.
PPercent max. inhibition measured against activdiipthe surrogate agonist.

We further evaluated the representativndanyl benzamide®a, 2d, 3d, 4d,
5b-5d in the mouse Th17 cell differentiation assay (€& The results revealed that
compound2a and 2d containing the piperazine moiety possessed relgtiweak
Th17 cellular activity. Replacing piperazine ringtlwethylene-bridged piperazines
(3d, 4d and5b) could improve the Th17 cellular activity greatGompoundsc with
(9-enantiomer showed excellent activity with and®©f 47.1 nM in the Th1l7 cell
differentiation assay while the compoubd with (R)-enantiomer had no activity at
all. The activities of the compounds tested inTh&7 cellular assay were essentially
consistent with those in the FRET assay.

Table 5. Results in mouse Th17 cell differentiatissay

Compd MTh17Cs,(nM)?
2a 2661.4 + 2385.2
2d 1782.5 +436.3
3d 422.6 +39.3
4d 384.6 £ 83.4
5b 105.5+15.9
SC 47.1+4.8
5d N/A®

®Cso value was expressed as mean + SD, n=2.
°N/A represents no activity.

2.4 Binding mode study
The activity differences between piperazine rind athylene-bridged piperazine
ring as well as between the two indane enantiorsach asSc and 5d draw our

intention, so docking studies on a féwindanyl benzamide compounds in R@R
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LBD were carried out to understand the mode ofoastiMOAS). Docking oka (S
and R enantiomers)3d (S andR enantiomers) anlb (5c and5d) into RORt LBD
revealed the binding mode of a typical indane-bd@€dRyt inverse agonist, which
was similar to the reported indole benzamide’s iigdmodé&®. As illustrated in
Figure 3A, in the LHS ofN-indanyl benzamidec, the benzoyl moiety provides
preferredreTt cluster interactions with His323 and Phe377, dreddyano substituent
can form a hydrogen bond with the backbone Leud®é linker amide beside the
indane core can form hydrogen bond interaction withbackbone of Phe377. In the
RHS of 5c, the cyclohexyl ring occupies an existed vacanitgédbetween H11 and
H11’, and formed intermolecular interactions withrreunding hydrophobic residues
in the hydrophobic site near His479. Overlay @f with the reported indole
benzamide co-crystal structure in R@RBD (PDB ID: 6CN6) reveals a similar
overall binding mode (Figure 3B).

Besides the common binding mode, it was also nthtatla key hydrogen bond
between His479 and the carbonyl group in the RH&llahdane §)-enantiomers is
associated with the inverse agonism of RORn the binding modes ofSf-
enantiomers oRa, 3d and5b, the carbonyl group was apt to form hydrogen bonds
with His479, breaking the hydrogen bond of His4#&l &yr502, thus made the
H11-H12 bridging force weak (Figure 4A). The loasgeraction within the triplet
residues His479-Tyr502-Phe506 resulted in the desoof H12, and the unwinding
H12 could not recruit co-activator, making thesempounds as ROR inverse
agonists. On the contrary, in the binding modefRpenantiomers ofa, 3d and5b,
the carbonyl group is not easily to form hydrogemd with His479, which might be

the reason whygj-enantiomebc is quite active but theR)- enantiomebd not.

— > s Leu287 I Leu28]
N ]
A 450 /7\
& / } [

Hl Hls479 /_\—> S &

i ~ >
13‘ Phe377 H11 ,,H ;4\79 < \ r\, Phe377
418 &\
3 Hli S ’ﬁﬁ His323
) & )
\ ‘
A B

Figure 3. Binding mode of indane derivatb® A: Zoomed-in view obc (shown in
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lime) in the binding pocket of RGRLBD; B: overlay of5c with the reported indole

benzamide in co-crystal structure (shown in wH#BB ID: 6CN6).

Another note from the binding mode study is thia¢ tconfirmation of the
piperazine moiety constrained by the ethylene leridgn enhance the formation of
hydrogen-bond between the carbonyl group and Hisé=§ure 4B). Thus,3d
(9-enantiomer is more preferred to form hydrogen cbanith His479 than2a
(S-enantiomer, which is critical for the secondatyusture of H12 as mentioned
above. The conformational restriction of the brdigeperazines such as Bd is
reflected in an activity enhancement as observeédnly in the ROR FRET assay

but also in the mouse Th17 cell differentiationagss
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( His470 ‘E—\T
H11 4 4\ 1“‘32 Phe377
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e H3 ‘."
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.

5d

Figure 4. Binding modes &andR enantiomers. A: Binding modes 2d, 3d and
5b; B: overlay of §-enantiomers o2a and3d, and R)-enantiomers o2a and3d.
(2a (9-enantiomer colored in yellowa (R)-enantiomer colored in orangsg
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(9-enantiomer colored in cyaBd (R)-enantiomer colored in blugg¢ colored in lime,

5d colored in green)

3. Conclusions

In summary, we discovered a seriesNsindanyl benzamides as novel R@R
inhibitors through cyclization of the benzyl piperees using a scaffold hopping
/conformational restriction strategy. The explayatof structure-activity relationship
on the benzyl core, the piperazine ring, the LH@ and the RHS cyclopentyl of the
benzyl piperazind led to the identification of potent R@Rinhibitors. The indane
compoundsc with (S)-enantiomer was found having decent ROIRhibitory activity
with an IGo of 153.7 nM in ROR FRET assay and 47.1 nM in mouse Th17 cell
differentiation assay, and represented a promisiading point for developing potent
small molecule ROR inverse agonists with the potential for treatmeoft
autoimmune diseases. The binding mode study dfitimelanyl benzamides in RQR
LBD using a molecular docking method revealed @t®nales that why the bridged
piperazines are more potent than piperazine and(Shenantiomer compared to

(R)-enantiomer was preferred in R@Ractivity. Further optimization of the

N-indanyl benzamide lead series is ongoing andheilteported in due coutse

4. Experimental

4.1. Materials and methods

All the reagents used were commercially availavd were used without further
purification unless otherwise indicated. All of theactions were monitored by thin
layer chromatography (TLC) using silica gel platfsorescence F254, UV light).
The intermediate and the final target compound wasified by column
chromatography on silica gel 200~300 GF254 (Qingdaiyang Chemical Co., Ltd.,
Qingdao, Shandong Province, China). Melting poiaswecorded by WRS-1B digital
instrument.'H NMR spectra was recorded on a Bruker 400 MHz tspeter,
Coupling constantsJ(values) were given in hertz (Hz}3C NMR spectra was

recorded at 600 MHz. Chemical shif§ (vere reported in parts per million (ppm)
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(using TMS as an internal control). Signals werscdeed as singlet (s), doublet (d),
triplet (t), quartet (g), multiplet (m), and brodor). Mass spectroscopy was carried
out on Electrospray ionization (ESI) instrumentd#LDI-TOF (Bruker).

