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Abstract
Pd-based nanocatalysts were prepared through immobilization of Pd(OAc)2/phenanthroline on nanocarbon materials and 
subsequent pyrolysis. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) 
and electron microscopy (TEM). Pd-based nanocatalysts can efficiently catalyze the oxidative Heck reaction of tetrafluo-
ropropylene by using H2O2 as a green oxidant and generate (Z)-β-fluoro-β-(trifluoromethyl)styrenes in excellent yield. The 
yield and Z/E selectivity of the titled reaction remained higher than 90% after four reaction cycles.
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1  Introduction

The development of heterogeneous catalysts for organic 
transformation is of interest for organic and material sci-
ences [1–6]. In general, such catalysts present advantages 
over classical homogeneous systems due to their easy recov-
ery and the possibility of recycling [7–12]. This is of par-
ticular importance when the catalyst is based on scarce and 
expensive noble metals. On the other hand, heterogeneous 
catalysts often display lower reactivity and selectivity than 
their homogeneous counterparts. Fluorine-containing aryl 
compounds have important applications in medicinal chem-
istry [13–15]. Therefore, many research groups are commit-
ted to developing new chemical reactions for the synthesis of 

such compounds. Among the various catalytic transforma-
tions applied for the synthesis of these compounds, palla-
dium-catalyzed cross-coupling reactions are of exceptional 
importance. We have a long-standing interest in this area, 
especially in palladium-catalyzed cross-coupling of aryl hal-
ides and related substrates [16–18].

In the past, palladium has been mainly supported on 
“classic” inorganic oxides as well as carbon, silicon diox-
ide, and aluminum trioxide. Recently, the incorporation of 
dopants into the matrix of the parent support has become a 
highly active and interesting area in organic chemistry. More 
specifically, palladium-supported N-doped carbon materials 
(Pd/PdO@NGr-C) have generated major interest, and some 
interesting research has been performed by using this cata-
lyst [19, 20]. We thought that such doping could improve the 
binding properties of the support and therefore minimize the 
leaching of palladium atoms (small clusters).

The Heck reaction is one of the most commonly employed 
transformations for the formation of carbon–carbon bonds. 
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Because of the mild reaction conditions, the availability 
of reagents, and the broad functional group tolerance of 
this transformation, it has found extensive use in synthetic 
organic chemistry [21–23]. However, only a few oxidative 
Heck reactions can tolerate a wider range of fluorinated sub-
strates because these cross-coupling reactions usually result 
in low yields or completely inhibit the catalyst [24–28]. For 
those reasons, a heterogeneous palladium catalyst in which 
the metal is immobilized on a solid support to allow highly 
effective catalysis of the oxidative Heck reaction is urgently 
needed.

Based on our previous palladium-catalyzed fluorinated 
olefin cross-coupling reaction [29, 30], herein, we report on 
the use of Pd/PdO@NGr-C as a heterogeneous catalyst in an 
oxidative Heck reaction using a wide range of arylboronic 
acids and 2,3,3,3-tetrafluoroprop-1-ene. (Z)-β-Fluoro-β-
(trifluoromethyl)styrenes can be synthesized in high yield 
by using H2O2 (30% water solution) as a green oxidant.

2 � Results

The preparation of Pd/PdO@NGr-C involves three steps, 
as shown in Scheme 1. First, palladium acetate (as the pal-
ladium precursor) and 1,10-phenanthroline were mixed in 
ethanol with stirring at 60 °C for 1 h. Second, the result-
ing mixture was adsorbed on carbon and dried at 60 °C 
overnight. Finally, the samples were subjected to pyrolysis 
under vacuum at 800 °C for 2 h under a N2 atmosphere. 
The amount of palladium determined by elemental analysis 
was 4.6% wt%, while the nitrogen and carbon contents were 
2.1 wt% and 86.2 wt%, respectively. The initial loading of 
palladium was 5.1%. This shows that this synthesis process 
does not have much metal loss.