4.2. Synthesis

4.2.1. General procedure for the synthesis of irdanalogues2a, 2d, 3a-3d, 4a-4d,
5a-5i and6a-6Q)

Step 1: To a solution of 2,3-dihydro-1H-inden-1-one (1.0 eysulfuric acid stirred
at C was added KN@(1.05 eq) in several portions over 15 mins andréaetion
mixture was stirred for 1 hr at this temperaturéteAthe reaction completed, the
mixture was poured into ice-water, and extracteith WicOEt. The organic phase was
washed with water and saturated NaHGOlution, dried over anhydrous sodium
sulfate, filtered and the filtrate was concentrateder reduced pressure to afford the
crude product, which was purified by column chromgaaphy (silica gel, eluent:
AcOELt/Pet 0-25%, v/v) to give the 6-nitro-2,3-dilngedlH-inden-1-one intermediate
8a and 4-nitro-2,3-dihydro-1H-inden-1-one intermeeth.

Step 2: To a solution of 6-nitro-2,3-dihydro-1H-inden-1-omtermediateBa (1.0 eq)

or 4-nitro-2,3-dihydro-1H-inden-1-one intermedidte (1.0 eq) and Boc-protection
piperazine analogues (1.5 eq) in methanol was aduedic acid (1.5 eq) and
NaBH;CN (2.0 eq) at room temperature and the reactiotturd was heated to reflux
overnight. When the starting material was consumethpletely, the mixture was
cooled to room temperature, and saturated@solution was added to the mixture
to quench the reaction. The mixture was concemtrateder reduced pressure and
extracted with AcOEt. The organic phase was washid water and saturated
NaHCG; solution, dried over anhydrous sodium sulfatéefdd and the filtrate was
concentrated under reduced pressure to affordrtidegroduct, which was purified
by column chromatography (silica gel, eluent: PENDO-50%, v/v) to give the
6-nitro-indanyl analoguBa or 4-nitro-indanyl analoguéb.

Step 3: To a solution of 6-nitro-indanyl analoga (1.0 eq) or 4-nitro-indanyl
analoguedb (1.0 eq) in DCM (4 mL) was added trifluoroaceta@da(2.0 mL) at 6C
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314  and the reaction mixture was stirred at this terajpee for 3 hours. When the starting
315 material was consumed completely, the mixture wascentrated under reduced
316  pressure to remove the solvent. The resulting veswlas dissolved with DCM and
317  EN (3.0 eq). Different acid chloride (1.05 eq) waspise to the mixture for 10min.
318  Then the reaction mixture was stirred for anothé&ofr. Methanol was added to the
319  reaction mixture to quench the reaction. The mixtwas concentrated under reduced
320 pressure to remove the solvent. The crude produgs wurified by column
321  chromatography (silica gel, eluent: PE/DCM 0-1008%) to give the compountiOa
322  or compoundLOb.

323 Step 4. To a solution of compoundOa (1.0 eq) or compoundOb (1.0 eq) in
324 methanol (5.0 mL) was added Pd/C (5%, 0.2 eq, MdMpom temperature undep H
325 atmosphere and the reaction mixture was stirratligttemperature overnight. When
326 the starting material was consumed completely, rttoeture was filtered and the
327 filtrate was concentrated under reduced pressute ¢ive the crude compourida
328 or compoundllb which was used directly in the next step.

329  Step 5a: The mixture of the crude compoudia (1.0 eq) or compountilb (1.0 eq),
330 HATU (1.5 eq), different acid (1.1 eq) and DIPEAQ3q) in DCM was stirred at
331 room temperature overnight undep Btmosphere. When the starting material was
332 consumed completely, the mixture was washed withrgged NaHC® solution and
333 water, dried over anhydrous sodium sulfate, fillesed the filtrate was concentrated
334 under reduced pressure to afford the crude produath was purified by column
335 chromatography to afford the target compourtds 2d, 3a-3d,4a-4d, 5a, 5b, 5e-5h
336 and6a-6f). Enantiomers§)-5c and R)-5d were obtained by chiral HPLC separation
337  of 5b.

338  Step 5b: The mixture of the crude compoufdla (1.0 eq) or compountilb (1.0 eq),
339  ZrCl4 (1.0 eq) N-(3-cyanophenyl)-1H-imidazole-1- carboxamide (192 im THF was
340 heated to reflux and stirred at this temperatureé8fbour under Natmosphere. When
341 the starting material was consumed completelyrélaetion mixture was filtered and

342 the filtrate was concentrated under reduced pressime resulting residue was
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purified by flash column chromatography on silica tp afford the desired product

(51 and6g).

4211

3-Cyano-N-(3-(4-(cyclopentanecarbonyl)piperazinbty3-dihydro-1H inden -5-yl)
benzamidefa) as white solid (55.4%); mp 229.6-230.4°8 NMR (400 MHz,
DMSO-dg) 5 10.38 (s, 1H), 8.41 (s, 1H), 8.25 (U= 8.0 Hz, 1H), 8.06 (d] = 7.7 Hz,
1H), 7.80-7.73 (m, 2H), 7.63 (d,= 8.2 Hz, 1H), 7.22 (d] = 8.1 Hz, 1H), 4.34 () =
6.9 Hz, 1H), 3.48 (m, 3H), 3.42 (m, 1H), 2.94 (nh)12.84 (m, 1H), 2.73 (m, 1H),
2.45 (m, 2H), 2.34 (m, 2H), 2.01 (d,= 7.1 Hz, 2H), 1.73-1.49(m, 8H)*C NMR
(151 MHz, DMSOe€g) 6 173.11, 163.21, 142.74, 139.14, 136.97, 135.85,7134
132.33, 131.08, 129.64, 124.37, 119.80, 118.19,9714.11.32, 69.00, 48.47, 47.98,
45.23, 41.53, 29.76, 29.44, 29.40, 25.49, 24.13.(ES) m/z: 443.3[M+H]. HRMS
(ESI") m/z calcd for GiH3oN4O, [M+H] " : 443.2442: found: 443.2445.

4.2.1.2

3-Cyano-N-(1-(4-(cyclopentanecarbonyl) piperazight2,3-dihydro-1H-inden -4-yl)
benzamided) as white solid (35.6%); mp 78.5-80.5°€1 NMR (400 MHz, DMSO-

de) 5 10.14 (s, 1H), 8.39 (s, 1H), 8.24 (d, J = 7.6 H4), 8.08 (d, J = 7.1 Hz, 1H),
7.75 (t, J = 8.7 Hz, 1H), 7.36 (d, J = 6.6 Hz, 1HP5 (t, J = 7.1 Hz, 1H), 7.18 (d, J =
6.8 Hz, 1H), 4.37 (m, 1H), 3.49 (m, 2H), 2.89 (rh})22.74 (m, 1H), 2.38 (m, 4H),
1.98 (m, 2H), 1.61 (m, 10H)*C NMR (151 MHz, DMSOQdg) & 173.10, 163.12,
143.61, 138.27, 135.46, 134.82, 133.75, 132.36,2P31129.68, 126.45, 123.19,
122.10, 118.16, 111.39, 69.17, 48.62, 47.95, 43121K0, 29.43, 28.57, 25.48, 23.66.
MS (ESI) m/z: 443.2[M+H] HRMS (EST) m/z calcd for GH3gN4O» [M+H]™:
443.2442; found: 443.2434.

4.2.1.3
3-Cyano-N-(3-((S)-4-(cyclopentanecarbonyl)-3-meiipgrazin-1-yl)-2,3-dihydro

-1H -inden-5-yl) benzamid&d) as white solid (45.2%): mp 114.2-115.6°6 NMR

(400 MHz, DMSOdg) & 10.39 (s, 1H), 8.40 (d| = 10.0 Hz, 1H), 8.24 (] = 7.8 Hz,
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1H), 8.06 (dJ = 7.8 Hz, 1H), 7.81-7.73 (m, 2H), 7.67-7.53 (m)1AH21 (d,J = 7.3
Hz, 1H), 4.54 (m, 1H), 4.35-4.17 (m, 2H), 3.77 (th)), 3.29-3.13 (m, 1H), 2.86 (m,
2H), 2.73 (m, 2H), 2.38-2.15 (m, 2H), 1.99 (s, 2H)69-1.49(m, 8H), 1.35-1.13(m,
3H). 3C NMR (151 MHz, DMSOdg) 6 173.13, 163.28, 142.97, 138.98, 136.97,
135.89, 134.69, 132.34, 131.08, 129.63, 124.34,701918.18, 116.89, 111.32, 68.97,
54.61, 51.04, 46.59, 43.98, 40.63, 36.60, 29.5247224.07, 16.88, 15.35. MS (ESI)
m/z: 457.3[M+H]. HRMS (ESI) m/z calcd for GgH3:N4O, [M+H]™ : 457.2598;
found: 457.2606.

4.2.1.4
3-Cyano-N-(3-((R)-4-(cyclopentanecarbonyl)-3-metipgrazin-1-yl)-2,3-dihydro-1H

-inden-5-yl)benzamidab) as white solid (30.2%); mp 178.3-179.4%€ NMR (400

MHz, DMSO-dg) & 10.39 (s, 1H), 8.40 (dl = 10.0 Hz, 1H), 8.24 ({] = 7.4 Hz, 1H),
8.06 (d,J = 7.4 Hz, 1H), 7.81 (s, 1H), 7.75 {t= 7.5 Hz, 1H),7.68-7.53 (m, 1H), 7.21
(d,J = 7.1 Hz, 1H), 4.54 (m, 1H), 4.35-4.16 (m, 2HYB(m, 1H), 3.26 (m, 1H), 2.86
(m, 2H), 2.73 (m, 2H), 2.34-2.19 (m, 2H), 1.987kl), 1.69-1.49 (m, 8H), 1.33-1.13
(m, 3H).*C NMR (151 MHz, DMSOdg) & 173.07, 163.28, 142.98, 138.91, 137.01,
135.96, 134.68, 132.34, 131.08, 129.63, 124.32,/01918.18, 116.77, 111.33, 68.97,
51.04, 47.83, 46.59, 43.75, 40.64, 30.52, 29.5)%25.46, 20.02, 16.81, 15.23. MS
(ESI) m/z: 457.3[M+H]. HRMS (ESI) m/z calcd for GgHzN4O, [M+H]" :
457.2598; found: 457.2599.

4.2.1.5
3-Cyano-N-(3-((3S,5R)-4-(cyclopentanecarbonyl)-drbethylpiperazin-1-yl)-2,3-dih
-ydro-1H-inden-5-yl)benzamidgd) as white solid (46.7%); mp 184.7-185.8°tH
NMR (400 MHz, DMSOdg) & 10.39 (s, 1H), 8.39 (s, 1H), 8.24 (d, J = 7.4 Hd),
8.06 (d, J = 7.5 Hz, 1H), 7.84 (s, 1H), 7.75 &, 0.7 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H),
7.21 (d, J = 8.0 Hz, 1H), 4.37 (m, 2H), 4.09 (m)12485 (M, 2H), 2.72 (m, 2H), 2.42
(m, 1H), 2.32 (m, 2H), 2.08 — 1.94 (m, 2H), 1.78.49 (m, 8H), 1.38-1.19 (m, 6H)..
¥C NMR (151 MHz, DMSOdg) 6 174.00, 163.29, 138.94, 137.05, 135.96, 134.69,
132.35, 131.08, 129.63, 124.33, 119.73, 118.18,801411.33, 69.29, 55.38, 50.77,
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30.52, 29.59, 25.60. MS (ESI) m/z: 471.3[M¥HHRMS (ESI) m/z calcd for
CagH34N402 [M+H] ":471.2755; found:471.2750.

4.2.1.6

3-Cyano-N-(3-(8-(cyclopentanecarbonyl)-3,8-diazgbio [3.2.1] octan-3-yl)-2,3-
dihydro-1H-inden-5-yl) benzamidig) as white solid (66.7%); mp 105.6-106.2°C

'H NMR (400 MHz, DMSOds) 5 10.38 (s, 1H), 8.39 (s, 1H), 8.24 (U= 8 Hz, 1H),
8.06 (d,J = 8 Hz, 1H), 7.75 (m, 2H), 7.59 (d,= 8 Hz, 1H), 7.19 (dJ = 8 Hz, 1H),
4.48 (m, 1H), 4.34 (m, 2H), 2.78-2.69 (m, 4H), 2(89 2H), 1.97 (m, 5H), 1.72-1.50
(m, 1OH).13C NMR (151 MHz, DMSOdg) 6170.91, 163.33, 143.00, 138.79, 137.11,
135.99, 134.69, 132.35, 131.10, 129.63, 124.32,6119118.19, 116.61, 111.33,
68.08, 55.68, 54.09, 51.36, 40.79, 29.77, 29.623R828.24, 26.70, 26.58, 25.64,
24.09, 23.90. MS (ESI) m/z: 469.3[M+HHRMS (ESI) m/z calcd for GoHz,N40>
[M+H]": 469.2598; found:469.2597.