To investigate the structure of the catalyst in more detail, 
several characterization methods were used. The nature of 
the palladium and nitrogen species on the surface of the 
catalyst was analyzed by X-ray photoelectron spectroscopy 
(Fig. 1a). The Pd3d XPS data (Fig. 1b) reveal the presence 

of two Pd species. The first one has a binding energy of 
approximately 341.1 eV and is assigned as Pd(0) (41%). The 
second Pd species has a binding energy of approximately 
343.8 eV and is assigned as Pd(II) in the form of palladium 
oxide (59%). Three distinct peaks are observed in the N1s 
spectra with electron-binding energies of 398.3 eV. 399.6 eV 
and 400.7 eV (Fig. 1c). Finally, the peak with the lowest 
binding energy can be attributed to pyridine-type nitrogen 
(sp2 hybridized, 41.1%).

2.1 � XPS Spectra

The electron-binding energy of 399.6 eV is characteristic of 
a pyrrole-type nitrogen (sp3 hybridized, 24.5%). The peak at 
400.7 eV is typical of quaternary N (sp2 hybridized, 24.3%). 
In addition to those three nitrogen types, N oxide of pyri-
dinic N (small peak at 402.8 eV, 9.9%) was also observed, 
with the oxygen atoms probably arising from the acetate 
counterions. Additionally, the C1s spectra showed 3 peaks 
(Fig. 1d): the sharp peak at 284.1 eV corresponds to the sp2 
carbon with C = C, while the smaller peaks at 285.4 eV and 
286.8 eV are assigned to C-N and C = N, respectively. The 
peak observed at 289.8 eV is ascribed to the π-π* transition 
typical for aromatic rings.

2.2 � XRD Pattern Analyses

As shown in Fig. 2, the X-ray diffraction (XRD) studies con-
firmed the presence of palladium dispersed into the carbon 
powder. By comparing the XRD patterns of the new material 
with the XRD patterns of Pd/C, it is possible to identify the 
characteristic broad peak of the amorphous carbon support 
(approximately 2θ = 24 °C), and the three peaks at 2θ = 40°, 
48° and 68° are assigned to palladium(0). On the other hand, 
the peaks at 2θ = 42° and 54° demonstrate the existence of 
PdO. Rietveld refinement analysis further gives phase frac-
tions of 88.9% Pd and 11.1% PdO, and an average particle 
size of 45 nm for PdO.
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Scheme 1   Preparation of nanosized Pd
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2.3 � HRTEM Images

TEM analysis confirmed the presence of Pd nanoparticles 
with a very broad range of sizes (Fig. 3a). On some particles, 
several graphene layers formed as a result of carbonization 
of the nitrogen ligand. These layers cover or partially cover 

some of the Pd particles (Fig. 3b, c). Since the HRTEM 
images show the presence of Pd in an area without Pd 
particles, these finely distributed particles or clusters are 
likely PdO particles. However, due to the low quality of the 
HRTEM images, we are unable to distinguish Pd particles 
from the PdO particles directly.

Fig. 1   a XPS spectra for pal-
ladium supported on N-doped 
carbon (Pd/PdO@NGr-C), b 
Pd3d XPS spectrum, c N 1 s 
XPS spectrum, d C1s XPS 
spectrum
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Fig. 2   Rietveld refinement of the powder XRD pattern of palladium supported on N-doped carbon
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We initially chose 4-methoxyphenylboronic acid 1a as a 
substrate for the screening of this coupling transformation. 
A solution of 4-methoxyphenylboronic acid 1a (1.0 mmol) 
and 2,3,3,3-tetrafluoroprop-1-ene 2 (2.0 mmol) in MeCN 
(2.0 mL) was stirred, and Pd/PdO@NGr-C (1 mol%) was 
used as a catalyst, NaHCO3 was used as a base and H2O2 
(30% water solution) was used as an oxidant. Only (Z)-β-
fluoro-β-(trifluoromethyl)styrene 3a was formed in a low 
yield of 43%, albeit with a high Z/E ratio (Table 1, entry 
1). Next, the influence of catalyst loading was examined. 
It could be seen that 5 mol% was the best loading for the 
reaction (Table 1, entries 2–4). Third, the oxidant was 
changed to O2 (1 bar), and the product formed in a yield 
of 45% (Table 1, entry 5). Moreover, when the solvent was 
varied across a series including water and DMSO, a better 
yield was obtained when 1,4-dioxane served as the solvent 
(Table 1, entries 6–10). Moreover, the influence of the base 
was examined, and it was observed that NaHCO3 was the 
best base for the reaction (Table 1, entries 11–13). Finally, 
when the temperature was raised to 80–100 °C, a good 
yield of 3a (95%) was obtained (Table 1, entries 14–15). It 
is gratifying that the common palladium carbon as a catalyst 
also has catalytic activity for this reaction, but the yield is 
relatively low (Table 1, entry 16).