4.2.1.7
3-Cyano-N-(1-((S)-4-(cyclopentanecarbonyl)-3-meilpgdrazin-1-yl)-2,3-dihydro-1H

-inden-4-yl)benzamidd4) as yellow solid (46.9%): mp 103.6-105.8%€ NMR (400

MHz, DMSO-<g) & 10.14 (s, 1H), 8.39 (s, 1H), 8.24 (= 8.0 Hz, 1H), 8.08 (d] =
7.6 Hz, 1H), 7.75 (t) = 8.0 Hz, 1H), 7.36 (d] = 5.5 Hz, 1H), 7.26 (] = 7.6 Hz, 1H),
7.22-7.15 (m, 1H), 4.57-4.51 (m, 1H), 4.42-4.32 (bY), 4.26-4.16 (m, 1H),
3.81-3.70 (m, 1H), 3.33-3.13 (m, 1H), 2.95-2.81 (BH),2.77- 2.67 (m, 2H),
2.44-2.15 (m, 2H), 1.96 (m, 2H), 1.69-1.50 (m, 8H)35-1.06 (m, 3H)>*C NMR
(151 MHz, DMSOe€g) 6 173.13, 163.12, 143.81, 138.08, 135.46, 134.83.753
132.36, 131.21, 129.68, 126.48, 123.15, 122.03,161811.39, 69.12, 50.96, 49.78,
47.77, 43.71, 30.53, 30.31, 29.42, 29.04, 28.534@®&5.56, 25.46. MS (ESI) m/z:
457.3[M+H]. HRMS (ESI) m/z calcd for GgH3:N4O, [M+H]™: 457.2598;
found:457.2589.

4.2.1.8
3-Cyano-N-(1-((R)-4-(cyclopentanecarbonyl)-3-metipgrazin-1-yl)-2,3-dihydro-1H
-inden-4-yl)benzamiddb) as yellow solid (28.5%): mp 91.9-92.4°8.NMR (400
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MHz, DMSO-dg) § 10.15 (s, 1H), 8.39 (s, 1H), 8.26 (m, 1H), 8.09 {H), 7.76 (m,
1H), 7.36 (m, 1H), 7.26-7.17 (m, 2H), 4.56 (m, 1M4)37 (m, 1H), 4.19 (m, 1H),
3.83-3.70 (M, 1H), 3.31-3.10 (m, 1H), 2.89 (m, 2B{Y5 (m, 2H), 2.27(m, 2H), 1.98
(m, 2H), 1.70-1.57 (m, 8H), 1.35-1.12 (m, 3KjC NMR (151 MHz, DMSOdq) 5
173.12, 163.13, 143.88, 138.15, 135.46, 134.82,75633132.36, 131.21, 129.68,
126.48, 123.17, 121.73, 118.16, 111.39, 69.23,H043.77, 46.63, 43.98, 30.52,
29.04, 28.53, 25.56, 23.49, 22.85, 16.73, 15.36.(K&) m/z: 457.3[M+H]. HRMS
(ESTI") m/z calcd for GgH3oN4O, [M+H] ™ : 457.2598; found:457.2596.

42.1.9
3-Cyano-N-(1-((3S,5R)-4-(cyclopentanecarbonyl)@raethylpiperazin-1-yl)-2,3-dih
ydro-1H-inden-4-yl)benzamidég) as white solid (28.5%); mp 101.6-102.7°t
NMR (400 MHz, DMSOds) & 10.13 (s, 1H), 8.39 (s, 1H), 8.25 (M= 8.0 Hz, 1H),
8.08 (d,J = 7.7 Hz, 1H), 7.76 (t) = 7.8 Hz, 1H), 7.37 (d] = 7.1 Hz, 1H), 7.27 (] =

8 Hz, 1H), 7.23 (dJ = 7.3 Hz, 1H), 4.42 (m, 2H), 4.10 (m, 1H), 2.882(m, 2H),
2.79-2.73 (m, 2H), 2.45 (m, 1H), 2.28-2.23 (m, 2HY8 (m, 2H), 1.78-1.50 (M, 8H),
1.39-1.16 (m, 6H)%3C NMR (151 MHz, DMSOdg) 6 174.01, 163.12, 144.05, 138.09,
135.47, 134.82, 133.75, 132.36, 131.21, 129.68,5126123.19, 121.84, 118.16,
111.39, 69.43, 55.58, 50.49, 47.80, 44.18, 30.9463 28.45, 25.60, 22.85, 22.03,
21.62, 20.55, 20.16. MS (ESI) m/z: 471.3 [M¥HHRMS (ESI) m/z calcd for
CagH34N4O2 [M+H]" : 471.2755; found:471.2745.

4.2.1.10

3-Cyano-N-(1-(8-(cyclopentanecarbonyl)-3,8-diazgbio [3.2.1] octan-3-yl)-2,3-
dihydro-1H-inden-4-yl) benzamid&l) as white solid (60.4%); mp 115.3-116.4°C.

'H NMR (400 MHz, DMSOds) § 9.99 (s, 1H), 8.26 (s, 1H), 8.11 (M= 7.3 Hz, 1H),
7.95 (d,J = 7.4 Hz, 1H), 7.62 () = 7.5 Hz, 1H), 7.23 (d] = 7.5 Hz, 1H), 7.13 (] =
7.4 Hz, 1H), 7.04 (d) = 7.2 Hz, 1H), 4.34-4.13(m, 3H), 2.71 (m, 2H),2 (&, 2H),
2.32 (m, 1H), 2.17-2.12 (m, 2H), 1.84 (m, 2H), 7736 (m, 12H)**C NMR (151
MHz, DMSO-ds) 6170.85, 163.12, 143.79, 138.03, 135.47, 134.82,743332.36,
131.21, 129.68, 126.51, 123.14, 121.89, 118.16,381568.21, 56.94, 54.44, 51.69,
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50.24, 40.81, 29.77, 29.61, 28.53, 28.32, 26.6H4L325.56, 23.60. MS (ESI) m/z:
469.3[M+H]". HRMS (EST) m/z calcd for GoH3oN4O, [M+H]" : 469.2598; found:
469.2593.

42.1.11

3-Cyano-N-(3-(8-(cyclobutanecarbonyl)-3,8-diazabloy [3.2.1] octan-3-yl)-2,3-
dihydro-1H-inden-5-yl) benzamids) as white solid (55.0%); mp 114.6-115.8°C.

'H NMR (400 MHz, DMSO#ds) § 10.38 (s, 1H), 8.39 (s, 1H), 8.24 (tk 8.0 Hz, 1H),
8.06 (d,J = 7.5 Hz, 1H), 7.86-7.68 (m, 2H), 7.67-7.56 (m,)1FA19 (d,J = 8.0 Hz,
1H), 4.42 (ddJ = 5.6 Hz,27.9 Hz, 1H), 4.29 () = 7.0 Hz, 1H), 4.08, (dd] = 5.0 Hz,
29.1 Hz, 1H), 3.28 (m, 1H), 2.81 (m, 1H), 2.72 @hl), 2.45 (m, 1H), 2.47-2.17 (m,
4H), 2.09-1.63 (m, 10H)*C NMR (151 MHz, DMSOdg) & 169.31, 163.33, 142.97,
138.74, 137.08, 135.99, 134.68, 132.34, 131.09,629124.31, 119.60, 118.18,
116.58, 111.32, 68.08, 57.07, 55.67, 54.01, 5138516, 29.59, 28.18, 26.72, 24.63,
24.17, 23.89, 17.48. MS (ESI) m/z: 455.3[M¥HHRMS (ESI) m/z calcd for
CagH3oN40; [M+H] ™ : 455.2442; found:455.2433.

4.2.1.12

3-Cyano-N-(3-(8-(cyclohexanecarbonyl)-3,8-diazabicy [3.2.1] octan-3-yl)-2,3-
dihydro-1H-inden-5-yl) benzamidik) as white solid (45.6%); mp 242.8-243.24€.
NMR (400 MHz, DMSOdg) & 10.39 (s, 1H), 8.40 (s, 1H), 8.25 (U= 7.8 Hz, 1H),
8.07 (d,J = 7.8 Hz, 1H), 7.76 (m, 2H), 7.60 (@= 7.7 Hz, 1H), 7.19 (d] = 8.0 Hz,
1H), 4.44 (ddJ = 25.3 Hz,6.5 Hz, 1H), 4.35-4.22 (m, 2H)., 2.79-2.68 (m, 3BI¥5
(m, 2H), 2.35-2.21 (m, 2H), 1.98 (m, 2H), 1.89 (@), 1.67-1.23 (m, 12H)**C
NMR (151 MHz, DMSOeg) 6 170.96, 163.32, 142.96, 138.78, 137.08, 135.98,
134.68, 132.34, 131.09, 129.63, 124.32, 119.61,181816.62, 111.32, 68.05, 57.24,
55.66, 54.07, 51.20, 40.21, 29.60, 29.23, 29.0432826.68, 25.39, 25.05, 24.94,
24.10. MS (ESI) m/z: 483.3[M+H] HRMS (ESI) m/z calcd for GoHzsN4O:
[M+H] " : 483.2755; found:483.2744.

4.2.1.13
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3-Cyano-N-((3S)-3-(8-(cyclohexanecarbonyl)-3,8-dlAeyclo [3.2.1] octan-3-yl)-2,3
- dihydro-1H-inden-5-yl) benzamidéd) as white solid (42.0%); mp 110.2-112.5°C.
ee: 100%,[a]p* +122° (c 0.37, CHG). *H NMR (400 MHz, DMSOds) 5 10.39 (s,
1H), 8.40 (s, 1H), 8.25 (d} = 7.8 Hz, 1H), 8.07 (d) = 7.8 Hz, 1H), 7.76 (m, 2H),
7.60 (d,J=7.7 Hz, 1H), 7.19 (d] = 8.0 Hz, 1H), 4.44 (dd] = 25.3 Hz 6.5 Hz, 1H),
4.35-4.22 (m, 2H)., 2.79-2.68 (m, 3H), 2.45 (m, 2BB5-2.21 (m, 2H), 1.98 (m, 2H),
1.89 (m, 2H), 1.67-1.23 (m, 12H}C NMR (151 MHz, DMSOds) 5 170.96, 163.32,
142.96, 138.78, 137.08, 135.98, 134.68, 132.34,0831129.63, 124.32, 119.61,
118.18, 116.62, 111.32, 68.05, 57.24, 55.66, 540.20, 40.21, 29.60, 29.23, 29.05,
28.45, 26.68, 25.39, 25.05, 24.94, 24.10. MS (B8 483.3[M+H[. HRMS (EST)
m/z calcd for GoH34N4O, [M+H] ™ : 483.2755; found:483.2744.

4.2.1.14

3-Cyano-N-((3R)-3-(8-(cyclohexanecarbonyl)-3,8-dlaizyclo [3.2.1] octan-3-yl)
-2,3 -dihydro-1H-inden-5-yl) benzamide5df as white solid (56.0%); mp
112.6-113.8°C. ee:100%,a]p* -122° (¢ 0.37, CHG). 'H NMR (400 MHz,
DMSO-ds) § 10.39 (s, 1H), 8.40 (s, 1H), 8.25 (b= 7.8 Hz, 1H), 8.07 (d] = 7.8 Hz,
1H), 7.76 (m, 2H), 7.60 (d] = 7.7 Hz, 1H), 7.19 (d] = 8.0 Hz, 1H), 4.44 (dd] =
25.3 Hz,6.5 Hz, 1H), 4.35-4.22 (m, 2H)., 2.79-2.68 (m, 3R#5 (M, 2H), 2.35-2.21
(m, 2H), 1.98 (m, 2H), 1.89 (m, 2H), 1.67-1.23 (&2H). *C NMR (151 MHz,
DMSO-dg) 6 170.96, 163.32, 142.96, 138.78, 137.08, 135.98,68B3 132.34, 131.09,
129.63, 124.32, 119.61, 118.18, 116.62, 111.30)%K&H7.24, 55.66, 54.07, 51.20,
40.21, 29.60, 29.23, 29.05, 28.45, 26.68, 25.30354.94, 24.10. MS (ESI) m/z:
483.3[M+H]. HRMS (ESI) m/z calcd for GoH3:sN4O, [M+H]™: 483.2755;
found:483.2744.

4.2.1.15

3-Cyano-N-(3-(8-(2-cyclobutylacetyl)-3,8-diazabioyc [3.2.1] octan-3-yl)- 2,3-
dihydro-1H-inden-5-yl) benzamidis) as white solid (42.4%): mp 100.8-101.4°€.
NMR (400 MHz, DMSOds) & 10.39 (s, 1H), 8.40 (s, 1H), 8.24 (M= 7.2 Hz, 1H),
8.06 (d,J = 6.3 Hz, 1H), 7.75 (m, 2H), 7.60 (s, 1H), 7.19 Jd= 7.4 Hz, 1H),
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4.44-4.18(m, 3H), 2.76-2.50 (m, 5H), 2.43-2.25 Gh{), 1.99-1.63 (m, 11H)*C
NMR (151 MHz, DMSO-ds) 166.92, 163.33, 142.94, 138.80, 137.08, 135.98,7D,
132.35, 131.09, 129.63, 124.33, 119.62, 118.19,621411.33, 68.07, 56.79, 55.50,
54.66, 51.38, 31.98, 29.62, 28.38, 27.80, 27.7/(®R&6.66, 24.21, 18.04. MS (ESI)
m/z: 469.3 [M+H]. HRMS (ESI) m/z calcd for GoH3:N4O, [M+H]" : 469.2598;
found: 469.2592.