In summary, the best reaction conditions for this cou-
pling process were as follows: Pd/PdO@NGr-C (5 mol%), 

2,3,3,3-tetrafluoroprop-1-ene 2 (2.0 equiv), NaHCO3 (2.0 
equiv), H2O2 (2.0 eq), and 1,4-dioxane (2.0 mL) at 100 °C 
for 12 h.

3 � Discussion

3.1 � Substrate Scope

To explore the scope of the coupling reaction, various arylb-
oronic acids were examined for coupling with 2,3,3,3-tetra-
fluoroprop-1-ene 2 by using Pd/PdO@NGr-C as a hetero-
geneous catalyst and H2O2 as a green oxidant. The results 
are summarized in Table 2. Para-substituted phenylboronic 
acids reacted smoothly with 2,3,3,3-tetrafluoroprop-1-ene 
2 to afford the desired products in excellent yields (Table 2, 
3a-3 g). Next, substrates having m- or o-substituents also 
reacted with acceptable yields (Table 2, 3 h-3j). Disubsti-
tuted arylboronic acids were also tested, and good yields 
were obtained (Table 2, 3 k-3 m). Furthermore, a carbazole-
derived boronic acid could also be converted into the cor-
responding product in moderate yield (Table 2, 3n).

It is well known that this kind of catalyst can be recy-
cled by centrifugation and then reused for an additional 
process. After five runs without an obvious decrease in 
either the yield or the conversion, the yield remained at 

Fig. 3   HRTEM images of palladium supported on N-doped carbon (Pd@NGr-C) showing a broad range of different particle sizes
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approximately 92%, which indicated the good stability of 
the Pd/PdO@NGr-C catalyst (Fig. 4).

We seriously conducted a recycling experiment on 
the recovered catalyst. The content of palladium metal 
in the solution after one cycle was tested. It can be seen 
that there is only 1PPM. There is almost no loss. After 
five trials, the yield decreased by about 10%, which may 
be the operation loss of some catalysts in the catalyst 
recovery experiment. After all, the amount of catalyst is 
relatively small. In addition, we have collected the reac-
tion solution for ICP-MS measurement at the end of the 
first catalytic cycle. The concentration of palladium ions 
in the post-reaction liquid is very low (1 ppm in 2 mL 

solution), which shows that this catalytic cycle process 
is heterogeneous catalysis, not a homogeneous catalyst.

4 � Materials and Methods

Unless otherwise mentioned, the solvents and reagents 
were purchased from commercial sources (Macklin, 
Heowns, Meryer Co. Ltd) and used as received. 1H, 13C 
and 19F NMR spectra were recorded on 400 and 500 MHz 
spectrometers. 1H NMR chemical shifts were determined 
relative to internal (CH3)4Si (TMS) at δ 0.0 or to the signal 
of the residual protonated solvent: CDCl3 δ 7.26. 13C NMR 

Table 1   Optimization reaction conditions 

The optimal reaction condition is given in bold
Reaction conditions: arylboronic acid 1a (1.0 mmol), 2,3,3,3-tetrafluoroprop-1-ene 2 (2.0 mmol), catalyst (5 mol%), base (2.0 mmol), oxidant 
(2.0 mmol), solvent (2.0 mL), 60 °C, 12 h.
a Isolated yield
b 80 °C
c 100 °C