4.2.1.16

N-(3-(8-(Cyclopentanecarbonyl)-3,8-diazabicyclo 23] octan-3-yl)-2,3-dihydro-
1H-inden-5-yl)-6-methylnicotinamidsf) as white solid (38.4%); mp 228.3-231.2°C.
'H NMR (400 MHz, DMSO#dg) 5 10.31 (s, 1H), 9.00 (s, 1H), 8.19 (= 7.0 Hz, 1H),
7.78 (d,J = 9.2 Hz, 1H), 7.59 (brs, 1H), 7.42 = 7.5 Hz, 1H), 7.18 (d] = 7.5 Hz,
1H), 4.49-4.29(m, 3H), 2.84-2.69 (m, 5H), 2.5638)), 2.32 (m, 2H), 1.98-1.50 (m,
14H). **C NMR (151 MHz, DMSOdg) 6 170.88, 163.67, 160.81, 148.03, 142.94,
138.57, 137.25, 135.48, 127.78, 124.27, 122.50,591916.58, 68.06, 57.00, 55.65,
54.58, 54.09, 51.37, 50.93, 40.79, 29.77, 29.624®86.70, 25.66, 25.58, 24.10,
23.94. MS (ESI) m/z: 459.3 [M+H] HRMS (ESI) m/z calcd for GgHzN4O:
[M+H]* : 459.2755; found: 459.2753.

4.2.1.17

N-(3-(8-(Cyclopentanecarbonyl)-3,8-diazabicyclo 23]
octan-3-yl)-2,3-dihydro-1H-

inden-5-yl)-2-(tetrahydro-2H-pyran-4-yl) acetami@g) as white solid (55.6%); mp
89.5-90.2°C*H NMR (400 MHz, DMSOdg) 5 9.83 (s, 1H), 7.60 (d = 14.7 Hz, 1H),
7.40 (t,J = 9.5 Hz, 1H), 7.09 (d] = 8.1 Hz, 1H), 4.44 (dd] = 5.9 Hz, 26.2 Hz, 1H),
4.34-4.22 (m, 2H), 3.82 (m, 2H), 3.30 (m, 2H), 2862 (m, 4H), 2.43 (m, 1H),
2.31-2.22 (m, 4H), 1.98-1.93 (m, 2H), 1.90-1.50 (MH), 1.27-1.19(m, 3H)**C
NMR (151 MHz, DMSOdg) 6 170.76, 169.52, 142.87, 137.55, 124.20, 118.33,
115.33, 68.03, 66.72, 56.94, 55.52, 54.74, 54.480% 51.36, 50.93, 50.06, 43.49,
40.79, 32.29, 31.90, 29.77, 29.61, 28.37, 26.6/5712324.12MS (ESI) m/z: 466.3
[M+H]". HRMS (ESI) m/z calcd for GgH3gN3Os [M+H]™ : 466.3064; found:
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466.3060.

4.2.1.18
N-(3-(8-(Cyclopentanecarbonyl)-3,8-diazabicyclo[3]dctan-3-yl)-2,3-dihydro -1H
- inden-5-yl)-5-fluoro-6-methylnicotinamidsl) as white solid (56.9%); mp
109.2-110.6°C*H NMR (400 MHz, DMSO€s) & 10.36 (s, 1H), 8.86 (s, 1H), 8.13 (d,
J=10.4 Hz, 1H), 7.78 (d} = 9.2 Hz, 1H), 7.58 (s, 1H), 7.19 @z 8.2 Hz, 1H), 4.45
(dd,J = 6.5 Hz,27 Hz, 1H), 4.34 (m, 2H), 2.90-2.78 (m, 2H), 2.76&(m, 2H), 2.53
(s, 3H), 2.45 (m, 1H), 2.33-2.25 (m, 2H), 1.99 @hi), 1.92 (m, 2H), 1.72-1.50(m,
10H). °C NMR (151 MHz, DMSOdg) & 170.78, 162.32, 157.46, 155.77, 143.82,
143.01, 138.83, 136.99, 130.20, 124.33, 121.46,621916.60, 68.05, 57.00, 55.67,
54.08, 51.37, 40.79, 29.62, 28.40, 28.24, 26.7(8&5.64, 24.09, 23.90, 17.79. MS
(ESI) m/z: 477.3[M+H]. HRMS (ESI) m/z calcd for GgH3sFN4Op [M+H]™ :
477.2660; found: 477.2656.

4.2.1.19

1-(3-Cyanophenyl)-3-(3-(8-(cyclopentanecarbony8-8iazabicyclo[3.2.1] octan-3
-y)-2,3-dihydro-1H-inden-5-yl)ure&() as white solid (46.9%); mp 139.5-141.24€.
NMR (400 MHz, DMSOdg) & 8.93 (s, 1H), 8.80 (s, 1H), 7.94 (m, 1H), 7.64J¢;
8.2 Hz, 1H), 7.46 (t, J = 7.9 Hz, 2H), 7.40 (t, 8.% Hz, 1H), 7.26-7.16 (m, 1H), 7.09
(d, J = 8.0 Hz, 1H), 4.42 (dd] = 5.3 Hz,23.7 Hz, 1H), 4.32-4.22 (m, 2H), 2.85-2.79
(m, 2H), 2.74-2.63 (m, 2H), 2.40 (m, 1H), 2.30-2.@, 2H), 1.95 (m, 2H),
1.87-1.47(m, 12H)**C NMR (151 MHz, DMSOQdg) 170.79, 152.29, 143.08, 140.62,
137.53, 136.94, 130.00, 125.00, 124.45, 122.65,5P20118.74, 117.91, 114.74,
111.42, 68.05, 56.95, 54.74, 54.11, 51.34, 50.00814 29.81, 29.60, 28.37, 26.66,
25.64, 24.23. MS (ESI) m/z: 484.3[M+HHRMS (ESI) m/z calcd for GoHaaNsO,
[M+H] " : 484.2707; found: 484.2710.

4.2.1.20

3-Cyano-N-(1-(8-(cyclobutanecarbonyl)-3,8-diazabloy [3.2.1] octan-3-yl)-2,3-
dihydro-1H-inden-4-yl) benzamidi) as white solid (38.1%); mp 105.9-106.7°C.
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'H NMR (400 MHz, DMSOsg) 5 10.11 (s, 1H), 8.38 (s, 1H), 8.24 (s 7.7 Hz, 1H),
8.07 (d,J = 7.7 Hz, 1H), 7.75 ( = 7.8 Hz, 1H, 1H), 7.36 (d,= 7.7 Hz, 1H), 7.25 (t,
J=7.6 Hz, 1H), 7.16 (d] = 7.2 Hz, 1H), 4,41 (dd} = 5.5 Hz,26.2 Hz, 1H), 4.32 (1]

= 6.9 Hz, 1H), 4.08 (ddJ = 4.3 Hz,29.6 Hz, 1H), 3.27 (m, 1H), 2.83 (m, 1H),
2.74-2.67 (m, 2H), 2.46-2.38 (m, 1H), 2.27-2.10 @hi), 2.03-1.64 (m, 10H)C
NMR (151 MHz, DMSOdg) 6 169.34, 163.11, 143.72, 138.01, 135.46, 134.81,
133.72, 132.35, 131.21, 129.68, 126.51, 123.13,872118.15, 111.39, 68.21, 55.39,
53.60, 51.31, 50.15, 36.47, 28.50, 28.17, 26.648424.13, 23.55, 17.48. MS (ESI)
m/z: 455.3[M+H]. HRMS (EST) m/z calcd for GgHzoN4O, [M+H]" : 455.2442;
found:455.2442.