Entry Catalyst (mol%) Solvent Oxidant Base Yielda (%) Z/E

1 1 MeCN H2O2 NaHCO3 43  > 99:1
2 2 MeCN H2O2 NaHCO3 56  > 99:1
3 5 MeCN H2O2 NaHCO3 62  > 99:1
4 10 MeCN H2O2 NaHCO3 58  > 99:1
5 5 MeCN O2 (1 bar) NaHCO3 45  > 99:1
6 5 H2O H2O2 NaHCO3 34  > 99:1
7 5 1,4-dioxane H2O2 NaHCO3 79  > 99:1
8 5 MePh H2O2 NaHCO3 55  > 99:1
9 5 DMF H2O2 NaHCO3 42  > 99:1
10 5 DMSO H2O2 NaHCO3 37  > 99:1
11 5 1,4-dioxane H2O2 Na2CO3 71  > 99:1
12 5 1,4-dioxane H2O2 KHCO3 75  > 99:1
13 5 1,4-dioxane H2O2 K2CO3 77  > 99:1
14 5 1,4-dioxane H2O2 NaHCO3 95b  > 99:1
15 5 1,4-dioxane H2O2 NaHCO3 87c  > 99:1
16 Pd/C 1,4-dioxane H2O2 NaHCO3 29  > 99:1



	 Y. Li et al.

1 3

Table 2   Oxidative Heck reaction between 2,3,3,3-tetrafluoroprop-1-ene and arylboronic acids in the presence of Pd/PdO@NGr-C
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Table 2   (continued)

 
 

Reaction conditions: 1 (1.0  mmol), 2 (2.0  mmol), Pd/PdO@NGr-C (5  mol%), NaHCO3 (2.0  mmol), H2O2 (30%, 2.0  mmol), 1,4-dioxane 
(2.0 mL), 80 °C, 12 h.
a Isolated yield



	 Y. Li et al.

1 3

chemical shifts were determined relative to internal TMS 
at δ 0.0. For the isolated compounds, 19F NMR chemical 
shifts were determined relative to CFCl3 at δ 0.0. 19F NMR 
chemical shifts were determined relative to p-fluoroace-
tophenone at δ -107.5. Data for 1H, 13C and 19F NMR are 
recorded as follows: chemical shift (δ, ppm), multiplicity 
(s = singlet, d = doublet, t = triplet, m = multiplet, q = quar-
tet, br = broad). Mass spectra were obtained on a mass 
spectrometer. High-resolution mass data were recorded on 
a high-resolution mass spectrometer in ESI mode.

The reactions were carried out in glassware sealed 
with Teflon screw caps using the vacuum line technique. 
The reactions were stirred using Teflon-coated magnetic 
stir bars. The room temperature in the laboratory was 
25 ± 2 °C. Elevated temperatures were maintained using 
thermostat-controlled silicone oil baths.

4.1 � General Method

The reaction was carried out in an autoclave containing a 
10 mL Teflon reaction tube. Catalysts (0.05 mmol), arylbo-
ronic acids (1.0 mmol), NaHCO3 (2.0 mmol), H2O2 (30%, 
2.0 mmol) and 1,4-dioxane (2.0 mL) were added to the 
tube. The autoclave was cooled to − 60 °C by liquid nitro-
gen, and then 2,3,3,3-tetrafluoropropylene (HFO-1234yf) 
was added to a set weight. Finally, the autoclave was 
warmed in an oil bath at 80 °C for 12 h. After the reaction, 
the autoclave was cooled to room temperature and vented 
to discharge the excess 2,3,3,3-tetrafluoropropylene (HFO-
1234yf) carefully. Water (20 mL) was added, and p-fluoro-
acetophenone (80 mg) was added with a syringe. Then, the 
product was extracted with DCM (3*15 mL). The organic 

layers were washed with brine and dried over Na2SO4, and 
the organic solvent was evaporated by a rotatory evapora-
tor under atmospheric pressure. The crude products were 
determined by 19F NMR using p-fluoroacetophenone as 
an internal standard.

5 � Conclusions

In summary, we developed a new strategy for the facile syn-
thesis of (Z)-β-fluoro-β-(trifluoromethyl)styrene derivatives 
via a Pd/PdO@NGr-C-catalyzed oxidative Heck reaction 
with 2,3,3,3-tetrafluoroprop-1-ene as a fluorinated olefin. 
More importantly, H2O2 is used as a green oxidant during 
this process. The wide scope and remarkable tolerance, par-
ticularly to a large number of important arylboronic acids, 
make this strategy remarkably practical for the efficient syn-
thesis of functional styrenes.
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