4.2.1.21

3-Cyano-N-(1-(8-(cyclohexanecarbonyl)-3,8-diazabiicy [3.2.1] octan-3-yl)-2,3 -
dihydro-1H-inden-4-yl) benzamidéh) as white solid (46.5%); mp 118.1-119.6°C.
'H NMR (400 MHz, DMSO#dg) 5 10.11 (s, 1H), 8.38 (s, 1H), 8.24 (= 7.5 Hz, 1H),
8.07 (d,J=7.6 Hz, 1H), 7.75 (1) = 7.6 Hz, 1H, 1H), 7.36 (d,= 7.7 Hz, 1H), 7.26 (t,
J = 7.3 Hz, 1H), 7.17 (d) = 6.7 Hz, 1H), 4,43 (dd] = 4.8 Hz,25.3 Hz, 1H), 4.36
-4.20 (m, 2H), 2.83 (m, 1H), 2.78-2.67 (m, 2H), 2@n, 2H), 2.34-2.25 (m, 2H),
1.97-1.62 (m, 11H), 1.38-1.10 (m, 5fC NMR (151 MHz, DMSOdg) & 170.91,
163.11, 143.76, 138.06, 135.47, 134.82, 133.73,3632131.21, 129.68, 126.51,
123.14, 121.91, 118.16, 111.39, 68.20, 57.12, 555801, 54.06, 51.14, 50.70, 40.21,
29.23, 28.56, 28.37, 26.62, 25.38, 25.05, 23.66.(K&) m/z: 483.3[M+H]. HRMS
(ESTI") m/z calcd for GgH3a4N4O, [M+H] ™ : 483.2755; found:483.2759.

4.2.1.22
3-Cyano-N-(1-(8-(2-cyclobutylacetyl)-3,8-diazabiof8.2.1]octan-3-yl)-2,3-dihydro
-1H-inden-4-yl)benzamides¢) as white solid (56.5%); mp 187.4-189.1°€. NMR
(400 MHz, DMSOdg) § 10.11 (s, 1H), 8.38 (s, 1H), 8.24 (t= 7.7 Hz, 1H), 8.07 (d,
J=7.6 Hz, 1H), 7.75 (t) = 7.8 Hz, 1H), 7.36 (d] = 7.8 Hz, 1H), 7.25 (t) = 7.5 Hz,
1H), 7.17 (dJ = 7.0 Hz, 1H), 4.42 (dd] = 4.7 Hz,24.6 Hz, 1H), 4.33 (t) = 6.9 Hz,
1H), 4.22 (ddJ = 4.5 Hz,31.3 Hz, 1H), 2.82 (m, 1H), 2.74 (m, 1H), 2.68 (th{),
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2.58 (m, 1H), 2.47-2.24 (m, 6H), 2.00-1.59 (m, 1% NMR (151 MHz, DMSOds)

0 166.88, 163.11, 143.73, 138.02, 135.53, 134.83,723 132.35, 131.21, 129.68,
126.50, 123.13, 121.89, 118.15, 111.39, 68.22, H4.26, 51.27, 50.87, 32.01,
28.51, 28.31, 27.80, 26.64, 23.65, 18.04. MS (B8 469.3[M+H[. HRMS (EST)
m/z calcd for GgH3oN4O, [M+H] ™ : 469.2598; found:469.2594.

4.2.1.23
N-(1-(8-(Cyclopentanecarbonyl)-3,8-diazabicyclo[3]dctan-3-yl)-2,3-dihydro-1H-i
nden-4-yl)-6-methylnicotinamidéd) as white solid (44.5%); mp 99.0-101.2°tH
NMR (400 MHz, DMSOdg) § 10.02 (s, 1H), 8.99 (s, 1H), 8.18 (= 8.1 Hz, 1H),
7.41 (t,J=8.1 Hz, 1H), 7.36 (d] = 7.7 Hz, 1H), 7.25 () = 7.5 Hz, 1H), 7.16 (d] =
7.3 Hz, 1H), 4.44 (dd) = 6.1 Hz,26.0 Hz, 1H), 4.35-4.26 (m, 2H), 2.85 (m, 2H),
2.72 (m, 2H), 2.55 (s, 3H), 2.44 (t= 8 Hz, 1H), 2.32-2.25 (m, 2H), 1.97 (m, 2H),
1.90-1.78 (m, 2H), 1.73-1.49(m, 10H)C NMR (151 MHz, DMSOdg) & 170.80,
163.46, 160.98, 148.12, 143.68, 138.00, 135.52,8833127.24, 126.47, 123.17,
122.55, 121.73, 68.23, 55.46, 54.07, 51.32, 5141, 29.61, 28.52, 28.32, 26.63,
25.56, 23.94, 23.60. MS (ESI) m/z: 459.3 [M¥HHRMS (ESI) m/z calcd for
CagH34N40; [M+H] ™ : 459.2755; found:459.2751.

4.2.1.24
N-(1-(8-(Cyclopentanecarbonyl)-3,8-diazabicyclo[3]dctan-3-yl)-2,3-dihydro-1H-i
nden-4-yl)-2-(tetrahydro-2H-pyran-4-yl)acetamifle as white solid (46.5%); mp
85.6-86.0°C*H NMR (400 MHz, DMSOds) § 9.28 (s, 1H), 7.44 (dl = 8.2 Hz, 1H),
7.19-7.11 (m, 1H), 7.04 (d,= 6.2 Hz, 1H), 4.41 (m, 1H), 4.33-4.16 (m, 2HBB(m,
2H), 3.29 (m, 2H), 2.84-2.71 (m, 2H), 2.66-2.63 (&H), 2.43-2.39 (m, 1H),
2.26-2.21 (m, 4H), 1.95 (m, 2H), 1.84-1.50 (m, 14HP9-1.19(m, 3H)**C NMR
(151 MHz, DMSOe€) 6 170.83, 169.57, 143.46, 135.70, 134.33, 126.39,48?
120.63, 68.21, 66.73, 56.96, 56.88, 55.49, 54.423( 50.90, 42.86, 40.80, 32.24,
29.61, 28.31, 26.62, 25.63, 23.53. MS (ESI) m/8.28GM+H]". HRMS (EST) m/z
calcd for GgH3oN3O3 [M+H] " : 466.3064; found: 466.3068.

4.2.1.25
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N-(1-(8-(Cyclopentanecarbonyl)-3,8-diazabicyclo 23]
octan-3-yl)-2,3-dihydro-1H-

inden-4-yl)-5-fluoro-6-methylnicotinamid#j as white solid (46.5%); mp
107.8-108.9°C*H NMR (400 MHz, DMSOs) 5 10.11 (s, 1H), 8.86 (s, 1H), 8.10 (d,
J =10.2 Hz, 1H), 7.35 (d] = 6.9 Hz, 1H), 7.26 (t) = 7.8 Hz, 1H), 7.17 (d] = 6.9
Hz, 1H), 4.43 (m, 1H), 4.33-4.26 (m, 2H), 2.82 (@h]), 2.75-2.68 (m, 2H), 2.53 (s,
3H), 2.45 (m, 1H), 2.29-2.25 (m, 2H), 1.97 (m, 2HB8 (m, 2H), 1.71-1.49(m, 10H).
¥c NMR (151 MHz, DMSOdg) 170.80, 162.13, 157.49, 155.76, 149.08, 143.86,
138.06, 133.59, 129.69, 126.53, 123.18, 121.95,482171.19, 68.20, 56.93, 55.45,
54.06, 51.31, 50.25, 40.80, 29.61, 28.53, 28.382&5.56, 23.62, 17.80. MS (ESI)
m/z: 477.3[M+H}. HRMS (EST) m/z calcd for GgHzaFN,O, [M+H]* : 477.2660;
found: 477.2653.

4.2.1.26

1-(3-Cyanophenyl)-3-(1-(8-(cyclopentanecarbony§-3diazabicyclo [3.2.1] octan -3
-yl)-2,3-dihydro-1H-inden-4-yl) ure&g) as white solid (66.5%); mp 142.7-143.4°C.
'H NMR (400 MHz, DMSOdg) 5 9.34 (s, 1H), 8.19 (s, 1H), 8.03 (s, 1H), 7.83L4),
7.64 (s, 1H), 7.51 (s, 1H), 7.45 (s, 1H), 7.191(d), 6.99 (s, 1H), 4.42 (m, 1H),
4.32-4.22 (m, 2H), 2.85-2.79 (m, 2H), 2.74-2.63 PH), 2.45 (m, 1H), 2.29 (m, 2H),
1.99 (m, 2H), 1.74-1.52(m, 12HYC NMR (151 MHz, DMSQOds) 170.84, 152.14,
143.31, 140.47, 135.08, 132.51, 130.08, 126.84,1P25122.51, 120.36, 118.91,
118.70, 117.92, 111.51, 68.29, 56.80, 54.74, 5402430, 40.80, 29.75, 28.31, 27.81,
26.63, 25.64, 23.51IMS (ESI) m/z: 484.3[M+H]. HRMS (ESI) m/z calcd for
CooH33NsO, [M+H] " : 484.2707; found: 484.2703.

4.3. Biological assays

4.3.1. RORFRET assay

The assays were performed in an assay buffer ¢mgsisf 50 mM NaF, 50 mM
3-(N-morpholino)propanesulfonic acid, pH 7.4, 0.05 mM(&cholamidopropyl)

dimethylammonio]propanesulfonate, 0.1 mg/mL boweeum albumin, and 10 mM
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660 dithiothreitol in 384-well plates. The total volumeas 25 plL/well. The
661 europium-labeled SRC1 solution was prepared byraddn appropriate amount of
662 biotinylated SRC and europium labeled streptavigito assay buffer, with final
663 concentrations of 20 and 10 nM, respectively. Thdlophycocyanin
664 (APC)-labeled-LBD solution was prepared by adding appropriate amount of
665 biotinylated RORc-LBD and APC-labeled streptavidinfinal concentrations of 20
666 and 10 nM, respectively. After 15 min of incubatiahroom temperature, a 20-fold
667  excess of biotin was added and incubated for 10atibom temperature to block the
668 remaining free streptavidin. Equal volumes of ewoplabeled SRC and
669 APC-labeled RORc-LBD were then mixed with 04M surrogate agonist
670  N-(2-chloro-6-fluorobenzylN-((20-methoxy-[1,10-biphenyl]-4-yl) methyl)
671 benzenesulfonamide and dispensed into 384-wellygdates at 2quL volume/well.
672 The 384-well assay plates had 100 nL of test comgpon DMSO predispensed into
673 each well. The plates were incubated for 1 h atmreemperature and then read on
674  Envision in LANCE mode configured for europeum-ARGels.

675 4.3.2. Mouse Th17 differentiation assay

676 CD4' T cells were purified from mouse splenocytes usirgpmmercial CD4T cell
677 negative selection kit (Invitrogen). CD4T cells were skewed to Th17 cells by
678 culturing cells in the presence of anti-CD3 (02%mL, Bioxcel), anti-CD28 (1
679 ug/mL, Bioxcel), anti-IFNy (2 ug/mL, Bioxcel), anti-IL-4 (2ug/mL, Bioxcel),
680 TGF$ (5 ng/mL, Peprotech) and IL-6 (20 ng/mL, Peprojefdr 4 days before
681  analysis. Compounds or DMSO control were addedhéoculture on day O of Th17
682 differentiation at indicated concentrations. Petaga of IL-17 production from CD4
683 T cells were analyzed by intracellular stainingldaled by flow cytometry.
684 Dose-response curves were plotted to determine -niatimal inhibitory
685 concentrations (I§) for the compounds using the GraphPad Prism 5 pi@tad
686  Software, San Diego CA, USA).

687  4.3.3. Molecular docking studies

688 Molecular docking was carried out using Schrodingds software package. The
689  co-crystal structure of RORLBD (PDB: 6CNG6) was selected and processed using

690 the Protein Preparation Wizard including water tiete addition of missing hydrogen
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691 atoms as well as adjustment of the tautomerizatiahprotonation states of histidine.
692 The compound 3D structures were subjected to ermargymization with force field
693 (OPLS_2005) before submitting to the docking proced The docking grid was
694 centered according to the ligand position, andoiiending box was set to 15 A. This
695 docking was performed with Glide-docking using BxtPrecision (GlideXP)
696 algorithm. The final ranking from the docking waassbd on the docking score, which
697 combines the Epik state penalty with the Glide 8cétigh-scoring complexes were
698 inspected visually to select the most reasonalbigisn.

699
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Resear ch highlights
Novel N-indanyl benzamide derivatives were discovered as potent RORVyt inverse
agonists.
The structure-activity relationships (SAR) were explored.

« 5c as (§-enantiomer showed good RORyt inverse agonist activities in both FRET
and mouse Th17 cell differentiation assays.

«  Thebinding mode study demonstrated the superiority of conformational restriction

in N-indanyl benzamide (S)-enantiomers.



